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In this supplementary material, we include the following sections:

— Section 1: We provide some cases to explain why the so-called image gist or
key relations are not equal to visually salient objects or where humans gaze.

— Section 2: Detailed introduction about transforming our HetH and HetH-
RRM models for image cpationing and re-implementation of the GCN-LSTM
[7] model.

— Section 3: More details about VG-KR construction and additional statistics
of our VG200 and VG-KR datasets. Besides, the implementation details and
hyperparameters settings are provided.

— Section 4: The statistical significance of the results from our method.

— Section 5: We give an example to show the advantages of HET.

— Section 6: The exploration and findings on VG-KR, which inspire us that
both visual saliency and size of an object are helpful for estimating relation
importance.

— Section 7: More qualitative results of our method.

1 Detailed Explanation about Motivation

As illustrated in the main paper, it’s notable that the visually salient objects are
related but not completely equal to objects involved in image gist. According to
findings in [1], objects referred in a description (i.e., objects that humans think
important and should form the major events/image gist) are almost visually
salient and reveal where humans gaze, but what humans fixate (i.e., visually
salient objects) are not always what they want to convey at first. In Figure 1,
we provide some examples to show that this is a common phenomenon. E.g.,
the red clothes, the Spring Festival couplets, and the black doors of the washing
machines (mentioned from left to right), are visually salient due to their high
contrast to the context or center position. However, some of them do not form
the major events. For example, in the 2" image, the first glance description
would be “There stands a house on the side of the road”. Then humans may be
interested in the eyecatching Spring Festival couplets.

Besides, we are inspired by these observations. There naturally exists a hier-
archical structure about humans’ perception preference. Objects with relatively
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Fig. 1: Visually salient objects do not always form the major events in the images
and are not always what humans want to convey at first from the images. The
yellow points in each image denote some visually salient objects. The saliency
maps in the second row are obtained from [2].

large size which fulfill the scene generally form the major events. It supports us
to construct HET with the method introduced in the main paper. We aim at
constructing HET whose levels reflect the perception priority level rather than
the object saliency. The experiments show that our method for constructing
HET has achieved this goal.

2 Implemention Details for Image Captioning

As the source codes of GCN-LSTM [7] have not been released by the submission
deadline, we re-implement it. In its original version, a simple two-layer MLP
classifier is applied to predict the pairwise relationship, which acts as the frontend
scene graph detector. For a fair comparison, we replace this detector with our
HetH. To transform our HetH/HetH-RRM for image captioning task, we add a
sentence decoder which is modified from LSTM backend of GCN-LSTM. The
GCN-LSTM model conducts graph convolution on the scene graph and injects
all relation-aware region-level features into a two-layer LSTM with attention
mechanism. Different from GCN-LSTM, we intend to inject the relation features
rather than region-level features, considering that the relationships which convey
the events in the image are more helpful for description generation. In Figure
2, we show a brief diagram to illustrate our implementation of GCN-LSTM,
and demonstrate the implementation scheme of our sentence decoder for image
captioning.

Specifically, we obtain a set of visual relationship representations { fX}M_,
(fR € RP, Dy = 4,096) after relation context decoding (see Figure 2(d) in the
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Fig. 2: Our implementation of GCN-LSTM, and the the implementation scheme
of our sentence decoder.

main paper). We concatenate them with the word embeddings of their subjects,
objects, and predicates, denoted by w?, € RP» w? € RPv and wr, € RPw»
(D, = 300), and obtain {r,,}M_, (r,, € RP" D, =4,996):

[ R.

T = [flwh s whwh ] (1)

The sentence decoder is a two-layer LSTM. It’s noted that two layers in this
decoder share one hidden state h € RP» and cell state ¢ € RP». At each time step
t, the first layer collects the maximum contextual information by concatenating

the input word embedding w; € RP» and the mean-pooled visual relationship

M
feature r = ﬁ > 7. The updating procedure is as
m=1

hive; = fi([we e o2 ()

where f; is the updating function within the first-layer unit, |h?_;, c?_; denotes
that the internal hidden state and cell state is the ones that updated by the
second-layer unit from the previous timestep. Then we compute a normalized
attention distribution over all the relationship features

agm = W, [tanh (Wfrm + Whh%)] , A+ = softmax(ay), (3)

where a;,, is the m-th element of a;, W, € R*Pa W, € RPxDPr W), €
RPaxDPr are transformation matrices. Specifically, both the dimension of the
hidden layer D, for measuring the attention distribution and the dimension of
the hidden layer D, in LSTM are set as 512. A\; € R™ denotes the normalized
attention distribution whose m-th element \;,, is the attention weight of r,,.

M
The attended relationship feature is computed as 7 = Y, At ;mTm. Then the

m=1
updating procedure of the second-layer unit is

hi et = fo (T 1 e (4)

where f, is the updating function within the second-layer unit. h? is used to
predict the next word through a softmax layer.
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Table 1: Statistics of VG200, VG-KR, and VG150.

Images with Object Predicate Object Relation Key Relation Images with Key

ataset Images . . . :
Dataset Images Relations Categories Categories Instances Instances Instances Relation Instances

VG200 51,498 46,562 200 80 619,119 442,425

VG-KR 26,992 26,992 200 80 360,306 250,755 101,312 26,992
VG150 108,073 89,169 150 50 1,145,398 622,705
step (1)

e » v 5 /N

step (2) ‘P
@

(a) The procedure of constructing VG-KR dataset. (b) Global perspective.

VG

Fig.3: The procedure of VG-KR dataset construction. The color block shown
in the top right of each dataset in (a) demonstrates its components. (b) gives
a global perspective of these color blocks. Images in MSCOCO consist of four
parts, A, C, D, and E. Images in VG consist of B, C, D, and E. Images in VGC
consist of C, D, and E. E denotes images filtered in step (2) which do not contain
any relation. D denotes images filtered in step (3) which do not contain any key
relation.

3 VG-KR Dataset Construction, Statistics, and
Experimental Implementation Details

3.1 VG-KR Dataset

We demonstrate the procedure of constructing VG-KR dataset and different
image sets involved in this procedure in Figure 3. Concretely, 51,498 images in
VG come from MSCOCO, which form the image set VGC. We conduct three-
stage processing on VGC. (1) Stanford Scene Graph Parser [4] is used to extract
relation triplets from captions. They make up the set of key relations, denoted by
RX. (2) We next cleanse the raw annotations of VG C similar to [6], keep the most
frequent 150 object categories and 50 predicates, and add another most frequent
50 object categories and 30 predicates in R¥, in order to keep as many key
relations as possible for the following third step. After dropping images without
relations in VGC, we get a new subset VG200 (i.e. 200 object categories) which
contains 46,562 images. (3) Finally, we associate R with relation triplets in
VG200 by associating their subject and object WordNet synsets [3] respectively.
After filtering out the images without key relations in VG200, here comes VG-
KR which contains 26,992 images. For both VG200 and VG-KR, we split the
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s "] 1 Aman walking along the beach while holding a surfboard. [man, wearing, pant], [leaf, on, surfboard], [sand, on, surfboard],
2. Aman ona beach holdinga surfboard. [water, behind, wave], [head, of, man],
3. Aman holding a colorful surfboard going towards the beach. [man, holding, surfboard], [man, on, beach]

1. Apersonriding a bike with a dog in a basket. [basket, on, bike], [car, near, building], [tree, near, car],
2. Apersonanda dogon abike. [man, holding, bag],
3. Aman riding a bicycle with a dog in a basket on the back. [dog, in, basket], [dog, on, bike], [man, riding, bike]

Fig.4: Examples in VG-KR dataset. Each image is shown with 3 captions and
ground truth relations. Purple triplets are key ones while others are secondary.
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Fig. 5: Distribution of images that contain different numbers of key relations.

training and test set by 7:3 ratio, leading to 32,510/14,052 training/test images
in VG200, and 18,720/8,272 training/test images in VG-KR.

We give several examples in Figure 4 and show more detailed statistics and
compare with VG150 in Table 1. We can see that VG200 and VG-KR have
more categories, as well as object and relation instances per image compared to
VG150. Moreover, VG-KR contains indicative annotations of key relations.

In Figure 5, we show the distribution of images that contain different numbers
of key relations. More than 90% of images contain less than 5 key relations. It’s
reasonable because the key relations are obtained by matching the annotated
relations with those extracted from captions. The number of relation triplets in
captions generally is not very large. After all, a good caption is only requested
to describe the major contents instead of the less important details.

Given each predicate, we explore the distribution of its role, i.e., whether it
belongs to a key relation or not. The result is shown in Figure 6. The predicates
with large probability to be key ones, such as throwing, brushing, and sniffing,
are usually verbs containing rich semantics. They are image-specific and when
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Fig. 6: Distribution of the roles of a given predicate. The red bars stand for the
probability of being key relations while the blue bars denote the probability of
being the secondary ones.

we see these predicates, a scene can be roughly imagined. While predicates like
belonging to, of, and behind, which carry little information, are less likely to make
up the key relations.

3.2 Settings and Implementation Details

The dimension of hidden states and cells in both Hybrid-LSTM and RRM is
512. The sizes of Wl(r) and WQ(T) in Eq.(11) in the main paper are 256 x 512 and
1 x 256 respectively. The GloVe embedding vectors we use are of 200 dimensions.

When training on the VG dataset, we follow previous works [8,5] to extract
the first 5,000 images of the training split and treat them as the validation split.
The results reported on VG150, VG200, and VG-KR are obtained by firstly
selecting the best model on validation split and then evaluating it on test split.
As for the experiments on VRD, we report the results of the last epoch evaluated
on test split without model selection (The hyperparameters settings are the same
as those of experiments on VG).

We pre-train object detectors on VRD, VG150, and VG200 respectively and
freeze the learned parameters. To train the whole model end-to-end, we use an
SGD optimizer with a learning rate of 0.001 and the batch size is 10. When
computing the ranking loss for RRM, we randomly sample 512 pairs of key
triplets and secondary triplets. The margin ~ is empirically set to 0.5. All the
existing methods evaluated on our VG200 or VG-KR, datasets are retrained.

The threshold T for determining a parent node actually has direct influence
on the shape of HET. We investigate the performance curve together with the
tree depth and width variation trend. As shown in Figure 7, as T' varies from
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Fig. 7: Effect of threshold T" when constructing HET. AD and AW denote average
depth and average width respectively. The red curve stands for the kR@Q1 per-
formance of HET-RRM, evaluated under PREDCLS protocol with triplet-match
rule.

0.1 to 0.9, the “tall thin” tree becomes a “short fat” tree, and the performance
is improved. Thus we set T' to 0.9.

As T becomes larger, the condition that a node can be a parent node, i.e.,
P,y > T (Eq.(1) in the main paper), is more and more difficult to be satisfied.
Thus, our algorithm for constructing HET tends to set the root as the parent of
a node, which results in a “shorter” and “fatter” tree.

A small T would lead to considerable wrong hierarchical connections. It’s
noted that the hierarchical connections in our HET have much stronger seman-
tics than the associations of siblings. Therefore, a large T eliminates wrong
hierarchical connections as far as possible. Although it means that more entities
are set as the child of the root and inappropriate siblings associations increase,
proper hierarchical connections still plays a positive role in context encoding.

4 Robustness Analyses

We make multiple runs on the HetH under the PREDCLS protocol. The results
and statistical significance are shown in Table 2.
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Table 2: The results of multiple runs of HetH and the statistical significance.
These results are obtained under the PREDCLS protocol.

#RUN R@20 R@50 R@100

1 33.46 36.59 37.00

2 33.53 36.64 37.04

3 33.93 36.65 37.07
nEto 33.64+0.21 36.63+0.03 37.04+0.03
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Fig. 8: As the quota of top relations (NR) increases, scene graphs dynamically en-
large. The newly involved entities and relations are shown in a new color. Results
in first row and second row are from HetH-RRM and MOTIFS respectively.

5 Advantages of HET

As shown in the first row in Figure 8, hierarchical scene graph from our HetH-
RRM enlarges in a top-down manner as the quota of top relations increases,
while the ordinary scene graph in the second row enlarges itself aimlessly. If we
want to limit the scale of a scene graph but keep its ability to sketch image gist
as far as possible, it is feasible for our hierarchical scene graph since we just
need to cut off some secondary branches of HET, but is difficult to realize in an
ordinary scene graph.

6 Exploration on VG-KR

We develop the Relation Ranking Module (RRM) to prioritize key relations. We
intend to capture humans’ subjective assessment on the importance of relations
with some objective indicators. As analyzed in Section 1, visually salient objects
engage humans’ gaze and have the potential to form major events. Therefore,
visual saliency can be one of the useful indicators. However, it’s easy to lead to
misunderstandings when only visual saliency is considered.

To better describe the importance of relation, we borrow the traditional
“saliency” concept, and put forward a brand-new concept, cognitive saliency,
which tries to estimate the importance of a relation from humans’ perspective
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Fig.9: Curve charts and pie charts for the indicator which is the sum of subject
and object visual saliency values. In the curve charts, different curves are drawn
under different thresholds 7. Top left: CS - IDC chart. Top right: IDC - CS
chart. Bottom left: Component analysis for relations which have small IDC
values. Bottom right: Component analysis for relations which have large IDC
values.

as the sensation of importance of relation is very subjective. Considering the
measurement of cognitive saliency of a relation triplet, we employ its times be-
ing referred within the five captions of each image, which can be directly obtained
during the construction of our VG-KR dataset. However, this measurement of
cognitive saliency is not computable. (i.e., it is grading from humans, but can-
not be directly used in computational models.) If we want to make use of the
cognitive saliency, we need to find a computable indicator for it. The indicator
should be proportional to cognitive saliency, which means that as the cognitive
saliency goes up, the same trend should be observed on the indicator, and vice
versa.

Intuitively, the first possible indicator is the visual saliency of subject and
object in a relation triplet. Specifically, we set the indicator & as the sum of
saliency values of subject 0°“? and object 0°%:

I{plp € b*** A SP > T}

Ssub — , 5
ol e b )

Sobj — |{p|p € b A\ SP > TS}' (6)
[{plp € b7} ’

PH — Ssub +SObj, (7)
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Fig.10: Curve charts for the indicator which is the sum of subject and object
visual saliency values and normalized areas. Different curves are drawn under

different thresholds Ts. Left: CS - IDC chart. Right: IDC - CS chart.
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where p denotes pixels, b**? and b°® are bounding boxes of subject and object,
SP is the saliency value of pixel p, S*** and S° are saliency values of subject
and object, T is a given threshold. | - | computes the number of elements in a
set. The pixel-wise saliency is computed by one of the state-of-the-art saliency
detectors [2].

To draw the Cognitive Saliency (CS, Y-axis) - Indicator (IDC, X-axis) curve
chart, we randomly sampled 50,000 key relations from VG-KR with grading
from 1 to 5 as their CS values. As IDC values (i.e., @ in Eq. (7)) are continuous,
we sort all the sampled IDC values in ascending order, and divide them into
50 intervals [0k, dk+1],0 < k < 50, where 69 = IDCyyin and 959 = IDCpax. In
each interval, we draw a point with the mean of the sampled IDC values as X-
axis coordinate and the mean of sampled CS values as Y-axis coordinate. When
it comes to IDC (Y-axis) - CS (X-axis) curve chart, the sampled relations are
grouped by CS values. We compute the mean of IDC values for each group as
Y-axis coordinates. These two charts are shown in Figure 9. In each chart, we
draw curves under different settings of Ty, denoted by sal@T;. From the IDC -
CS chart at the top right of Figure 9, IDC is proportional to CS. However, the CS
- IDC chart at the top left of Figure 9 shows that CS is not strictly proportional
to IDC, which means that although the computed visual saliency of an object
is large, the relations involved in this object are not so important. What results
in this phenomenon? We further extract the relations with relatively small IDC
values and large IDC values respectively and analyze the ratio of each type of
triplet. Concretely, we find the quartering points A\; < A2 < A3 of IDC values,
and all the triplets whose IDC values are smaller than \; or larger than A3 are
picked out, namely the set ¥ and {2. The component analysis results of the set
¥ and {2 are shown at the bottom of Figure 9, where the most frequent 18 types
of triplets are demonstrated. From the bottom left pie chart, lots of triplets
with low IDC and low CS values generally are relations between relatively small
objects and the large background entities. However, there are some exceptions,
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e.g., (man, on, surfboard), and (train, on, tracks). It’s reasonable and we should
explore the detailed image contents if we want to further analyze the association
between their IDC and CS values. What we should pay attention to is the bottom
right pie chart, where we observe that most triplets in {2 are relations between
an independent object and its components, such as (hand, of, man) and (edge,
of, bus). Actually, these relations are indeed not so image-specific and carry
little information. Humans generally overlook them. However, if the saliency of
an object is large, saliency of its component will be large, too. It explains the
phenomenon when IDC keeps increasing, the CS decreases instead.

In order to further rectify the indicator above, we consider the size of subject
and object out of the thinking that the sizes of components or details of a certain
entity is relatively small, which can balance the large saliency value. Therefore,
we add the normalized size of subject and object into the indicator:

A(Osub) A(OObj)

@/: sub obj
S+ 8% 4 A(o7) + Alor) (8)

where A(-) denotes the size function, and oz denotes the whole image. Similarly,
we draw the IDC - CS and CS - IDC charts in Figure 10. It is shown that this
improved indicator is a feasible one, as the CS is strictly proportional to IDC,
and vice versa.

The exploration above inspires us that an indicator which contains both the
visual saliency and size of an object may be useful for finding key relations.
Therefore, our devised RRM learns to capture humans’ subjective assessment
on the importance of relations under the guidance of visual saliency and entity
size information.

7 Additional Qualitative Results

We demonstrate more qualitative results in Figure 11. From all of these exam-
ples, it can be seen that our RRM tends to describe relations between entities
which are close to the root of HET. These relations describe the global contents
and usually are what humans pay the most attention to. As a result, the captions
generated from top relations better cover the essential contents. For example,
in Figure 11(a), as the top-2 relations from HetH model contain (woman, wear-
ing, boot_1/boot_2), the generated caption cannot capture the essential content
that the woman is holding an umbrella. On the contrary, top-2 relations from
HetH-RRM successfully capture this information. In some cases, we observe that
although top-2 relations do not contain the essential content, the generated cap-
tion can still capture it, e.g., the caption from HetH in Figure 11(b). It is mainly
because the region of man_I contains part of the region of motorcycle_1, which
provides visual cues for inferring the content that a man is riding a motorcycle.
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boot 1 boot 2 hair 1 pant1 window 1 tree 1

holding @ holding@ on@

street_1 fence_1 umbrella_l woman_1 light 1 sign_1 building_1 sidewalk_1 bench_1 bus_1 street 1 fence_1 umbrella_l woman_1 light 1 sign_1 building 1 sidewalk_1 bench_1 bus_1
near®
ne

boot 1 boot2 hair1 pant.l window_1 tree 1

‘ A woman walking down a street holding an umbrella. ‘

ROOT

railing 1 line1 numberl bikel shitl leg 1 am.1 enginel head.l glove 1

helmet 1 hand_1
one
building_1 man_1 man_2 pole_1 road_1 sky_1 building_1 man_1 ‘man_2
earing @ ®on on® LS
engine 1 head 1 glove 1 railing 1 [linel| number1 [biked ~shit1l legl arm1 engined head 1 glove 1
on®
helmet 1 hand_1 on® helmet 1 hand_1
‘ A man riding a motorcycle on a city street. ‘ ‘ A man riding a motorcycle down the street. ‘

(b)



Supplementary Material 13

sky.1 man.1l [boat 1 boat 2 boat 3 building 1 Woman.d building.2 building 3 building 4 building 5 building 6  sky_1 fman_1 boat 1] boat:2 boat3 buiding_1 Woman_1 building 2 buiding.3 building 4 buiding.5 building 6

shitl  hair 1 hat.1 shit1l  hair 1 hat 1
‘ A man sitting on top of a boat in the water. ‘ ‘ A man and a woman are in a boat.
(c)

head 1 hairl  taill  pawl  paw2

ear 1 ear 3 mouth_1
|
ear 2
‘couch_1 pillow_1 pillow_2
o
has .hasd‘::;l w ball_1 hast dog_1 ball_1
head_1 hair_1 taill ® paw 1 paw 2 head_1 hair_1 tail_1 paw_1 paw_2
has® has@®
ear_1 ear 3 mouth_1 ear_l ear_3 mouth_1
ear2 ear2
‘ A dog laying on the floor next to a laptop. ‘ ‘ A dog is laying on a couch with a remote. ‘

Fig. 11: From top left to bottom right are: bounding boxes of all objects, saliency
maps, area maps, mixed maps, bounding boxes of objects involved in top-5 re-
lations from HetH, HET structure, bounding boxes of objects involved in top-
5 relations from HetH-RRM model, hierarchical scene graphs from HetH and
HetH-RRM model, generated captions using top-2 relations from HetH and
HetH-RRM respectively. The purple arrows in scene graphs are key relations
matched with ground truth. The purple numeric tags next to the relations are
the rankings, and “1” means that the relation gets the highest score.
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