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Abstract. Recently, deep self-training approaches emerged as a pow-
erful solution to the unsupervised domain adaptation. The self-training
scheme involves iterative processing of target data; it generates target
pseudo labels and retrains the network. However, since only the con-
fident predictions are taken as pseudo labels, existing self-training ap-
proaches inevitably produce sparse pseudo labels in practice. We see this
is critical because the resulting insufficient training-signals lead to a sub-
optimal, error-prone model. In order to tackle this problem, we propose
a novel Two-phase Pseudo Label Densification framework, referred to
as TPLD. In the first phase, we use sliding window voting to propagate
the confident predictions, utilizing intrinsic spatial-correlations in the
images. In the second phase, we perform a confidence-based easy-hard
classification. For the easy samples, we now employ their full pseudo-
labels. For the hard ones, we instead adopt adversarial learning to en-
force hard-to-easy feature alignment. To ease the training process and
avoid noisy predictions, we introduce the bootstrapping mechanism to
the original self-training loss. We show the proposed TPLD can be easily
integrated into existing self-training based approaches and improves the
performance significantly. Combined with the recently proposed CRST
self-training framework, we achieve new state-of-the-art results on two
standard UDA benchmarks.
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1 Introduction

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned
from the label-rich source domain to an unlabeled new target domain. It is a
practical and crucial problem as it could be beneficial for various label-scarce
real-world scenarios, e.g., simulated learning for robots [11] or autonomous driv-
ing [31]. In this paper, we focus on the UDA for semantic segmentation, aiming
to adopt a source segmentation model to a target domain without any labels.

The dominant paradigm in UDA is based on adversarial learning [5, 17,
19, 25, 36, 37]. In particular, it minimizes both (source domain) task-specific
loss and domain adversarial loss. The method thus retains good performance
on the source domain task, and at the same time, can bridge the gap be-
tween source and target feature distributions. While the adversarial learning
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has achieved great success in UDA, recently another line of studies using self-
training emerged [39, 40]. Self-training generates a set of pseudo labels corre-
sponding to high prediction scores in the target domain and then re-trains the
network based on the generated pseudo labels. Recently, Zou & Yu have pro-
posed two seminal works on CNN-based self-training methods; class balanced
self-training (CBST) [39], and confidence regularized self-training (CRST) [40].
Unlike adversarial learning methods which utilize two separate losses, CBST
presents a single unified self-training loss. It allows learning of domain-invariant
features and classifiers in an end-to-end manner, both from labeled source data
and pseudo labeled target data. CRST further generalizes the feasible space of
pseudo labels and adopts regularizer. These self-training methods show state-of-
the-art results in multiple UDA settings. However, we observe that its internal
pseudo label selection tends to excessively cut-out the predictions, which often
leads to sparse pseudo labels. We argue that sparse pseudo labels significantly
miss meaningful training signals, and thus, the final model may deviate from
the optimal solution eventually. A natural way to obtain dense pseudo labels
is by lowering the selection threshold. However, we observe this naive approach
brings noisy, unconfident predictions at an early stage, and this accumulates and
propagates the errors.

To effectively address this issue, we present a two-step, gradual pseudo label
densification method. The overview is shown in Fig. 1. In the first phase, we
use sliding window voting to propagate the confident predictions, utilizing the
intrinsic spatial correlations in the images. In the second phase, we perform an
easy-hard classification using a proposed image-level confidence score. Our intu-
ition is simple: As the model improves over time, its predictions can be trusted
more. Thus, if the model in the second stage is confident with their prediction,
we now do not zero out them. Indeed, we empirically observe that the confident,
easy samples are near to the ground truth and vice versa. This motivates us
to utilize full pseudo labels for the easy samples, while for the hard samples,
we enforce adversarial loss to learn hard-to-easy adaption. Meanwhile, to tackle
noisy labels effectively for both first and second phase training, we introduce
the bootstrapping mechanism into the self-training loss function. By connecting
all together, we build a two-phase pseudo label densification framework called
TPLD. Since our method is general, we can easily apply TPLD to the exist-
ing self-training based approaches. We show consistent improvements over the
strong baselines. Finally, we achieve new state-of-the-art performances on two
standard UDA benchmarks.
We summarize our contributions as follows:

1. To our best knowledge, it is the first time that pseudo label densification is
formally defined and explored in the self-training based domain adaptation.

2. We present a novel two-phase pseudo label densification framework, called
TPLD. In particular, for the first phase, we introduce voting-based densifi-
cation method. For the second phase, we propose an easy-hard classification-
based densification method. Both phases are complementary in constructing
an accurate self-training model.
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3. We propose a new objective function to ease the training. Specifically, we
re-formulate the original self-training loss function by incorporating the boot-
strapping mechanism.

4. We conduct extensive ablation studies to thoroughly investigate the im-
pact of our proposals. We apply TPLD to the various existing self-training
approaches and achieve new state-of-the-art results on two standard UDA
benchmarks.

2 Related works

Domain Adaptation is a classic problem in computer vision and machine
learning. It aims to alleviate the performance drop caused by the distribution
mismatch in cross-domains. It is mostly investigated in image classification prob-
lems by both conventional methods [8,12,13,20,22] and deep CNN-based meth-
ods [9, 10, 21, 24, 27, 29, 33]. Besides image recognition, domain adaptation is
recently being applied other vision tasks such as object detection [4], depth es-
timation [1], and semantic segmentation [17]. In this work, we are particularly
interested in unsupervised domain adaptation for the task of semantic segmenta-
tion. The primary approach is to minimize the discrepancy between source and
target feature distribution using adversarial learning. This type of approaches is
studied on three different levels in practice: input-level alignment [5, 17, 28, 34],
intermediate feature-level alignment [18, 19, 23, 25, 37], and output-level align-
ment [36]. Although these methods are proven to be effective, the potentially
meaningful training signals from the target domain are under-utilized. Therefore,
self-training based UDA approaches [39, 40], described next, emereged recently
and came to dominate the performance quickly.

Self-training has been initially explored in semi-supervised method [14, 38].
Recently, two seminar works [39, 40] have been presented for UDA semantic
segmentation. Unlike adversarial learning approaches, these methods explicitly
explore the supervision signals from the target domain. The key idea is to use the
prediction from the source-trained model as pseudo-labels for the unlabeled data
and re-trains the current model in the target domain. CBST [39] extends this
basic idea with class balancing strategy and spatial priors. CRST [40] further
adds regularization term in the loss function to prevent overconfident predic-
tions. In this paper, we also investigate the self-training framework. However,
different from the previous studies, we see that the spare pseudo label problem is
a fundamental limitation of self-training. We empirically found that these sparse
pseudo-labels inhibit effective learning; thus, the model significantly deviates
from the optimal. We, therefore, propose to densify the sparse pseudo-labels in a
two-step gradually. Also, we present a new loss function to handle noisy pseudo
labels and reduce optimization difficulties during training. We empirically con-
firm that our proposals greatly improve the strong state-of-the-art baselines with
healthy margins.
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3 Preliminaries

3.1 Problem Setting

Following the common UDA setting, we have full access to the data and
labels, (xs,ys), in the labeled source domain. In contrast, in the unlabeled target
domain, we can only utilize the data, xt. In self-training, we thus train the

network to infer pseudo target label, ŷt = (ŷ
(1)
t , ..., ŷ

(K)
t ), where K denotes the

total number of classes.

3.2 Self-training for UDA

We first revisit the general self-training loss function [40] below:

min
w,ŶT

Lst(w, ŶT) = −
∑
s∈S

K∑
k=1

y(k)
s log p(k|xs; w)

−
∑
t∈T

[

K∑
k=1

ŷ
(k)
t log

p(k|xt; w)

λk
− αrc(w, ŶT)]

s.t. ŷt ∈ ∆K−1 ∪ {0},∀t

(1)

xs denotes an image in source domain indexed by s = 1, 2, ..., S, and xt is an

image in target domain indexed by t = 1, 2, ..., T . y
(k)
s is ground truth source

label for class k, and ŷ
(k)
t is generated pseudo target label. Note that feasible set

of pseudo-label is the union of {0} and a probability simplex ∆K−1 (i.e., contin-
uous). w is the network weights, and p(k|x; w) indicates the classifier’s softmax
probability for class k. λk is a parameter, controlling pseudo-label selection [39].∑
t∈T rc(w, ŶT) is the confidence regularizer and α ≥ 0 is the weight coefficient.
We can better understand the equation (1) by dividing it into three terms;

The first term is model training on source domain with source labels, ys. The
second term is model re-training on target domain with generated target pseudo
labels, ŷt. The last term is confidence regularization, αrc(w, ŶT), which prevents
over-confident predictions of target pseudo-labels. The first two terms are equiv-
alent to the CBST formula [39]. With the additional confidence regularization
term, we come up with the CRST formula [40]. In general, there are two types of
regularization: label-regularization(e.g, LRENT) and model regularization(e.g,
MRKLD).

To minimize Eq. (1), the optimization algorithm alternatively takes block
coordinate descent on both 1) pseudo-label generation and 2) network retraining.
For solving step 1), there is an optimizer formulated as:

some =


1, if k = arg max

k
{p(k|xt;w)

λk
}

and p(k|xt; w) > λk

0, otherwise.

(2)
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If the prediction is confident, p(k|xt; w) > λk, it is selected and labeled as a

class k∗ = arg max
k
{p(k|xt;w)

λk
}. Otherwise, the less confident predictions are set

to zero vector 0. For each class k, we determine λk by the confidence value that
is selected from the most confident p portion of class k predictions in the entire
target set [39]. To avoid selecting unconfident predictions at the early stage, the
hyperparameter p is usually set to a low value (i.e., 0.2), and is gradually in-
creased for each additional round. To solve step 2), we use typical gradient-based
methods (e.g., SGD). For more details, please refer to the original papers [39,40].

We see the current self-training approach simply zeroes out the less confident
predictions and in turn generates sparse pseudo labels. We argue that this limits
the power of model representations and could produce sub-optimal model. Mo-
tivated by our empirical observations, we attempt to densify the sparse pseudo
labels gradually, and avoid noisy predictions. In this work, we propose TPLD,
which alleviates these fundamental issues successfully. We show the TPLD can
be applied to any type of existing self-training based frameworks, and can con-
sistently boost the performance significantly.

3.3 Noisy label handling

To handle noisy predictions, Reed et.al [30] proposed bootstrapping loss. It
is a weighted sum of the standard cross-entropy loss and the (self) entropy loss.
In this work, we apply it to the self-training formula as:

∑
t∈T

K∑
k=1

[βŷ
(k)
t + (1− β)

p(k|xt; w)

λk
] log

p(k|xt; w)

λk
(3)

Intuitively, it simultaneously encourages the model to predict the correct
(pseudo) target label and have high confidence on its prediction.

4 Method

The overview of our two-phase pseudo-label densification algorithm is shown
in Fig. 1. For the first phase, we design a sliding window-based voting method to
propagate the confident predictions. After enough training, we enter the second
phase. Here, we present confidence based easy-hard classification and hard/easy
adversarial learning. For both phases, we use the proposed bootstrapped self-
training loss (Eq. (3)). We detail each phase below.

4.1 1st phase: Voting based Densification

As mentioned above, pseudo labels are generated only when the sample’s
prediction is confident (Eq. (2)). Specifically, the most confident p portion of
predictions are selected class-wise. Because the hyperparameter p is set to a low
value in practice, pseudo labels are inherently sparse during training. To over-
come this issue, we present a sliding window-based voting, in which it relaxes
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Fig. 1: The overview of the proposed two-phase pseudo-label densification
framework. (a) The first phase utilizes the sliding window based voting in which it
propagates neighbor confident predictions to fill in the unlabeled pixels. We use Lst1

to train the model in the first phase. (b) The second phase employs confidence-based
easy-hard classification (EH class.) along with the hard-to-easy adversarial learning.
This allows the model to utilize full pseudo labels for easy samples while pushing hard
samples to be like easy. We use both Lst2 and Ladv to train the model in the second
phase.

the current hard-thresholding and propagates the confident predictions based
on the intrinsic spatial correlations in the image. We attempt to utilize the fact
that neighboring pixels tend to be alike. To efficiently employ this local spatial
regularity in the image, we adopt the sliding-window approach. We detail the
process in Fig. 2. Given the window with the unlabeled pixel at the center, we
gather the neighboring confident prediction values (voting). To be more specific,
for the unlabeled pixel, we first obtain the top two competing classes (i.e., classes
with highest and second-highest prediction values, which would have caused am-
biguity in deciding the correct label) (Fig. 2-1), and then pool the neighboring
confident values for these classes (Fig. 2-2). The spatially-pooled prediction val-
ues are then weighted sum with the original prediction values (Fig. 2-3). Among
the two values, we choose the bigger one. Finally, if it is above the threshold,
we select the according class as a pseudo label. Note that, we use normalized

prediction values (i.e., p(k|xt;w)
λk

) during the voting process, thus the thresholding

criteria is p(k|xt;w)
λk

> 1. Otherwise, it continues to be a zero vector.

We call the above whole process voting-based densification. We abbreviate it
as Voting. We iterate over total 3 times with the window size of 57× 57. Those
hyperparameters are set through the parameter analysis (see Table. 4b). The
qualitative voting results are shown in Fig. 3. We can clearly see that the initial
sparse pseudo label gradually becomes dense. The pseudo label generation in the
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Fig. 2: The overall procedure of the voting-based densification. We describe the
process in three steps. 1) We find the top two competing classes on the unlabeled pixel,
2) We pool neighboring confident values for these classes, 3) We combine the original
prediction values and the pooled values (weighted-sum with hyperparameter α). We
pick the bigger one and assign the corresponding class if it passes the thresholding
criteria. We repeat this process by sliding the window across the images.

1st phase can be summarized as:

ŷ
(k)∗
t =


1, if k = arg max

k
{p(k|xt;w)

λk
}

and p(k|xt; w) > λk

Voting(p(k|xt;w)
λk

), otherwise

(4)

Objective function for the 1st phase To effectively train the model under
the existence of noisy pseudo labels, we introduce bootstrapping (Eq. (3)) in
our final objective function. The original self-training objective function can be
re-formulated as the following:

min
w,ŶT

Lst1(w, ŶT) = −
∑
s∈S

K∑
k=1

y(k)
s log p(k|xs; w)

−
∑
t∈T

[

K∑
k=1

{βŷ(k)
t log +(1− β)

p(k|xt; w)

λk
} log

p(k|xt; w)

λk

− αrc(w, ŶT)]

s.t. ŷt ∈ ∆K−1 ∪ {0},∀t

(5)

As a result, the target domain training benefits from both densified pseudo
label and bootstrapped training.

4.2 2nd phase: Easy-Hard Classification based Densification

As the predictions of model can be trusted more over time, we now attempt
to use full pseudo-labels. One may attempt to use voting multiple times for full
densificaiton. However, the experimental evidence shown in Table. 4b proves that
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Fig. 3: Voting based densification results by iteration. We can see the initial
sparse pseudo label becomes dense as iteration number increases. Though it may bring
noisy predictions. We set the total iteration number to 3 after conducting parameter
analysis in Table. 4.

it is hard for voting to generate fully densified pseudo labels. By construction,
the voting is operated with a local window, which can only capture and process
local predictions. Thus, iterating the voting process multiple times brings some
extent of smoothing effect and noisy predictions. We, therefore, present another
phase which enables full-pseudo label training. Our key idea is to consider the
confidence on image-level and classify the images into two groups: easy and hard.
For the easy, confident samples, we utilize their full predictions, while for the
hard samples, we instead enforce hard-to-easy adaption. Indeed, we observe that
the easy samples are near to the ground truth and vice versa (see Fig. 4).

To reasonably categorize target samples into easy and hard, we present
effective criteria. For a particular image t, we define a confidence score as

conf t = 1
K′

∑K′

k=1
Nk∗t
Nkt
· 1
λk
, where Nk

t is the total number of pixels predicted as

class k. Among Nk
t , we count the number of pixels that have higher prediction

values than the class-wise thresholding value λk [39], and is set to Nk∗
t . As a

result, the ratio
Nk∗t
Nkt

indicates how well the model predicts confident values for

each class k. We average these values with K ′, which is the total number of (pre-
dicted) confident classes. Thus, the higher the value, we can say that the model
is more confident with that target image (i.e., easy). Note that, we multiply 1

λk
to avoid sampling too easy images and instead encourage sampling of images
with rare classes. We compute these confidence scores for every target image. In
practice, we picked up the top q portion as easy samples and consider the rest
as hard samples for the training. We initially set q to 30% and add 5% in each
round.

Objective function for the 2nd phase After classifying target images into
easy and hard samples, we apply different objective functions to each. For the
easy samples, we utilize full pseudo label predictions and employ bootstrapping
loss for training (Eq. 3). For the hard samples, we instead adopt adversarial
learning to push hard examples to be like easy samples (i.e., feature alignment).
We describe the details below.

Easy sample training To effectively generate full pseudo labels, we calibrate
the prediction values. Specifically, the full pseudo-label generation of easy sam-
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Fig. 4: Qualitative easy and hard samples. For the illustration, we randomly se-
lected three samples from each. Note that easy samples are near to the ground truth
with low entropy values, whereas hard samples are far from the ground truth and have
high entropy values. Therefore, in the second phase, we train easy samples with their
full-pseudo labels and make hard samples to be easy using adversarial loss.

ples is formulated as:

ŷ
(k)∗
te =


1, if k = arg max

k
{p(k|xt;w)

λk
}

and p(k|xt;w) > λk(p(k|xt;w)
λk

)γ
, otherwise.

(6)

Note that the prediction value is calibrated with the hyper parameter γ, which is
set to 2 empirically (see Table. 4e). We then train the model using the following
bootstrapping loss:

min
w,ŶT

Lst2(w, ŶT)

= −
∑
t∈T

[

K∑
k=1

{βŷ(k)
t log +(1− β)

p(k|xt; w)

λk
} log

p(k|xt; w)

λk

s.t. ŷt ∈ ∆K−1 ∪ {0},∀t

(7)

Hard sample training To minimize the gap between easy (e) and hard (h)
samples in the target domain, we propose intra-domain adversarial loss, Ladv. In
order to align the feature from hard to easy, the discriminator Dintra is trained
to discriminate that the target weighted self-information map It [37] is whether
from easy samples or hard samples. The learning objective of the discriminator
is:

min
θDintra

1

|e|
∑
e

LDintra(Ie, 1) +
1

|h|
∑
h

LDintra(Ih, 0) (8)

and the adversarial objective to train the segmentation network is:

min
θseg

1

|h|
∑
h

LDintra(Ih, 1) (9)
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5 Experiments

5.1 Dataset

We evaluate our model on the most common adaptation benchmarks. 1)
GTA5 [31] to Cityscapes [6] and 2) SYNTHIA [32] to Cityscapes. GTA5 and
SYNTHIA contain 24966 and 9,400 synthetic images, respectively. Following
the standard protocols, we adapt the model to the Cityscapes training set and
evaluate the performance on the validation set.

5.2 Implementation details

To push the state-of-the-art benchmark performances, we apply TPLD to
the CRST-MRKLD framework [40]. For the backbones, we use VGG-16 [35]
and ResNet-101 [15]. For the segmentation models, we adopt different versions
of deeplab; deeplab-v2 [2] and deeplab-v3 [3]. We pretrain the model on Ima-
geNet [7] and fine-tune on source domain images using SGD. We train the model
total 9 rounds: 6 rounds for the first phase training and 3 rounds for the second
phase training. The detailed training settings are the followings: For the source
domain pre-training, we use learning rate of 2.5×10−4, weight decay of 5×10−4,
momentum of 0.9, batch size of 2, patch size of 512 × 1024, multiscale training
augmentation (0.5 - 1.5), and horizontal flipping. For the self-training, we adopt
SGD with the learning rate of 5× 10−5.

5.3 Main Results

GTA5 → Cityscapes: Table 1 summarizes the adaptation performance of
TPLD and other state-of-the-art methods [25, 36, 37, 39, 40]. We can obviously
see that TPLD outperforms state-of-the-art approaches in all cases. For example,
with Deeplab-v2 and ResNet-101 backbone, our TPLD significantly outperforms
CRST by 4.2%. Moreover, to analyze the effect on rare classes, we also put rare-
class mIoU. With the R-mIoU metric, we see the improvement is even much
higher; 4.8%. We provide qualitative results in Figure 5. Clearly, our final model
generates the most visually pleasurable results.

SYNTHIA → Cityscapes: Table 2 shows the adaptation results with SYN-
THIA. Our approach again achieves the best performance among all the other
methods. Specifically, with Deeplab-v3 and ResNet101 backbone, we greatly im-
prove the baseline performance of 48.1% mIoU to 55.7% mIoU.

Combining with existing self-training methods We see the proposed
TPLD is general, thus can be easily applied to the existing self-training based
methods. In this experiment, we combine the TPLD with three different self-
training approaches: CBST [39], CRST with label regularization (LRENT) [40],
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GTA5 → Cityscapes

Method Seg Model Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU R-mIoU

Source

Deeplabv2-V

52.6 20.7 56.0 6.0 9.8 22.9 8.1 1.4 77.2 11.0 35.0 41.5 2.7 52.1 2.1 0.0 0.0 4.7 0.3 21.3 5.8

CBST [39] 84.2 41.4 71.9 15.5 18.1 30.8 25.4 9.2 77.6 15.2 29.6 49.3 6.0 78.0 4.0 4.5 0.3 10.4 11.6 30.7 12.6

CRST(MRKLD) [40] 81.7 46.1 70.2 10.7 11.2 30.4 26.9 15.8 75.4 18.3 24.8 48.6 10.9 77.8 2.9 13.3 1.1 10.7 31.4 32.0 15.3

CRST(MRKLD) + TPLD 83.5 49.9 72.3 17.6 10.7 29.6 28.3 9.0 78.2 20.1 25.7 47.4 13.3 79.6 3.3 19.3 1.3 14.3 33.5 34.1 16.7

Adapt-SegMap [36]

Deeplabv2-R

86.5 36.0 79.9 23.4 23.3 35.2 14.8 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4 25.2

CLAN [25] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2 27.8

ADVENT [37] 89.9 36.5 81.2 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8 26.8

Source

Deeplabv2-R

71.3 19.2 69.1 18.4 10.0 35.7 27.3 6.8 79.6 24.8 72.1 57.6 19.5 55.5 15.5 15.1 11.7 21.1 12.0 33.3 18.2

CBST [39] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9 28.9

CRST(MRKLD) [40] 91.3 56.1 79.8 30.6 18.9 39.0 35.1 24.0 84.2 30.0 74.0 62.1 28.2 82.6 23.6 31.8 24.2 32.2 46.3 47.0 30.3

CRST(MRKLD) + TPLD 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2 35.1

Source

Deeplabv3-R

80.3 17.6 75.8 18.0 24.5 19.7 34.9 19.0 83.2 15.8 63.7 57.2 22.8 73.4 36.6 21.0 0.0 19.0 0.1 35.9 19.3

CBST [39] 86.9 33.9 80.0 28.8 26.2 30.2 36.9 20.4 84.6 16.3 72.1 53.3 19.8 82.8 34.1 43.8 0.0 13.0 0.0 40.2 22.5

CRST(MRKLD) [40] 85.9 40.4 76.9 27.5 21.6 35.0 39.0 25.6 84.0 20.2 71.8 55.3 23.2 83.2 38.8 43.2 0.0 10.3 0.0 41.2 23.7

CRST(MRKLD) + TPLD 83.2 46.3 74.9 29.8 21.3 33.1 36.0 24.2 86.7 43.2 87.1 58.7 24.0 84.0 36.9 49.7 0.0 29.7 0.0 44.7 27.3

Table 1: Experimental results on GTA5 → Cityscapes. ”V” and ”R” denote
VGG-16 and ResNet-101 respectively. We highlight the rare classes [25] and compute
Rare class mIoU (R-mIoU) as well.

Fig. 5: Qualitative results on GTA5 → Cityscapes. We can clearly see that our
full model generates the most visually pleasable results.

and CRST with model regularization (MRKLD) [40]. The results are summa-
rized in Table. 3. We observe that TPLD consistently improves the performance
of all the baselines. The positive results imply that the sparse pseudo-label
is indeed a fundamental problem in self-training, and the previous works no-
tably overlooked this problem. We show that the proposed concept of two-phase
pseudo-label densificaiton effectively addresses the issue.

5.4 Ablation study

Lowering the selection threshold of CRST A straightforward way to gen-
erate dense pseudo labels is by lowering the selection threshold (i.e., increasing p)
of self-training models. We summarize the results in Table. 4a. Since the scheme
brings unconfident predictions at an early stage, either limited improvement
(p = 0.4, 47.0 → 47.1 mIoU) or worse performance is obtained (p = 0.6, 47.0
→ 45.7 mIoU). Compared to these naive baselines, our TPLD shows significant
improvement (47.0 → 51.2 mIoU).
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SYNTHIA → Cityscapes

Method Seg Model Road SW Build Wall∗ Fence∗ Pole∗ TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU∗ R-mIoU

Source

Deeplabv2-V

41.5 16.6 38.3 0.2 0.0 22.6 0.1 4.9 66.5 64.7 44.9 1.7 60.7 3.3 0.0 0.6 22.9 26.4 4.3

CBST [39] 75.7 32.3 70.2 3.5 0.0 28.6 1.4 9.0 79.8 65.6 52.9 13.7 65.8 9.1 1.5 36.4 34.1 39.5 11.5

CRST(MRKLD) [40] 75.1 33.5 70.8 5.6 0.0 28.7 2.0 9.7 78.9 72.5 51.7 11.6 63.4 7.3 1.4 38.6 34.4 39.7 11.7

CRST(MRKLD) + TPLD 81.3 34.5 73.3 11.9 0.0 26.9 0.2 6.3 79.9 71.2 55.1 14.2 73.6 5.7 0.5 41.7 36.0 41.3 11.9

Adapt-SegMap [36]

Deeplabv2-R

84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7 -

ADVENT [37] 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6 16.6

CLAN [25] 81.3 37.3 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8 -

Source

Deeplabv2-R

45.9 21.4 63.0 7.3 0.0 33.6 4.5 14.4 81.6 79.7 55.3 16.7 67.5 21.3 7.5 19.0 33.7 38.3 13.8

CBST [39] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9 23.2

CRST(MRKLD) [40] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1 24.7

CRST(MRKLD) + TPLD 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5 27.4

Source

Deeplabv3-R

45.5 19.0 71.3 6.2 0.0 27.4 11.3 15.3 79.4 79.4 58.3 9.2 79.7 33.0 6.0 8.8 34.4 39.7 13.0

CBST [39] 45.2 19.4 81.8 15.7 0.2 33.3 20.8 24.9 85.0 82.2 64.6 26.7 84.8 48.8 22.9 43.9 43.8 50.1 26.4

CRST(MRKLD) [40] 52.3 21.9 80.0 17.2 0.8 32.4 17.9 31.1 84.8 83.5 63.7 28.5 83.1 37.2 19.1 52.5 44.1 50.4 26.3

CRST(MRKLD) + TPLD 70.9 29.5 80.6 18.4 0.4 26.6 19.9 30.9 85.5 86.3 66.0 32.9 84.4 51.1 29.3 56.2 48.1 55.7 29.5

Table 2: Experimental results on SYNTHIA → Cityscapes. mIoU∗ is computed
with 13 classes out of total 16 classes except the classes with ∗.

GTA5 → Cityscapes (19 categories)

Method Base + TPLD 4

CBST [39] 45.9 47.8 +1.9

CRST(LRENT) [40] 45.9 47.3 +1.4

CRST(MRKLD) [40] 47.0 51.2 +4.2

(a) GTA5 → Cityscapes

SYNTHIA → Cityscapes (16 categories)

Method Base + TPLD 4

CBST [39] 42.6 45.6 +3.0

CRST(LRENT) [40] 42.7 47.0 +4.3

CRST(MRKLD) [40] 43.8 47.3 +3.5

(b) SYNTHIA → Cityscapes

Table 3: Performance improvements in mIoU of integrating our TPLD with existing
self-training adaptation approaches. We use the Deeplabv2-R segmentation model.

Framework design choices The main components of our framework design
are the two-phase pseudo label densification. The ablation results are shown
in Table. 4a. If we drop the voting stage, the model is trained alone with the easy-
hard classification stage. However, using full pseudo labels without any proper
early-stage training introduces too noisy training signals (51.2 → 38.1 mIoU). If
we drop the easy-hard classification stage, the model misses a chance to receive
rich training signals from the full pseudo labels (51.2 → 49.5 mIoU). We also
explore the effect of ordering. We observe that the voting-first method performs
better than the easy-hard classification-first method (51.2 vs. 49.1 mIoU). This
implies that gradual densification is indeed important for stable model training.

Effect of 1
λk

in confidence score conft We suggest to multiply 1
λk

in com-
puting the confidence score conft. The rationale behind this is to oversample
the images, which include rare classes, and thus prevent the learning from being
biased by images composed of obvious frequent classes. The results without and
with the 1

λk
are (50.5 vs 51.2 mIoU) and (33.7 vs 35.1 R-mIoU). This demon-

strates the efficacy of incorporating 1
λk

.
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GTA5 → Cityscapes
Model p Voting EH Class. mIoU

CRST
0.2 7 47.0
0.4 7 47.1
0.6 7 45.7

TPLD 0.2

X 38.1
X 49.5
X2 X1 49.1
X1 X2 51.2

(a) Framework design choices

Voting Num
Voting Field

37 57 77

1 48.61 48.95 48.57

3 49.49 49.52 48.37

5 48.72 48.00 48.63

(b) Voting field / number

α mIoU

0.6 48.34

0.7 49.52

0.8 49.25

(c) α

q mIoU
1.00 48.44

0.40 50.15
0.35 50.27
0.30 51.20
0.25 49.81
0.20 50.02

(d) q

γ mIoU

1.5 50.0

2 51.2

2.5 48.6

(e) γ

Table 4: Results of ablation studies.

Bootstrap Voting
mIoU

Eq.(5) Eq.(4)

Lst [40] 47.00

X 48.47

Lst1 X X 49.52

(a) Exps on 1st phase obj func.

EH Cls. Adv.
mIoU

Eq.(6) + Eq.(7) Eq.(8)+Eq.(9)

Lst1 49.51

X 50.11

Lst1 + Lst2 X X 51.20

(b) Exps on 2nd phase obj func.

Table 5: Detailed analysis on the proposed objective functions. We note the
corresponding equations for each proposals. Adv. denotes adversarial loss term for hard
sample training.

5.5 Parameter analysis

Here, we conduct experiments to decide optimal hyper-parameters in our
framework. For the first phase, we have a total of three hyper-parameters; voting
field size, voting iteration number, and α. In Table. 4b, we conduct a grid search
on the first two, and we obtain the best result with voting field 57, and voting
number 3. The hyperparameter α controls how much to maintain the initial
prediction value, and we observe that 0.7 produces the best result (see Table. 4c).
We see that the results are in the same line with the residual learning [16].
Providing residual features (i.e., pooled neighboring confident prediction values)
while securing the initial behavior (i.e., initial prediction values) is important.
For the second phase, we have a total of two hyper-parameters; q and γ. The
hyperparameter q controls the ‘easy’ portions in the target images. For example,
if we increase the value, more images will be used as easy samples for the training.
We observe that setting q to 0.3 provides the best result (see Table. 4d). Note
that if we set q to 1 (i.e., making all the target images to be trained with the
full pseudo labels), we instead obtain degraded performance. This implies that
a proper portion of easy and hard samples are need to be set, and both the full
pseudo label training and hard-to-easy feature alignment are important. The
hyperparameter γ is related to the calibration degree of the prediction values
in generating full pseudo labels (see Eq. (6)). We obtain the best result when γ
equals 2.
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Fig. 6: A contrastive analysis of with and without hard sample training
(Eq.(8)+Eq.(9)). (a): target image, (b): ground truth, (c): prediction result with-
out hard sample training, (d): prediction result with hard sample training. We map
high-dimensional features of (c) and (d) to 2-D space features of (e) and (f) respectively
using t-SNE [26].

5.6 Loss function analysis

Finally, we explore the impact of loss functions in Table. 5. We begin with
the standard self-training loss, Lst. Introducing the bootstrapping mechanism
boosts the performance significantly, from 47.00 to 48.47 mIoU. This implies
that explicitly handling noisy pseudo labels is crucial but lacking in the origi-
nal formulation. Also, using voting to densify the sparse pseudo labels further
pushes the performance from 48.47 to 49.52 mIoU. The densified pseudo labels
help model learning due to the increased training-signals and are complemen-
tary to the bootstrapping effect. In the second phase, we investigate the impact
of both easy sample training (EH Cls.) and hard sample training (Adv.). The
easy sample training pushes the performance from 49.52 to 50.11 mIoU, and the
hard sample training further increases the performance from 50.11 to 51.20. The
results demonstrate that the full-pseudo label training is indeed important and
the hard-to-easy feature alignment further enhances the model learning. Espe-
cially for the hard sample training, we conduct a contrastive analysis in Fig. 6.
We observe that hard sample training improves category-level feature alignment
(Fig. 6 (e)→Fig. 6 (f)), and thus the prediction values become more accurate
and clean (Fig. 6 (c)→Fig. 6 (d)).

6 Conclusions

In this paper, we point out that self-training methods for UDA suffer from
the sparse pseudo label during training. Therefore, we present a novel two-phase
pseudo label densification method. Combined with recently proposed CRST
framework, we achieve new state-of-the-art results on UDA benchmarks.

Acknowledgement This research is supported by the National Cancer Cen-
ter(NCC).
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