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A More details and discussions of our proposed model

A.1 Overview

As mentioned in Sec. 1 in the original paper, for any burst denoising solution
to be practical, it needs to address a few major challenges. First, it needs to
be efficient, especially when considering resource-constrained devices. Second, it
needs to be flexible and scalable, being able to handle arbitrary length of burst
frame input, which is not the case in KPN [1]. Third, it needs to not only pursue
objective quality, but also enhance perceptual quality and balance the trade-off
between them as indicated in the Perception-Distortion Tradeoff work [2].

In the following sections, we first review more recent related work on single
image denoising in Sec. A.2 to put our burst denoising model in a better con-
text. Then we introduce more background and detail of the wavelet transforms
operation in our proposed model in Sec. A.3. In Sec. A.4 we provide more details
on the temporal max-pooling based feature fusion for better comparing the two
pseudo-3D mechanisms which we investigated for the burst denoising task. More
details of the camera simulation pipeline is introduced in Sec. A.5 and failure
cases are demonstrated in Sec. A.5.

A.2 More related work on single-image denoising.

Image denoising is a long-established low-level computer vision task. Many tradi-
tional methods have been proposed to take advantage of the specific statistics of
natural images for reducing noise. Anisotropic diffusion [3] and bilateral filters [4]
exploit local similarities to selectively smooth pixels locally. Total variation meth-
ods [5] use analytical priors for natural images. Domain transform methods,
notably using the Wavelet transform [6,7] reduce the spatial dependencies to
simplify filtering. Non-local patch methods [8] exploit short-range and long-range
similarities. Another approach is to model the image patches as sparse linear
combinations of elements of a learned dictionary [9]. Among these traditional
methods, BM3D [10], which both selects pixels with block matching and uses
transform domain filtering, is generally considered the current state of the art in
image denoising.

Meanwhile, due to the popularity of convolutional neural networks (CNNs),
image denoising algorithms [11,12,13,14,15] have achieved a significant boost in
performance. Notable denoising neural networks, DnCNN [11], and IrCNN [13]
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predict the residual noise present in the image instead of the denoised image, while
the ground truth noise is utilized for loss computation instead of the original clean
image. Recently, many algorithms have focused on blind denoising for images
with real noise. The algorithms [13,11] benefited from the modeling capacity
of CNNs and have demonstrated the ability to learn a single-blind denoising
model. However, the denoising performance is limited, and the results are not as
good when the network is trained for a known noise [11,16]. They are even less
satisfactory on real photographs [17].

Very recently, CBDNet [18] was proposed as a blind denoising model for real
photographs. CBDNet is composed of two sub-networks: noise estimation and
non-blind denoising, and also incorporates multiple losses, Furthermore, [18,16]
may require manual tuning to improve results. Also, our model was originally
designed to facilitate higher resolution feature maps for preserving more details
in final denoised output.

A.3 Wavelet transforms for feature decomposition

As discussed in Sec. 3.2 in the original paper, we explicitly decompose the con-
volutional features to the high-frequency sub-bands and low-frequency subband
features with wavelet pooling, and fuse the features later with the inverse wavelet
unpooling process. Wavelets has been widely used in signal processing tasks to
compactly represent signals while maintaining important information such as
edges.

As a result, the reconstruction performance of encoder-decoder type of net-
works can be improved with minimal noise amplification by utilizing proper
wavelet transformation mechanisms. For the Haar wavelet we adopted, the low-
pass subband filter is equivalent to the average pooling to capture the structural
information of convolutional features, and the high-pass counterpart will capture
the representation corresponding to the local details and perceptual quality.

According to our ablation study in Table 1 of the paper, even though the
wavelet transform does not contribute as significantly as high-resolution features
towards PSNR improvements, we consider it important to the restoration of high
frequency contents. Wavelets allow us to explicitly decompose the noisy data
into frequency-specific feature channels and then temporally process different
frequency channels at various scales adaptively. This reduces over-smoothing of
high frequency content, which is not be reflected well in PSNR measurements.
Moreover, wavelet, with their reversible transform, have been very successful in
denoising before the deep learning era and have unambiguous decoding capability
w.r.t. max-pooling + transposed convolutions.

A.4 Temporal max-pooling for pseudo-3D feature fusion

As described in Sec. 3.3 in the original paper, temporal max-pooling we adopted
as one of the two pseudo-3D feature fusion mechanisms is straightforward and
order-invariant to all the input frames. The corresponding network architecture
for burst denoising is illustrated in Fig. 1. Specifically, each of the input frame is
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Frames 0-T
Frames 0-T

Frames 0-T
Frames 0-T

Frames 0-T
Frames 0-T

Frame -2

Frame -1

Frame 0

Frame 1

Frame 2

Denoised

max-pooling

Fig. 1: Overview of the temporal max-pooling architecture in our experiments. Each
input frame is processed by a copy of the same 2D backbone network with tied weights,
but the information is repeatedly exchanged between the copies. Specifically, the
maximum value of each activation between all the tracks are computed, then these
global representations are concatenated back with the per-frame local features for further
convolution. At the last layer, all the tracks are collapsed by a final max-pooling layer
and jointly predict one clean image. Note that this mechanism is order-invariant in
contrast with the temporal feature shifting operation.

processed by a tied copy of the same 2D backbone network (either the baseline or
our proposed 2D wavelet transform model), and the outputs are max-pooled across
all frames to generate the global representation, which are then concatenated
back to each track with the original local features. This would enable repeated
back-and-forth information exchanges between the members of the set in an
order-invariant fashion. However, the potential drawback is that this design
cannot preserve precious scene motion information across consecutive frames,
which might be critical for the dynamic burst denoising scenarios with not only
camera motion, but also scene motion.

A.5 Camera simulation pipeline

Following the discussion in Sec. 4.1. The simplest and most commonly used noise
model is the homoscedastic Gaussian assumption, also known as the additive
white Gaussian noise (AWGN). Despite its prevalence, the Gaussian model does
not represent the fact that photon noise is signal-dependent. To better model
noises, the Poisson-Gaussian model or heteroscedastic Gaussian model (i.e. novel
level function) are widely used. However, in real images there may still exist
other noise sources that may not be accurately represented by such models, e.g.
fixed-pattern noise, defective pixels, clipped intensities, spatially correlated noise,
amplification, and quantization noise thus a realistic camera simulation pipeline
which could add noises in the RAW domain would be helpful. [19,20,21].

Although there not exist a perfect camera simulation pipeline yet which could
simulate all these kind of noises as from the physical camera, we have tested
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Ground truth Noisy: 12.52dB Denoised: 21.41dB

Fig. 2: For Sec. 5.6: Failure cases of our model under extremely amplified noises levels
far beyond the training range. The trained model outputs less than ideal denoised result,
which shows explicit artifacts including color shift and distortion.

and finally choose Cam Sim [22] to synthesize all the synthetic noisy bursts for
both static and dynamic scenes. The proposed pipeline in [22] contains over 40
individual modules, and covers a good range of typical camera processes such
as tone-mapping, demosaicking, and denoising. The main stages for a forward
process contain artifact generation, demosaicking, cellphone denoising (with
bilateral filters), and tone-mapping and post-processing. For all available sRGB
images in DIV2K and Vimeo90K datasets, we apply the inverse process based on
the same pipeline, add more significant Gaussian and Poisson noises (as described
in the paper), and finally process them back to the sRGB domain. We also tested
the pipelines proposed in [23] and [24], but found Cam Sim provides the best
simulation quality and flexibility. We do find that there still exist deficiencies in
Cam Sim, including some unprocessed chroma noises and potentially mishandled
artifacts which could hamper the generalization of the proposed model. Thus one
future direction is to further improve the utilized camera simulation pipelines.

A.6 Failure case of the proposed model

As discussed in Sec. 5.6 in the paper, the main limitation of our proposed model
is that it is still trained in an non-blind denoising fashion without taking a noise
estimation map as input from a individual noise estimator such as the ones
proposed in [13,51], thus lacking the capability of adaptive noise-aware burst
denoising which is recently popular in single-image denoising methods. Fig. 2
here demonstrates a failure of our model on a severely corrupted burst, which is
considerably noisier than examples seen during training. The model struggles
to recover the corrupted detail, but instead produces unsatisfactory artifacts.
Integrating the proposed model with a noise level estimation mechanism is a
promising future research direction to mitigate this problem.
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B More interactive qualitative results.

B.1 Burst denoising on synthetic noisy burst data

Please check the interactive web-based image gallery for images.

As shown in the image gallery, while the previous methods are prone to
generate over-smoothed results with losing local details, our proposed model is
capable of preserving more precious local high-frequency information, and also
generating less artifacts. Also, slight simulated camera motion are comparably
well tackled by our proposed model, even though the kernel-sampling based
methods such as KPN are naturally more robust to slight disturbances.

B.2 Burst denoising on real noisy burst data

Please check the interactive web-based image gallery for images.

As shown in the image gallery, though our method visually outperforms
KPN on realistic bursts, they are both non-blind denoising models and it is
still challenging and difficult for them to adapt to various realistic scenes in
contrast to a conditional blind denoising model. We feel the proposed model can
be further improved by incorporating a noise estimator that would allow our
denoising method to adapt to a wider range of spatially-variant noise levels.

References

1. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst
denoising with kernel prediction networks. In: CVPR. (2018) 2502–2510 1

2. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. (2018) 6228–6237
1

3. Weickert, J.: Anisotropic diffusion in image processing. Teubner, Stuttgart (1998)
1

4. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV.
(1998) 839–846 1

5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D: nonlinear phenomena 60(1-4) (1992) 259–268 1

6. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet
transform. IEEE Transactions on image processing (TIP) 1(2) (1992) 205–220 1

7. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using
scale mixtures of gaussians in the wavelet domain. Trans. Img. Proc. 12(11)
(November 2003) 1338–1351 1

8. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:
CVPR. Volume 2., IEEE (2005) 60–65 1

9. Elad, M., Aharon, M.: Image denoising via learned dictionaries and sparse repre-
sentation. In: CVPR. Volume 1., IEEE (2006) 895–900 1



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#1848
ECCV

#1848

6 ECCV-20 submission ID 1848

10. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. IEEE Transactions on Image Processing
(TIP) 16 (2007) 2080–2095 1

11. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE Transactions on Image
Processing (TIP) 26(7) (2017) 3142–3155 1, 2

12. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-cnn for image
restoration. In: CVPR Workshop. (2018) 773–782 1

13. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep cnn denoiser prior for image
restoration. In: CVPR. (2017) 3929–3938 1, 2

14. Laine, S., Lehtinen, J., Aila, T.: High-quality self-supervised deep image denoising.
arXiv preprint arXiv:1901.10277 (2019) 1

15. Batson, J., Royer, L.: Noise2self: Blind denoising by self-supervision. In: ICML.
(2019) 524–533 1

16. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible solution for
cnn-based image denoising. IEEE Transactions on Image Processing (TIP) 27(9)
(2018) 4608–4622 2

17. Zhou, Y., Jiao, J., Huang, H., Wang, Y., Wang, J., Shi, H., Huang, T.: When
awgn-based denoiser meets real noises. arXiv preprint arXiv:1904.03485 (2019) 2

18. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind
denoising of real photographs. In: CVPR. (2019) 1712–1722 2

19. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for
smartphone cameras. In: CVPR. (2018) 1692–1700 3

20. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In:
CVPR. (July 2017) 3

21. Abdelhamed, A., Brubaker, M., Michael, B.: Noise Flow: Noise Modeling with
Conditional Normalizing Flows. In: ICCV. (2019) 3

22. Jaroensri, R., Biscarrat, C., Aittala, M., Durand, F.: Generating training data
for denoising real rgb images via camera pipeline simulation. arXiv preprint
arXiv:1904.08825 (2019) 4

23. Brooks, T., Barron, J.T.: Learning to synthesize motion blur. In: CVPR. (2019)
6840–6848 4

24. Karaimer, H., Brown, M.: A software platform for manipulating the camera imaging
pipeline. In: ECCV. (2016) 4


