
Supplementary of “PackDet: Packed Long-Head
Object Detector”

Kun Ding1, Guojin He1, Huxiang Gu2,3, Zisha Zhong2, Shiming Xiang2, and
Chunhong Pan2

1 Aerospace Information Research Institute, Chinese Academy of Sciences
kding1225@gmail.com, hegj@radi.ac.cn

2 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

{smxiang,chpan}@nlpr.ia.ac.cn, zisha.zhong@ia.ac.cn
3 Beijing EvaVisdom Tech, guhuxiang@evavisdom.com

Abstract. This supplementary material provides more experimental
results regarding to the proposed method, which includes: 1) experiments
to benchmark PackOp under mainstream deep learning frameworks with
different software versions; 2) experiments to evaluate the effectiveness of
PackOp integrated into PackDet with different input sizes and feature
channels; 3) comparison of the memory cost of PackDet and FCOS; 4)
results of PackOp integrated with RetinaNet, an anchor-based method;
5) some visualization results. Codes will be released.4

1 Benchmark PackOp

To demonstrate the effectiveness of PackOp in speeding up forwarding compu-
tation, regardless of different platforms and software versions, we additionally
conduct the experiments on more platforms with different software versions. The
experimental settings are identical to those in main paper.

1.1 PyTorch

We switch to the latest PyTorch version 1.5, with the CUDA 10.2 and cuDNN 7.6.5
environment. The results are shown in Fig. 1, where pack wo PackOp denotes the
packing method excluding the PackOp time, pack is the same method counts this
time, and forloop denotes the branch-by-branch method. As a quick reference,
the results with PyTorch-1.1.0+CUDA-9.0+cuDNN-7.3.0 are also presented.
From the figure, we could find that when using newer PyTorch version, the
speedup by PackOp is even higher.

4 https://github.com/kding1225/PackDet



2 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

4 6 8 10 12 14 16 18
T

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(a) varying T

100 200 300 400 500
C

0
20
40
60
80

100
120

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(b) varying C

0.5 1.0 1.5 2.0
scale

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(c) varying scale

4 6 8 10 12 14 16 18
T

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(d) varying T

100 200 300 400 500
C

0
20
40
60
80

100
120

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(e) varying C

0.5 1.0 1.5 2.0
scale

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop
forloop mul-stream

(f) varying scale

Fig. 1: GPU time comparison with varying T , C and scale s on PyTorch. The
scales {2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4} are used to resize input tensors. The
default value of T,C, s are 10, 128, 1.0, respectively. Top row: PyTorch-1.1.0,
bottom row: PyTorch-1.5.

4 6 8 10 12 14 16 18
T

0
50

100
150
200
250
300

tim
e/

m
s

pack
pack wo PackOp
forloop

(a) varying T

100 200 300 400 500
C

0
50

100
150
200
250
300

tim
e/

m
s

pack
pack wo PackOp
forloop

(b) varying C

0.5 1.0 1.5 2.0
scale

0

50

100

150

200

250

tim
e/

m
s

pack
pack wo PackOp
forloop

(c) varying scale

4 6 8 10 12 14 16 18
T

0
50

100
150
200
250
300

tim
e/

m
s

pack
pack wo PackOp
forloop

(d) varying T

100 200 300 400 500
C

0
50

100
150
200
250
300

tim
e/

m
s

pack
pack wo PackOp
forloop

(e) varying C

0.5 1.0 1.5 2.0
scale

0

50

100

150

200

250

tim
e/

m
s

pack
pack wo PackOp
forloop

(f) varying scale

Fig. 2: GPU time comparison with varying T , C and scale s on MXNet. Top row:
MXNet-1.5.1, bottom row: MXNet-1.6.0.

1.2 MXNet

We benchmark the time of PackOp under the MXNet framework5. Two envi-
ronments are tested: MXNet-1.5.1+CUDA-9.0+cuDNN-7.3.0 and MXNet-1.6.0+
5 Imperative mode is used here, the results in symbol mode may be different. But we

conjecture the overall trend should be consistent.



PackDet: Packed Long-Head Object Detector 3

4 6 8 10 12 14 16 18
T

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop

(a) varying T

100 200 300 400 500
C

0

25

50

75

100

125

tim
e/

m
s

pack
pack wo PackOp
forloop

(b) varying C

0.5 1.0 1.5 2.0
scale

0

20

40

60

80

tim
e/

m
s

pack
pack wo PackOp
forloop

(c) varying scale

4 6 8 10 12 14 16 18
T

0

10

20

30

40

50

tim
e/

m
s

pack
pack wo PackOp
forloop

(d) varying T

100 200 300 400 500
C

0

25

50

75

100

125

tim
e/

m
s

pack
pack wo PackOp
forloop

(e) varying C

0.5 1.0 1.5 2.0
scale

0

20

40

60

80

tim
e/

m
s

pack
pack wo PackOp
forloop

(f) varying scale

Fig. 3: GPU time comparison with varying T , C and scale s on TensorFlow. Top
row: TensorFlow-1.12, bottom row: TensorFlow-2.0.

CUDA-10.2+cuDNN-7.6.5. For credible timing, mxnet.nd.waitall() is adopted
and the average time of 30 trials is reported.

The results are shown in Fig. 2. We can see that, under different cases, varying
T (number of conv blocks), C (number of channels) and scale, using PackOp
can speed up the computation significantly. Meanwhile, the latency caused by
packing all feature maps together is negligible.

1.3 TensorFlow

We have also benchmarked the time under the TensorFlow framework. Two
environments TensorFlow-1.12+CUDA-9.0+cuDNN-7.3.0 and TensorFlow-2.0+
CUDA-10.0+cuDNN7.6.5 are tested. Note that, the symbol mode is adopted.
For accurate timing, CUDA event based timers are used. All other settings are
consistent to PyTorch and MXNet experiments.

The results with varying T , C and input scale are shown in Fig. 3. Actually, we
find that the trends are very similar to those in the PyTorch experiments: PackOp
is more advantageous for larger T , smaller C and smaller input scale. Note that
our current implementation of PackOp is based on scatter nd update() that is
a little inefficient. Using a full CUDA implementation may further reduce the
PackOp’s latency.

1.4 Summary

Based on all the above experiments, under different deep learning frameworks and
different software versions, we can conclude that although current mainstream



4 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

input size channels tr-pack ts-pack ch-gn time AP AP50 AP75

1000× 600 128

62.8 37.8 55.2 40.6
X X X 39.3 38.1 55.6 40.9
X X 65.3 30.1 46.3 32.6

1300× 800 64

69.3 37.5 55.0 40.5
X X X 51.7 38.5 56.0 41.4
X X 65.0 24.4 38.6 26.1

1000× 600 64

63.7 36.1 53.3 38.6
X X X 34.6 36.7 53.8 39.7
X X 64.7 24.6 39.2 26.5

Table 1: PackDet results using ResNet-50 with different inputs and channels.

frameworks are well optimized, there is still an appreciable space to further
improve the computation efficiency, especially for multi-branch structures. PackOp
that collects fragmented features together and performs computation in parallel,
supplies a simple but useful solution for speeding up head forwarding. Meanwhile,
the solution is platform-agnostic. Finally, the results also imply that regularity
of structure is important for designing low-latency neural networks.

2 Effectiveness of PackOp Integrated into PackDet

The effectiveness of packed head in PackDet for speeding up inference and
improving accuracy has already been demonstrated in the main paper with fixed
input size and number of channels. Here, we provide additional results with
varying input size and channel number. The results are given in Table 1. The
backbone is ResNet-50, the 1x learning schedule is adopted, Me is set as 3. The
running environment is PyTorch-1.5+CUDA-10.2+cuDNN-7.6.5.

With fewer channels and/or smaller input sizes, the speedup is more evident,
13-30 ms absolutely or 20-46% relatively. For industry applications, roughly
speaking, 46% speedup means 46% servers can be cut off. In addition, longer
heads bring visible increase on accuracy especially for small backbones as shown
in the main paper. In summary, PackOp is effective for both reducing latency
and improving accuracy.

3 Memory Cost Comparison

In the main paper, we have demonstrated the memory efficiency of PackOp by
theoretical derivation. Here, we demonstrate the memory efficiency of PackDet
via experiments. Please note that they are different things, as PackOp is only one
of many components in PackDet. The memory cost of FCOS [2] and PackDet are
listed in Table 2. The relative increases of train memory w.r.t. FCOS are about
6%, 9%, 7%, 9%, respectively, which are higher than 5.7% (relative memory
increase of PackOp mentioned in main paper) as there are more layers in head
and the dense skip connections instead of PackOp itself costs more memory. At
test stage, as only forward information is kept, the cost is nearly constant.



PackDet: Packed Long-Head Object Detector 5

Method Stage MobileNet-v2 ResNet-50 ResNet-101 ResNeXt-101-DCN

FCOS train 7739× 4 5519× 4 7489× 4 6797× 8
PackDet train 8173× 4 6021× 4 8005× 4 7430× 8
FCOS test 1323 1751 1825 2525
PackDet test 1331 1751 1825 2525

Table 2: Memory cost (in MiB) comparison of PackDet and FCOS. In training
stage, the memory cost is obtained by torch.cuda.max memory allocated();
in testing stage, the memory cost is obtained by nvidia-smi. ×4 and ×8 mean
the model is trained with 4 and 8 GPUs, respectively.

Method Input Size Backbone MS Train FPS AP AP50 AP75 APS APM APL

RetinaNet800 ∼1300×800 R-101 X 9.5 39.1 59.1 42.3 21.8 42.7 50.2
RetinaNet800+PackOp ∼1300×800 R-50 X 8.8 39.1 58.4 42.1 21.9 42.3 49.4

Table 3: Results on COCO test-dev set of RetinaNet using PackOp. R: ResNet.

4 Integrated with RetinaNet

PackOp is available for both anchor-free and anchor-based methods. The difference
between them lies in the last prediction layer, which is independent from the
lower layers in head. Moreover, anchor-free method can be viewed as a special
case of anchor-based method with only one anchor [3].

We apply PackOp to RetinaNet [1], an anchor-based method, and obtain
AP=39.1%, AP50=58.4%, AP75=42.1%, which are comparable to RetinaNet’s
results using ResNet-101 as backbone in Table 3. Please not that the FPS of
RetinaNet800+PackOp is a little low as the post-processing is not optimized
to fully use the advantage of packing all scales together. We rudely split the
packed prediction to obtain five maps and call the original post-processing code
of RetinaNet for each scale separately, which is obviously slow.

Fig. 4: Visualization of features. (a) Outputted feature map F (p) of PackOp. (b)
Outputted feature map F (s) of shared head. (c) Image with predicted boxes.



6 K. Ding, G. He, H. Gu, Z. Zhong, S. Xiang and C. Pan

Fig. 5: Detection examples on COCO test-dev of PackDet with the ResNeXt-
101-DCN backbone.

5 Visualization

A visual comparison of the feature map F (p) and F (s) is presented in Fig. 4. As
can be seen from Fig. 4(a), the same position of different scales have similar
activation values. In contrast, by optimizing loss function, objects of different
sizes would be detected at different scales as indicated by Fig. 4(b)-(c).

The qualitative detection results of PackDet are shown in Fig. 5. The results
are generated with ResNeXt-101-DCN as the backbone and Me (number of extra
feature maps) is 3.

References

1. Lin, T., Goyal, P., Girshick, R.B., et al.: Focal loss for dense object detection. In:
ICCV (2017)

2. Tian, Z., Shen, C., Chen, H., et al.: FCOS: Fully convolutional one-stage object
detection. arXiv: 1904.01355 (2019)

3. Zhang, S., Chi, C., Yao, Y., et al.: Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection. In: CVPR (2020)


