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Abstract. Robustness of deep neural network classifiers has been at-
tracting increased attention. As for the robust classification problem, a
generative classifier typically models the distribution of inputs and la-
bels, and thus can better handle off-manifold examples at the cost of a
concise structure. On the contrary, a discriminative classifier only mod-
els the conditional distribution of labels given inputs, but benefits from
effective optimization owing to its succinct structure. This work aims for
a solution of generative classifiers that can profit from the merits of both.
To this end, we propose an Anti-Perturbation Inference (API) method,
which searches for anti-perturbations to maximize the lower bound of
the joint log-likelihood of inputs and classes. By leveraging the lower
bound to approximate Bayes’ rule, we construct a generative classifier
Anti-Perturbation Inference Net (API-Net) upon a single discriminator.
It takes advantage of the generative properties to tackle off-manifold ex-
amples while maintaining a succinct structure for effective optimization.
Experiments show that API successfully neutralizes adversarial pertur-
bations, and API-Net consistently outperforms state-of-the-art defenses
on prevailing benchmarks, including CIFAR-10, MNIST, and SVHN. 1
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1 Introduction

Deep neural networks (DNNs) have achieved unprecedented success in a wide
range of applications [11], [18], [34], [48], [40], [14]. However, they are strikingly
susceptible to adversarial examples [41]. The latest attack techniques can gener-
ate adversarial perturbations that are seemingly innocuous to humans but easily
fool DNNs [12], [33], [4], raising grand challenges to advanced machine learning
systems where DNNs are widely deployed [19], [27], [5], [1].

? Corresponding author rrji@xmu.edu.cn.
1 Our code is available at github.com/dongxinshuai/API-Net.
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Fig. 1: Overview of our inference procedure. 1) For each sample, search for the
anti-perturbation ∆ to maximize the lower bound of the joint log-likelihood. 2)
Leverage the lower bound l∗(x, y) as an approximation of the log-likelihood for
generative prediction using Bayes’ rule (best view in color with zooming in)

This phenomenon has attracted increased attention, with focuses on both at-
tack methods and defenses. Attack methods intend to cause the failure of DNNs
in their task, by maliciously modifying the input data. Such methods include
Fast Gradient Sign Method (FGSM) [12], DeepFool [30], Projected Gradient
Descent (PGD) attack [27], C&W attack [4], Universal Perturbations [29], [24],
and Wasserstein distance-based attack [43]. The prevailing “off-manifold” con-
jecture deems adversarial examples as outliers near but away from a class-related
manifold [41], [12], [10], [39], though challenged by [10].

To defend against adversarial attacks, several methods have been proposed.
Some focus on the detection [28], [21], [26], [23], [25]. Another prominent category
aims to enhance the accuracy of DNNs under attacks, which is the focus of this
study. Among the work concerning the robust accuracy of classifiers, adversarial
training is currently one of the most reliable [2]. Instead of minimizing the loss
evaluated at vanilla inputs, adversarial training augments the training data with
adversarially perturbed inputs, and builds defense that is shown to be the few
resistant to the newest attacks [41], [12], [27], [2].

While the robustness of discriminative classifiers is extensively investigated,
few works involve the robustness of generative classifiers [32]. Generative classi-
fiers are intuitively more robust to adversarial examples in that they learn the
distribution of inputs and classes, and thus can make meaningful predictions by
checking whether the class-specific features are present in the inputs. By com-
paring the joint log-likelihood of a given input and each class, which relates
to the “distance” of the input to a class-specific data manifold, a generative
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classifier can estimate the prediction probabilities well even when its inputs are
off-manifold examples. However, the classical generative classifiers, e.g., naive
Bayes, and linear discriminant analysis [8], perform poorly even on vanilla im-
age classifications, failing to illustrate the robustness of generative classifiers.

Recent advances have been filling up this vacancy. For example, leveraging
deep Latent Variable Model (LVM) to construct generative adversarial defense
and detection [22]. However, the inference model of the deep LVM is itself a
neural network and can be vulnerable. To tackle this problem, [37] proposed
optimization-based inference, which substitutes the expectation under the infer-
ence model with a maximum likelihood sample to avoid stochastic sampling and
to bypass the vulnerabilities. Though effective, current generative solutions are
still perplexed by two problems: 1) To learn the joint distribution of samples
and classes, a generative classifier often contains multiple components, which
brings difficulties to optimization. 2) Adversarial training, which is very useful
to build robustness for discriminative classifiers, is hard to apply to current gen-
erative models directly. On the contrary, a discriminative classifier only models
the distribution of classes conditioned on inputs, and thus takes advantage of its
succinctness for effective optimization. Hence, the main question this work aims
to address is: is there a solution that can benefit from the merits of both types?

Inspired by [36], which illustrates that a single robust discriminator can be
a powerful tool to perform low-level image synthesis tasks, such as inpainting
and denoising, we propose to construct a structurally concise generative classifier
based on such generative capabilities of a robust discriminator. Specifically, we
propose an Anti-Perturbation Inference (API) approach and derive a tractable
lower bound of the joint log-likelihood of inputs and classes. We use API to search
for the anti-perturbation that neutralizes the potential perturbation to maximize
the lower bound, and then leverage the lower bound to approximate Bayes’ rule
for generative predictions. Hence we build a generative classifier, API-Net, upon
a single discriminator. API-Net benefits from the merits of both discriminative
models and generative models: 1) Its generative properties facilitate modeling
class-related manifolds to handle off-manifold examples. 2) Its concise structure
ensures effective optimization and thus helps it make full use of adversarial
training to gain robustness. We show the inference framework of API-Net in
Fig. 1 and summarize the major contributions of this paper as follows:

•We propose a novel anti-perturbation inference approach and derive a lower
bound of the joint log-likelihood of inputs and classes. By maximizing the lower
bound, we obtain the anti-perturbation that can neutralize adversarial noise.

• Based on the proposed API method, we leverage the lower bound to ap-
proximate Bayes’ rule and hence build API-Net, a novel generative classifier
upon a single discriminator. API-Net takes advantage of both generative and
discriminative classifiers to achieve robustness.

• Experiments on multiple prevailing benchmarks show that our approach
consistently outperforms state-of-the-art methods with significant margins (e.g.,
we achieve 63.13% accuracy under PGD-40 attacks on CIFAR-10, while the
state-of-the-art is 55.40%).
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2 Related Work

For a large amount of work, we focus on the most related ones, which can be clas-
sified into three categories, adversarial training, preprocessing-based defenses,
and robust generative classifiers.

Adversarial training. Adversarial training can be regarded as a special
kind of data augmentation by generating and leveraging adversarial examples
during training [12], [19]. For each mini-batch of samples, adversarial images
are generated, and further utilized to update the neural networks’ parameters
[31], [12]. [27] suggests using Projected Gradient Descent (PGD) for adversary
generation and currently it is one of the most effective ways to defend against
adversarial attacks.

Preprocessing-based defenses. This line of methods aims to destroy the
structure of adversarial noise or project the adversarial examples into a learned
manifold. Typical methods include image discretization [7], re-scaling [44], fea-
ture squeezing [45], thermometer encoding [3], neural-based transformations [38],
[35], and matrix estimation [46]. However, most of these defenses rely on obfus-
cated gradients which can be circumvented by applying the Backward Pass Dif-
ferentiable Approximation (BPDA) based attacks [2]. Our approach can also be
deemed as having non-differentiable preprocessing and should be tested under
BPDA-based attacks for rigorous evaluations.

Robust generative classifiers. Generative classifiers are considered more
robust if the “off-manifold” conjecture on adversarial examples holds. Following
this line, there is a trend of study on the robustness of generative classifiers.
Deep Bayes examines the robustness of different factorization structures of deep
LVM [22] and builds generative adversarial defense and detection. [37] leverages
Variational Auto-Encoder (VAE) [16] to approximate the joint log-likelihood
and proposes an optimization-based inference method to circumvent the vul-
nerable inference model. Despite the effectiveness, existing generative classifiers
are puzzled by their complicated structures, which impedes not only effective
optimization but also obtaining further robustness through adversarial training.

3 The Proposed Method

In this section, we first introduce the basic task setting and the underlying
motivation of our method. We then propose the API approach, which leads to
our generative classifier, API-Net. Finally, we present the objective function and
specify the optimization procedure for API-Net.

3.1 Motivation

Denote adversarial or vanilla examples as x ∈ RD and class labels as y ∈ {yc|c =
1, ..., C}, where yc is the one-hot encoding vector for class c. The focus of this
work is to build a robust classifier that can maintain high accuracy under adver-
sarial attacks. The attacks aim at generating a perturbation δ given x such that
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x + δ can fool a classifier while the perturbation keeps quasi-imperceptible to
humans. To guarantee the perturbation to be quasi-imperceptible, δ is usually
bounded by ‖δ‖p ≤ ε, where ε is a small constant and ‖ · ‖p is the lp norm. In
this paper, we mainly focus on defense against l∞-bounded attacks, though our
method can also be extended to other lp-bounded scenario.

To solve the classification problem under attacks, recent research has explored
the potential of generative classifiers [22], [37]. Instead of building p(y|x) directly,
a generative classifier typically predicts labels using Bayes’ rule:

p(y|x) =
p(x, y)

p(x)
= softmaxCc=1

[
log p(x, yc)

]
, (1)

where softmaxCc=1 denotes the softmax operation over the C axes. Generative
classifiers can better estimate the prediction probabilities to handle off-manifold
examples, in that they model the joint distribution and then explicitly consider
the distance between the sample and each class-related manifold.

However, though considered to be robust owing to such merit, generative
classifiers are often perplexed by their complicated structure. To model the joint
log-likelihood for a generative classifier, it often necessitates introducing a latent
variable z; the resulting probabilistic graphical model contains multiple compo-
nents, which not only complicates the implementation but also hinders effective
optimization [42]. On the contrary, a discriminative classifier directly models the
conditional distribution p(y|x), and thus takes advantage of keeping a concise
structure as well as optimizing the quantity of direct interest. Hence, for a better
solution of robust generative classifiers, this work makes an attempt in providing
a design that can merit from both types.

Inspired by [36] which shows the capabilities of a single robust discriminator
to perform image synthesis, we propose to leverage such generative capabilities
to build API-Net, a structurally succint generative classifier. To be concrete,
a robust conditional distribution of classes given inputs can be leveraged to
generate gradients in the input space, and to direct a searching procedure to
approach a class-related data manifold. Based on such properties, we derive a
tractable lower bound of the joint log-likelihood, which can be further used by
API-Net to approximate Bayes’ rule for generative predictions. Different from
[37], a generative classifier that customizes a VAE for each class, the structure of
API-Net entails parameterizing only a single discriminator. The overall process,
as shown in Fig. 1, is detailed in what follows.

3.2 Anti-Perturbation Inference Net

To learn the joint distribution p(x, y), we leverage variational inference [16] to
introduce a latent variable z and a inference model q(z|x, y). Therefore, a lower
bound of the joint log-likelihood can be formulated as (please see Appendix A.1
for the full derivation):

log p(x, y) ≥ E
q(z|x,y)

[log p(x, y, z)]. (2)
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Anti-Perturbation Inference. We then introduce anti-perturbation infer-
ence, whose foundation falls in the definition of the latent variable z. We de-
fine z as the vanilla sample without any noise, which is in contrast to x that
might contain adversarial perturbation (we never know in advance). We aim at
an inference procedure: it generates ∆ that can nullify the potential adversarial
noise, and z = x + ∆ can approach the unpolluted input. Therefore, we term
this method anti-perturbation inference.

According to the meaning of each variable, we define a directed-graph model
with structure:

p(x, y, z) = p(y|z)p(z|x)p(x), (3)

which suggests that the unpolluted sample z depends on input x, and the class
y depends on the unpolluted sample z. Similar to manifold projection defenses
[38], [35], we can parameterize the inference model q(z|x, y) by a neural network
to calculate the expectation in Eq. 2. Nonetheless, such an inference model is
itself a neural network and thus vulnerable [2].

To bypass the vulnerabilities, we follow [37] to leverage optimization-based
inference to substitute the expectation under the inference model q(z|x, y):

log p(x, y) ≥ max
∆

log p(y|z)p(z|x)p(x), (4)

s.t. z = x+∆, ‖∆‖∞ ≤ εap, (5)

where the small constant εap bounds the anti-perturbation ∆. This is because
we have the prior that the anti-perturbation does not need to be very large to
counter the potential adversarial perturbation which is bounded by l∞ with a
small constant ε (Section 4.2 shows our defense does not over-fit ε).

Besides, owing to the restricted anti-perturbation, we can further simplify
the lower bound in Eq. 4 by leveraging the following Lemma (the proof of which
and the specific definition of F can be found in Appendix A.2.):

Lemma 1. Let p(z|x) be a Gaussian, N (z|x,Σ). If ‖z − x‖∞ ≤ εap, then we
have log p(z|x) ≥ F (Σ,D, εap), where D denotes the dimension of x and z, and
F is a function irrelevant to y.

According to Lemma 1, a new lower bound l∗(x, y) of the joint log-likelihood
can be obtained as follows:

log p(x, y) ≥ F (Σ,D, εap) + log p(x) + max
∆

log p(y|z) (6)

= l∗(x, y), (7)

s.t. z = x+∆, ‖∆‖∞ ≤ εap. (8)

Generative Prediction. To make generative predictions, we take l∗(x, y) into
Eq. 1 to approximate Bayes’ rule. We can rule out the label-irrelevant terms and
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formulate the generative prediction as:

p(y|x) ≈ softmaxCc=1

[
l∗(x, yc)

]
(9)

= softmaxCc=1

[
max
∆

log p(yc|z)
]
, (10)

s.t. z = x+∆, ‖∆‖∞ ≤ εap. (11)

Based on Eqs. 10 and 11, we here construct the generative classifier API-
Net. We parameterize p(y|z) with an adversarially robust neural network with
parameter θ as pθ(y|z), and the resulting generative classifier p̂(y|x; θ) based on
pθ(y|z) is formulated as:

p̂(y|x; θ) = softmaxCc=1

[
max
∆

log pθ(yc|z)
]
, (12)

s.t. z = x+∆, ‖∆‖∞ ≤ εap, (13)

where p̂(y|x; θ) depends on the underlying pθ(y|z) thus conditioned on θ.
Eqs. 12 and 13 define the proposed API-Net. As a generative classifier, API-

Net makes generative predictions by comparing between log-likelihood of classes,
which facilitates tackling off-manifold examples. In contrast to previous solutions
of generative classifier [22], [37], API-Net can be implemented with rather mini-
mal effort and can take advantage of effective optimization, since it is built upon
only a single conditional distribution pθ(y|z). Besides, by maximizing the lower
bound of the joint log-likelihood, ∆ strives to neutralize the adversarial noise
and z = x + ∆ seeks to approach the vanilla sample to defend against attacks
(the effectiveness of which is shown in Section 4.3).

3.3 Optimization

A key ingredient of API-Net is the image synthesis ability, which is achieved by
making the underlying pθ(y|z) robust [36]. By building API-Net upon an off-the-
shelf robust discriminator, we can achieve additional robustness without training
(validated in Section 4.3). Next, we introduce the training objective function of
API-Net towards further robustness.

Objective Function. A typical objective function for generative models is to
maximize the joint log-likelihood. However, the essential performance we con-
sider in this work is the classification accuracy, which can often be enhanced
by training models discriminatively to gain more powerful discrimination [15],
[20]. We thereby treat API-Net as a whole and minimize the expectation of
cross-entropy loss under the data distribution D to optimize θ:

min
θ

[
E

(x,y)∼D
[− log p̂(y|x; θ)]

]
. (14)

This objective function is also beneficial for API-Net to incorporate adversar-
ial training, which is initially designed for a discriminative loss, to gain further
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Algorithm 1 API-Net Training

Input: dataset D, number of categories C, εap for anti-perturbation, εtrain for adver-
sarial training, parameters of PGD for anti-perturbation and for adversarial training.
Output: Parameters θ.

1: repeat
2: for random mini-batch {xi, yi}ni=1 ∼ D do
3: for every xi, yi in the mini-batch (in parallel) do
4: Solve δ in Eqs. 15 and 16 by PGD using gradient approximation;
5: for c = 1 to C do
6: Solve ∆c in Eqs. 12 and 13 by PGD for anti-perturbation inference;
7: end for
8: end for
9: Compute the loss defined in Eqs. 15 and 16 and then update θ;

10: end for
11: until the training converges.

robustness. We absorb adversarial training as a data augmentation technique to
formulate the final objective function of API-Net:

min
θ

[
E

(x,y)∼D
[max
δ
− log p̂(y|x+ δ; θ)]

]
, (15)

s.t. ‖δ‖∞ ≤ εtrain, (16)

where εtrain sets the allowed perturbation budget for adversarial training (dif-
ferent from εap which bounds the anti-perturbation).

Optimization Procedure. We show the overall training process of API-Net in
Algorithm 1. Projected gradient descent (PGD) [6], [9], [27] is employed for the
optimization of ∆ and δ. For the adversarial training defined in Eqs. 15 and 16
and the evaluation of our method under gradient-based attacks, as p̂(y|x; θ) is
non-differentiable with respect to x, we leverage the following two strategies to
approximate the gradients:

(1) Backward Pass Differentiable Approximation (BPDA) [2]. Since εap is
a small constant, we approximate the derivative of z with respect to x as the
derivative of the identity function: 5xz ≈ 5xx = 1 for backward passes.

(2) Forward and Backward Differentiable Approximation. As εap is small, we
simply set z = x to calculate the gradient for both forward and backward passes.

During training, the second strategy is used considering the computational
efficiency. For evaluation, we conduct attacks based on both strategies for a
rigorous examination of the proposed method.

4 Experiments

In this section, we first present the experimental settings. We then evaluate the
overall robustness of the proposed API-Net and compare it with state-of-the-arts
in Section 4.2. We finally conduct ablation studies in Section 4.3.
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Table 1: Accuracy (%) under white-box attacks on CIFAR-10 with ε = 8/255

Method Architecture Clean FGSM PGD-40 PGD-100 C&W-40 C&W-100

Standard ResNet18 94.46 24.24 0.00 0.00 0.00 0.00
Madry ResNet18 82.15 61.83 47.52 47.29 46.78 46.66
ME-Net ResNet18 84.00 - 55.40 53.50 - -
Trades ResNet18 82.83 64.14 52.08 51.97 49.05 48.94
API-Net ResNet18 81.25 65.71 63.13 62.87 55.73 54.57

Table 2: Accuracy (%) under white-box attacks on SVHN with ε = 8/255

Method Architecture Clean FGSM PGD-40 PGD-100 C&W-40 C&W-100

Standard ResNet18 96.62 45.23 0.84 0.52 0.90 0.62
Madry ResNet18 94.30 74.55 53.37 52.91 51.95 51.83
ME-Net ResNet18 87.60 - 71.90 69.80 - -
Trades ResNet18 91.06 72.83 58.21 57.83 54.71 54.65
API-Net ResNet18 87.72 80.34 74.36 73.68 62.51 60.25

4.1 Experimental Settings

Datasets. The experiments are performed on CIFAR-10, SVHN, and MNIST.

Compared Methods. Standard: standard training approach using clean im-
ages [17]. Madry: adversarial training based defense using PGD [27]. ME-Net:
preprocessing-based defense with Matrix-Estimation [46]. We plot its accuracy
under BPDA-based attacks. Trades: adversarial training based approach with
KL-divergence-based adversarial examples generation and regularization [47].
We plot the performance of Trades under its best setting where 1

λ = 6.

Implementation Details. We implement the Standard, Madry, and Trades
methods, and report the robust accuracy of ME-Net according to [46]. We set
the pixel values in [0, 1], and use PGD [27] of 7 iterations with εtrain = 8/255
and step-size 0.007 on CIFAR-10 and SVHN, and PGD of 40 iterations with
εtrain = 76.5/255 and step-size 0.01 on MNIST for adversarial training. We
first leverage Madry’s method to train the underlying pθ(y|z) for a guarantee of
generative capabilities and then train API-Net following Eqs. 15 and 16. To align
with past work, we apply data augmentation on CIFAR-10 and SVHN datasets
following [13] and do not apply any data augmentation on MNIST.

Parameters of API. We set εap = 14/255 for CIFAR-10, and εap = 12/255
for SVHN and MNIST. We use PGD of 8 iterations with step-size 0.007 for
CIFAR-10 and SVHN, and PGD of 8 iterations with step-size 0.01 for MNIST.
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Table 3: Accuracy (%) under white-box attacks on MNIST with ε = 76.5/255

Method Architecture Clean FGSM PGD-40 PGD-100 C&W-40 C&W-100

Standard LeNet 99.16 - 0.15 0.05 - -
ME-Net LeNet 97.40 - 94.00 91.80 - -
API-Net LeNet 98.30 - 94.22 92.09 - -

Standard SmallCNN 99.41 50.72 1.50 0.00 0.10 0.00
Madry SmallCNN 99.31 97.86 96.64 95.68 96.77 95.62
Trades SmallCNN 99.15 97.95 96.81 96.02 96.91 95.98
API-Net SmallCNN 99.21 98.39 97.10 96.35 97.17 96.34

(a) CIFAR-10 (b) SVHN

Fig. 2: Accuracy under PGD-40 attacks with ε varying from 0/255 to 16/255

Attack Details. We mainly focus on l∞-bounded white-box attacks. The white-
box attacks are deemed as the most powerful attacks since the attacker has full
information about the defense model under this setting. We leverage FGSM
[12] and two currently strongest gradient-based attacks: PGD and C&W (l∞-
bounded, k=50) with T iterations (PGD-T and C&W-T) and random restart
[27], [4]. Aligned with past work, we mainly focus on the performance under
attacks with ε = 8/255 on CIFAR-10 and SVHN, and ε = 76.5/255 on MNIST.
As defined in Section 3.3, we use two strategies to approximate the gradient for
the attacks and report the worst accuracy for strict evaluation.

4.2 Robustness

Accuracy under Attacks across Datasets. We compare the robust accu-
racy of API-Net with those of state-of-the-art defense methods. The results on
CIFAR-10, SVHN and MNIST are respectively shown in Tab. 1, Tab. 2, and
Tab. 3, which clearly show that API-Net surpasses the state-of-the-art meth-
ods against multiple white-box attacks of different iterations. In particular, we
surpass the runner-up method by 8% under the most prevailing PGD attack
on CIFAR-10 and by 4% on SVHN. These quantitative results demonstrate the
outstanding robust performance of API-Net.
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Table 4: Ablation study on training and initialization. The accuracy (%) is re-
ported under the PGD-40 attack with ε = 8/255

Initialization Dataset Learning rate Trades ME-Net

Random CIFAR-10 0.1 52.08 55.40
From Madry CIFAR-10 0.1 50.08 52.92
From Madry CIFAR-10 0.01 47.24 48.55
From Madry CIFAR-10 0.001 50.52 50.03

Method Dataset Initialization w.o. train with train

API-Net CIFAR-10 Madry 52.08 63.13
API-Net SVHN Madry 58.58 74.36

(a) CIFAR-10 (b) SVHN

Fig. 3: Robustness of API-Net based on off-the-shelf robust discriminators with-
out further training under the PGD-40 attack with ε = 8/255

Accuracy under Attacks with Different ε. In this section, we evaluate
the accuracy under the PGD-40 attack with ε varying from 0 to 16/255 with
interval 2. As shown in Fig. 2, the proposed API-Net achieves leading robustness.
It verifies that the robustness of API-Net is not based on over-fitting a specific
attack ε. Rather, when ε increases, the accuracy of our method declines at a
slower rate compared to the state-of-the-arts, though all the methods are trained
with the same εtrain = 8/255. This experiment demonstrates the potential of our
method to be more applicable to real-life machine learning systems where the
bound on perturbations cannot be known in advance.

4.3 Ablation Study

API-Net Based on off-the-Shelf Robust Discriminator. In this section,
we investigate the robustness gain merely owing to the design of API-Net. To
this end, we initialize the underlying pθ(y|z) of API-Net with off-the-shelf robust
models, Madry, and Trades, and then test the accuracy under attacks without
any training. We plot the accuracy under PGD-40 attacks with εap varying from
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(a) Classes 0 to 4 (b) Classes 5 to 9

Fig. 4: Qualitative results to show the effectiveness of the proposed API. Col-
umn 1: vanilla images. Column 2: adversarially perturbed images as input
x. Column 3: z generated by API conditioned on y(t+1) mod C . Column 4: z
generated conditioned on true label yt (best view in color with zooming in)

0 to 16/255. We note that when εap = 0, API-Net degenerates to the original
discriminative classifier and its accuracy corresponds to the off-the-shelf model.

As shown in Fig. 3, our proposed API-Net can be directly deployed to the off-
the-shelf robust discriminators to obtain additional robustness. Specifically, API-
Net provides additional gains of approximate 5% robust accuracy on CIFAR-10
and 4% on SVHN. It demonstrates that the proposed API-Net makes better use
of the underlying discriminative distribution to build robustness.

Training and Initialization. We here investigate the effectiveness of the pro-
posed API-Net training schedule. We compare the robust accuracy between API-
Net initialized with Madry without training and API-Net initialized with Madry
plus training. As shown in Tab. 4, the training schedule contributes to about
11% gain in robust accuracy on CIFAR-10 and 15% on SVHN. We also exam-
ine the effect of initialization. We train Trades and ME-Net on CIFAR-10 with
initialization from Madry’s model and try different learning rates to ensure a
good convergence. As shown in Tab. 4, the initializations do not advance the
robustness neither for Trades nor ME-Net.

Visualization of API. To emphasize the consistency, we use ten images chosen
from the first one of each class in the test set of SVHN. We aim to qualitatively
demonstrate how anti-perturbations work. To this end, we apply PGD attacks to
generate adversarial examples as inputs and conduct API with εap = 12/255 to
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Table 5: Ablation study on the optimal εap. The accuracy (%) is reported under
the PGD-40 attack

εap 6/255 8/255 10/255 12/255 14/255 16/255

CIFAR-10 55.09 58.68 60.90 62.32 63.13 62.83

SVHN 61.14 69.20 72.45 74.40 73.98 73.39

MNIST 96.23 96.49 96.72 97.12 96.32 96.69

Fig. 5: Visualization of how z changes with εap conditioned on y(t+1) mod C . From
left to right, εap varies from 2 to 20 (best view in color with zooming in)

obtain z. As shown in Fig. 4, when conditioned on the true label yt, t ∈ [C], the
anti-perturbation effectively counters the adversarial noise, leading to z (Fig. 4
column 4) that is very similar to the vanilla image (Fig. 4, column 1).

On the contrary, when conditioned on a wrong label, e.g., y(t+1) mod C , the
resulting z would be dubious (Fig. 4 column 3). This is beneficial since it would
lead to a low pθ(y|z) and thus a low l∗(x, y), which results in a low prediction
probability for this wrong class. We also notice that some images in the column
3 of Fig. 4 start to generate features of the wrong class y(t+1) mod C . This reveals
the importance of an appropriate value of εap, which should be dataset-related,
to preserve the original global structure of each image.

Optimal Searching Scope of Anti-Perturbation. Intuitively, we consider
two points concerning the optimal value of εap: 1) it should be large enough to
ensure a powerful ∆ to counter potential perturbations. 2) it should be limited to
prevent z from being a plausible image of a wrong class. To qualitatively analyze,
we change εap from 2 to 20 and visualize z conditioned on y(t+1) mod C . As shown
in Fig. 5, when εap increases to 12/255, z begins to contain plausible features of
class y(t+1) mod C , which indicates εap should be no more than 12/255. We then
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Fig. 6: Visualization of large-ε adversarial examples on CIFAR-10. Images are
manipulated into being classified as a car (best view in color with zooming in)

quantitatively analyze. As shown in Tab. 5, on SVHN, API-Net performs the
best when εap = 12/255, which is consistent with the qualitative results.

Hidden Representation. We here explore the learned hidden representation
of API-Net by leveraging the gradients and see what convinces API-Net most.
We employ PGD to manipulate images from CIFAR-10 into being classified as a
car from each model’s perspective. We set a large ε = 80/255 to alter the global
structure and generate salient patterns, and run 1000 iterations to ensure a good
convergence. As shown in Fig. 6, based on the gradients provided by API-Net,
highly plausible patterns are generated, both in terms of structure and texture.
These suggest that API-Net does not rely on obfuscated gradients. Rather, API-
Net has learned representations consistent best with human perception.

5 Discussion and Conclusion

Despite the success in numerous applications, DNNs’ performance is far from ro-
bust compared to that of a human. In this work, we made an attempt in providing
a solution, API-Net, that can profit from the merits of both discriminative and
generative classifiers to improve the robustness. The experiments showed that
API-Net outperforms state-of-the-art defenses and generates gradients that re-
sult in perceptually meaningful representations. We hope that this work can be a
stepping stone towards reliable DNNs for real-life machine learning applications.
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