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Abstract. Existing image-text matching approaches typically leverage
triplet loss with online hard negatives to train the model. For each image
or text anchor in a training mini-batch, the model is trained to distin-
guish between a positive and the most confusing negative of the anchor
mined from the mini-batch (i.e. online hard negative). This strategy im-
proves the model’s capacity to discover fine-grained correspondences and
non-correspondences between image and text inputs. However, the above
approach has the following drawbacks: (1) the negative selection strategy
still provides limited chances for the model to learn from very hard-to-
distinguish cases. (2) The trained model has weak generalization capabil-
ity from the training set to the testing set. (3) The penalty lacks hierarchy
and adaptiveness for hard negatives with different “hardness” degrees.
In this paper, we propose solutions by sampling negatives offline from
the whole training set. It provides “harder” offline negatives than online
hard negatives for the model to distinguish. Based on the offline hard
negatives, a quintuplet loss is proposed to improve the model’s general-
ization capability to distinguish positives and negatives. In addition, a
novel loss function that combines the knowledge of positives, offline hard
negatives and online hard negatives is created. It leverages offline hard
negatives as the intermediary to adaptively penalize them based on their
distance relations to the anchor. We evaluate the proposed training ap-
proach on three state-of-the-art image-text models on the MS-COCO and
Flickr30K datasets. Significant performance improvements are observed
for all the models, proving the effectiveness and generality of our ap-
proach. Code is available at https://github.com/sunnychencool/A0Q.
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1 Introduction

Image-text matching is the core task in cross-modality retrieval to measure the
similarity score between an image and a text. By image-text matching, a system
can retrieve the top corresponding images of a sentence query, or retrieve the
top corresponding sentences of an image query.

To train an image-text matching model to predict accurate similarity score,
triplet loss is widely used [23,5,6,15,14]. Each given image or text of a training
mini-batch is referred to as an anchor. For each image/text anchor, a text/image
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that corresponds to the anchor is called a positive while one that does not corre-
spond to the anchor is called a negative. The anchor and its positives/negatives
belong to two modalities. A triplet loss is applied to encourage the model to pre-
dict higher similarity scores between the anchor and its positives (i.e. positive
pairs) than those between the anchor and its negatives (i.e. negative pairs).

To utilize negative pairs to train the model, early approaches [23,5,10] adopt
an all-in strategy. For each anchor, all its negatives in the mini-batch partici-
pate in the loss computing process. However, in most situations, the semantic
meanings of an anchor and its negatives are totally different. With this strategy,
the overall training difficulty is relatively low for the model to distinguish be-
tween positive and negative pairs. The model only needs to focus on each pair’s
global semantic meaning difference and may ignore the local matching details.
Faghri et al. [6] propose a triplet loss with online hard negatives (i.e. online
triplet loss) as a more effective training approach. Specifically, for each anchor
in a mini-batch, the model computes its similarity score to all the negatives in
the same mini-batch online, and selects the negative with the highest score to
the anchor as online hard negative of the anchor. The new triplet loss guides the
model to only distinguish between the positives and online hard negatives of the
anchor. Compared with the all-in strategy, the models trained by this approach
commonly achieve better performance in distinguishing between positives and
confusing negatives that have similar semantic meanings to the anchor. This
training approach is employed by all the state-of-the-art models [15,14,18,27].

Even with its effectiveness, we argue that the online triplet loss still have
three drawbacks in negative selection strategy, distinguishing strategy, and pe-
nalization strategy: (1) for the negative selection strategy, the “hardness” degree
of online hard negatives is still not sufficient. Given the MS-COCO dataset as
example, the training set contains 500K corresponding image-text pairs. When
we set the mini-batch size to 128 as in [15,14,18,27], for each online hard neg-
ative of an anchor mined from the mini-batch, we can prove that its similarity
score rank expectation to the anchor in the whole training set is about 4000 (i.e.
5?3?). The probability of its rank in the top-100 is only about 2.2%. In other
words, a very hard negative with a top-100 similarity score rank for the anchor
will rarely be sampled to train the model. This decreases the model’s capacity to
distinguish between the positives and those very confusing negatives. Increasing
the mini-batch size could be helpful. However, the mini-batch computational
complexity grows sharply. (2) For the distinguishing strategy, the triplet loss
only focuses on obtaining the correct rank orders between the positives and neg-
atives of the same anchor. However, it does not guide the model to rank among
positive pairs and negative pairs that contain no common samples. Actually,
this guidance is essential to improve the model’s generalization capability from
training to testing, especially when we apply the guidance on the very hard neg-
ative pairs. (3) For the penalization strategy, the triplet loss lacks a hierarchy.
Ideally, the loss function should guide the model to maintain remarkable score
gaps among the pairs of different classes. For example, the positive pairs should
obtain far higher similarity scores than very hard negative pairs, and the very
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Fig. 1. Overview of the proposed training approach. For each anchor, we sample its
positives, offline hard negatives and online hard negatives. The training approach gives
adaptive penalties to enlarge the similarity score differences among positive pairs, offline
hard negative pairs and online hard negative pairs (i.e. the blue, green and brown
arrows). On the other hand, extra penalties are added to enlarge the similarity score
difference between positive pairs and offline hard negative pairs with different anchors
that share similar semantic meanings (i.e. the cyan arrow).

hard negative pairs should also obtain far higher similarity scores than ordinary
hard negative pairs. When a pair’s predicted score is close or beyond the bound-
ary of its pair class, the loss function should give it a larger penalty to update the
model. However, the current online triplet loss only defines positive and online
hard negative pairs. More importantly, it gives an equal penalty to all the pairs
when the margin conditions are not satisfied.

To overcome the above drawbacks, we propose a new training approach that
can be generally applied on all existing models. Specifically, we utilize a two-
round training to additionally sample “harder” negatives offline. In the first
round, we train the model by the original online triplet loss. After that, for
each image and text anchor in the training set, the model predicts its similarity
score to all its negatives in the training set and ranks them. In the second
round, given each anchor in a mini-batch, we sample its offline hard negatives
directly from its top negative list with the highest similarity score in the whole
training set. In this process, multiple kinds of offline hard negative pairs are
constructed which share/do not share common elements with the positive pairs.
The model is trained by a combination of online triplet loss and offline quintuplet
loss to overcome the first two drawbacks successfully. Furthermore, we modify the
loss function and feed information of offline hard negative pairs into the online
triplet loss term. The complete training loss achieves hierarchical and adaptive
penalization for the positive pairs, offline hard negative pairs, and online hard
negative pairs with different “hardness” degrees. The framework of the proposed
training approach is shown in Figure 1.

Our main contributions are summarized as follows:

— We propose a novel and general training approach for image-text match-
ing models. A new offline quintuplet loss is introduced that can effectively
cooperate with the original online triplet loss.
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— We skillfully feed the similarity score of offline hard negative pair into online
loss term. It serves as a criterion to adaptively penalize different kinds of
pairs. We analyze how it works mathematically.

— We evaluate our training approach on three state-of-the-art image-text match-
ing models. Quantitative and qualitative experiments conducted on two pub-
licly available datasets demonstrate its strong generality and effectiveness.

2 Related Work

Image-text matching has received much attention in recent years. Most of the
previous works focus on the improvement of feature extraction and model design.
Early image-text matching approaches [7,13,6,35] directly capture the visual-
textual alignment at the level of image and text. Typically, they extract the
global image feature by convolutional neural network (CNN), and extract the
global text feature by language model such as Skip-gram model [22] or recur-
rent neural network (RNN). The image-text similarity score is then computed
as the inner product [7,13,6] or cosine similarity [35] of the image and text fea-
tures. The success of attention models for joint visual-textual learning tasks,
such as visual question answering (VQA) [34,21,30,12] and image captioning
[29,20,31,24,3], leads to the transition to capture image-text correspondence at
the level of image regions and words [10,16,23,36]. Typically, these approaches
extract the image region feature and word feature from the last pooling layer
of CNN and temporal outputs of RNN. They focus on designing effective upper
networks that can automatically find, align and aggregate corresponding regions
and words to compute the final similarity score. Recently, Anderson et al. [1]
extract the image object features by the combination of Faster R-CNN [25] and
ResNet [8] for VQA. Based on [l], recent approaches [14,15,18,27,11] further
construct the connection between words and image objects. They either propose
new mechanisms for object feature extraction, such as feeding saliency informa-
tion [11] or extracting joint features among objects by constructing object graph
[15], or propose different cross-modality aggregation networks [14,27,18,2,9] to
improve the aggregation process from object and word features to the final score.

Even though the network design is widely studied, relatively fewer works fo-
cus on the training approach. Early image-text matching approaches [7,13,5,32]
commonly apply a standard triplet loss whose early form can be found in [28]
for word-image embedding. On the other hand, Zhang et al. [35] improve the
triplet loss and propose a norm-softmax loss to achieve cross-modal projection.
For both losses, all the negatives of an anchor in the same mini-batch are uti-
lized for loss computing. Significant improvement is observed as Faghri et al. [6]
propose the triplet loss with online hard negatives. Online triplet mining is first
introduced in [26] for face recognition. For image-text matching, it mines the
online hard negatives of the anchors from the mini-batch and makes the model
only pay attention to these confusing negatives. Almost all the current models
[15,14,18,27] apply this online triplet loss. To the best of our knowledge, our
work is the first that introduces offline hard negatives for image-text matching.
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Fig. 2. Training process illustration. Given a positive image-text pair (I#1,T#1),
6 margin-based ranking losses are applied to enlarge its similarity score differences
from the online hard negative pairs (I#2, T#1), (I#1,T#2), the offline hard negative
pairs (I#3, T#1), (I#1,T#3) (with the common anchor), and the derived offline hard
negative pairs (I#3,T#3), (I#4,T#4) (without the common anchor). Adaptive pe-
nalization is imposed via the online losses to adaptively penalize positive and negative
pairs with different strengths and directions. The involved samples of each loss are
marked by the corresponding squares.

They are mined offline from the whole training set. Motivated by [1] for person
re-identification, we propose a quintuplet loss based on offline hard negatives to
effectively cooperate with an online triplet loss, leading to significant improve-
ment. It should be noticed that Liu et al. [19] explicitly feed adaptive penalty
weight into triplet loss for image-text matching. However, they use it to solve
the hubness problem, while we implicitly feed hierarchical information into the
model to enlarge the similarity score differences among different pair classes.

3 Methods

In this section, we formally present our training approach for image-text match-
ing. In Section 3.1, we introduce the margin-based standard and online triplet
losses that are used in previous works. In Section 3.2, we present offline quintu-
plet loss as an effective complement to online triplet loss to significantly improve
the performance. In Section 3.3, we propose our final loss function with adaptive
penalization and mathematically show how it works. The overall training process
and the involved pairs are illustrated in Figure 2.

3.1 Triplet Loss for Image-text Matching

Given an input image-text pair, image-text matching models aim to predict the
pair’s similarity score as a criterion for cross-modality retrieval. To achieve this,
positive pairs (i.e. corresponding image-text pairs) and negative pairs (i.e. non-
corresponding image-text pairs) are constructed. The model is trained to predict
higher similarity score for the positive pairs than the negative ones.

Because the metrics of cross-modality retrieval are based on the ranking
performance of multiple candidates on a single query, triplet loss is widely applied
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to train the model. It holds a common sample for each positive pair and negative
pair as an anchor. The other sample in the positive pair is called the anchor’s
positive while the other sample in the negative pair is called the anchor’s negative.
In essence, triplet loss encourages the model to predict higher similarity scores
from the anchor to its positives. This is consistent with the retrieval process of
finding the corresponding candidates of a query with the high similarity scores.

Early image-text matching works [7,13,5,32] typically apply a standard triplet
loss without hard negative mining. Given a training mini-batch that contains a
set of positive pairs, the standard triplet loss is defined as:

Loa= 3 (X =560 +SGED+ Y b =SG0+5@0L)

(i,t)EP TeT/t iel/i

Here v is the margin of the triplet loss, [z]4 = max(z,0). I, T and P are the
image, text and positive pair sets of the mini-batch, respectively. ¢ and ¢ are the
anchors of the two terms, respectively. (i,t) represents the positive pair, while
(i,t) and (i,t) represent the negative pairs available in the mini-batch.

On the other hand, to overcome the drawback of standard triplet loss men-
tioned in Section 1, Faghri et al. [6] present triplet loss with online hard negatives
(i.e. online triplet loss). In particular, for a positive pair (i,¢) in a mini-batch,
the hard negatives of the anchor i and ¢ are given by ton, = argmaz.cr/.S(i,c)
and 7o, = argmazycr /iS5 (b, 1), respectively. The online triplet loss is defined as:

Lonline = Z ([’Y - S(i’t) + S(ivion)]-l- + h/ - S(ivt) + S(gonat)]-‘r) (2)
(i,t)eP

Compared with the standard triplet loss, online triplet loss forces the model to
only learn to distinguish between the positive and the most confusing negative
of an anchor in the mini-batch. This guides the model to not only consider the
overall semantic meaning difference of a pair, but also discover correspondences
and non-correspondences from the details hidden in local regions and words.

3.2 Offline Quintuplet Loss

One problem of online triplet loss in Section 3.1 is that the “hardness” degree
of most online hard negatives is still not sufficient, especially when the training
involves a large-scale training set and a relatively small batch size. As mentioned
in Section 1, the rank of an anchor’s online hard negative in the whole training
set is commonly not very high. Qualitatively, as shown in Figure 3, the online
hard negatives of an anchor typically contain a few related words, objects or
scenes to the anchor. However, there exist obvious non-correspondences between
the anchor and the negatives. Indeed, the model only needs to find these non-
correspondences and strengthen their influence, which is sufficient for the score
difference between the positive pair and negative pair to exceed the margin ~y
in Equation 2. However, during inference, when the model encounters “harder”
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Fig. 3. Two example anchors, their corresponding positives, their sampled online hard
negatives and offline hard negatives.

negatives like the offline hard negative examples of Figure 3, the model may not
be able to distinguish them from the positives. The non-corresponding parts of
these “harder” negatives to the anchor are subtle, and their influence on the
predicted score can be offset by the perfectly corresponding parts.

To overcome the problem, we additionally mine “harder” negatives in an of-
fline fashion. In particular, it involves a two-round training. In the first round,
the model is trained by the online triplet loss. After that, it performs global
similarity score prediction — for each image/text in the training set, the model
predicts its similarity score to all its non-corresponding texts/images in the train-
ing set, ranks them by their scores and stores the list of the top-h. In the second
round, for each anchor in a mini-batch, its offline hard negatives are uniformly
sampled from the top-h negatives of the anchor in the whole training set. The
model is trained from scratch again by the following loss function:

L= Z (([fyl - S(Z7t) + S(ivion)]Jr + [72 - S(th) + S(ivioff)LL) ( )
(i,t)eP 3

+(lyr = 80, t) + S(ion, )]+ + [v2 = S t) + Siogs: t)]4))

Here .7 and i,7¢ are the offline hard negatives of ¢ and ¢, 41 and 7o are
the margins of the online and offline triplet losses. It should be noticed that for
models with relatively low inference speed, the above mentioned global similarity
score prediction step can be time-consuming. In Section 4, we demonstrate that
a model can safely utilize the prediction of another efficient model to mine offline
hard negatives, which still sharply benefits the training process.

Because the offline hard negatives are very confusing, to make them benefit
the training, we should set 5 to a lower margin than 1, e.g. 0. However, in this
situation, if the positive and offline hard negative pairs share a same anchor, the
model will merely learn how to find the subtle non-corresponding parts of the
offline hard negative pair, but still does not learn how to deal with the situation
when the negative pair’s perfect matching parts offset the score influence of
non-corresponding parts. We attribute it to the fact that the positive and offline
hard negative get close similarity score for their corresponding parts to the same
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anchor. The model only needs to find the non-corresponding parts of the negative
pair to satisfy the margin condition of 5. Also, as claimed in [4], this setting
weakens the model’s generalization capability from training to testing.

Considering this, we additionally derive two offline hard negative pairs and
modify Equation 3 for the second-round training as follows:

L= (=800 + S0 Ton)s + 2 = S, t) + S Tog )4 + 12 = S0, 1) + S(ios s Top))+)
(i,t)eP
(1 = S0 t) + S(ons O] + (12 — S0, 1) + S(logs O]+ + b2 — S(t) + S(ogs Tors)]+)
Here 7,7 and toff are the corresponding image and text of o5 and i, s, respec-
tively. Because ¢,¢s and iofs are offline hard negatives of corresponding i and

t, both (ioff,toff) and (zoff, toff) can be also regarded as offline hard negative
pairs (we re-sample i,7s and Z,s¢ if they occationally correspond to each other).
The samples of each pair are non-corresponding but share very similar semantic
meanings to each other, and also to i and ¢. This two new terms guide the model
to distinguish between positive and negative pairs without common elements. In
Section 4, we prove the effectiveness of deriving the new terms based on iy,
to ¢f instead of tons ton. The complete offline loss terms based on anchor i and ¢
contain 4 and 5 elements. Following [4], we define it as an offline quintuplet loss.

3.3 Adaptive and Hierarchical Penalization

In Section 3.2, we introduce offline hard negatives which cooperate with online
hard negatives to train the model as Equation 4. During the training process, it
is natural that we should give different penalty weights to negative pairs with dif-
ferent “hardness” degrees. For example, if the similarity score between a positive
pair and a hard negative pair is close, both pairs should obtain higher penalty
weight which guides the model to distinguish between them better. However,
when we derive each loss term with respect to its contained pairs’ similarity
scores, the gradients are always constant. This indicates that when the mar-
gin condition is not satisfied, the penalty weight is consistent regardless of the
closeness degree between the positive and negative pairs.

One simple solution is modifying each loss term to a form of square so that
the penalty weight is related to the score difference between the positive and
negative pairs. However, we find that the improvement is limited as there are
no hierarchical knowledge provided by the loss function. Ideally, we expect that
the positive pairs to obtain higher scores than offline hard negative pairs, and
that the offline hard negative pairs obtain higher scores than online hard negative
pairs. To this end, we feed the information of offline hard negatives into the online
loss term. The final loss function for the second-round training is as follows:

£= 3% <(<ﬁ—w Yot = 8(it) + S(i-Ton) 4 + [v2 = 5. t) + S(iFor )4 + bz = (i) + S(iogs For)])
(i,t)eP
HB- S(iops:t) = S(ion, t)

. ot = 8(0:) + SGions O + D12 = S.8) + S D] + D2 = St) + SGiogy Tors)]+))

(5)
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Here o and [ are hyper-parameters. In Section 4, we present that they can be
set to consistent values for different models on different datasets.

To better understand how the proposed loss function works, we focus on
the first part (line) of Equation 5 which is symmetrical to the second part, and
compute its gradient with respect to S(i,t), S(i,to5f) and S(i,t,y,) as follows:

s = (St = SIon) gy, — 56,0) 456 on) > 0) B = 506, + 500 ) > 0)
—1(y2 = S(ist) + S(iog s, tos) > 0),
5(i,t) — 83,1, . _ _ 6
o _ (568 = Sliston) oIy — S0, 1) + S(iFon) > 0) + L2 — S(i, ) + S(i,Fogs) > 0), (6)
0S8 (i, tosy) el @
oL _ 25(7:,%,)”) — S(Zt) — S(i,goff) Y1 - . 2
PR ( " +B8+ ;)Hm — S(i,t) + S(i,Ton) > 0)

Here I(A) is the indicator function: I(A) = 1 if A is true, and 0 otherwise.
When the margin conditions are not satisfied, the gradient of £ with respect
to S(i,ton) becomes larger when S(i,%,,) is close to the average of S(i,to5y)
and S(i,t), which indicates a larger penalty to make S(i,t,,) lower. For the
gradient of £ with respect to S(i,t), the second and third terms indicate a neg-
ative constant which pushes S(i,t) to be higher than S(i,%,sf). In addition, the
first term indicates an additional adaptive penalty for S(i,t) to be far away
from S(i,%on). When S(i,%0,) is remarkably lower than S(i,%,s), the penalty
drops since S(i,%oy) is sufficiently lower. As for the gradient of £ with respect
to S(i,%of¢), it is subtle as the second term indicates a positive constant that
penalizes S(i,%,7f) to be lower than S(i,t). However, this penalty could be neu-
tralized when S(i,t) and S(i,%,y,) are close to each other. In this situation, it
prevents the penalty from incorrectly making S(i,%,7s) lower than S(i,t,,).
Overall, the proposed loss function applies adaptive and hierarchical penalties
to the positive, offline hard negative and online hard negative pairs based on the
differences among their predicted scores. Essentially, the pairs that are close to
the boundary of its pair class obtain larger penalty weights, the inter-class score
gaps can thus be enlarged among these three kinds of pairs. In Section 4, we
demonstrate its strong effectiveness to improve the model’s performance.

4 Experiments

Extensive experiments are performed to evaluate the proposed training ap-
proach. The performance of retrieval is evaluated by the standard recall at K
(RQK). Tt is defined as the fraction of queries for which the correct item belongs
to the top-K retrieval items. We first present the datasets, experiment settings
and implementation details. We then compare and analyze the performance of
the proposed approach with others quantitatively and qualitatively.

4.1 Dataset and Experiment Settings

We evaluate our model on two well-known datasets, MS-COCO and Flickr30K.
The original MS-COCO dataset [17] contains 82,783 training and 40,504 valida-
tion images. Each image is annotated with five descriptions. Following the splits
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of [18,14,15], we divide the dataset into 113,283 training images, 5,000 valida-
tion images and 5,000 test images. Following [6,14,15], we report the results by
averaging over 5 folds of 1K test images or testing on the full 5K test images.
Flickr30k [33] consists of 31K images collected from the Flickr website. Each
image also corresponds to five human-annotated sentences. Following the split
of [18,14,15], we randomly select 1,000 images for validation and 1,000 images
for testing and use other images to train the model.

To evaluate the effectiveness and generality of the proposed approach, we
apply it to the following current state-of-the-art image-text matching models:

— SCAN [14]. The first model that captures image-text correspondence at the
level of objects and words. The word and object features are extracted by bi-
directional GRU and the combination of Faster R-CNN [25] and ResNet-101
[8], respectively. Stacked cross attention is fed into the network to discover
the full latent alignments using both objects and words as context.

— BFAN [18]. A novel Bidirectional Focal Attention Network based on SCAN
that achieves remarkable improvement. Compared with SCAN, it focuses
additionally on eliminating irrelevant fragments from the shared semantics.

— VSRN [15]. The current state-of-the-art image-text matching models with-
out leveraging extra supervision (the model in [11] is trained by extra saliency-
annotated data). It generates object representation by region relationship
reasoning and global semantic reasoning.

All the three models are originally trained by triplet loss with online hard
negatives. We replace it with the proposed training approach for comparison.

4.2 Implementation Details

To perform a fair comparison, for SCAN, BFAN and VSRN, we completely pre-
serve their network structures and model settings (e.g. training batch size, fea-
ture dimension and other model-related hyper-parameter settings) as described
in their original work. We only replace the online triplet loss by the proposed one
to train them. For all the situations, the margins for online and offline ranking
losses 71 and 5 are set to 0.2 and 0, the hyper-parameters § and « in Equation 5
are set to 1.5 and 0.3. The top list size h is set to 300 and 60 to sample offline hard
negative texts and images (the training texts are 5 times as many training images
for both datasets). As mentioned in Section 3.2, for VSRN, it takes 3,400s/620s
to perform global similarity score prediction on MS-COCO/Flickr30K. However,
for SCAN and BFAN, they hold complex upper networks which make this step
extremely time-consuming. Therefore, we skip the first-round training of SCAN
and BFAN. The similarity scores predicted by VSRN are also used as a basis for
the second-round training of SCAN and BFAN to sample offline hard negatives.
We consider this setting valid because, after the second-round training, the final
prediction is still made by SCAN or BFAN without the participating of VSRN,
which can be regarded as a teacher model. For the first-round training on MS-
COCO/Flickr30K, as [15], VSRN is trained by a start learning rate of 0.0002 for
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15/10 epochs, and then trained by a lower learning rate of 0.00002 for another
15/10 epochs. For the second-round training on both datasets, SCAN, BFAN
and VSRN are trained by a start learning rate of 0.0005, 0.0005 and 0.0002 for
10 epochs, and then trained by a lower learning rate of 0.00005, 0.00005 and
0.00002 for another 5, 5 and 10 epochs, respectively.

4.3 Results on MS-COCO and Flickr30K

Table 1. Quantitative evaluation results of image-to-text (sentence) retrieval and text-
to-image (image) retrieval on MS-COCO 1K/5K test set. The baseline models (first
row) are trained by the triplet loss with online hard negatives. “+ OffTri”, “+ OffQuin”,
“+ AdapOffQuin” represent training the model by Equation 3, 4, 5, respectively.

Sentence Retrieval| Image Retrieval

Model RQ@1|R@5| R@10 |R@1|R@5|R@10| rsum
1K Test Images
SCAN [11] 72.7[94.8] 984 [58.8]88.4] 94.8 [507.9

SCAN + OffTri 73.1194.8| 98.2 |59.3|88.3| 94.8 |508.5
SCAN + OffQuin  |73.6]95.0| 98.4 |59.6|88.6/95.0 |510.2
SCAN + AdapOffQuin|74.1|95.2| 98.5 |59.8/88.6|95.0 |511.2
BFAN [18] 74.9195.2| 98.3 |59.4|88.4| 94.5 |510.7
BFAN + OffTri 75.8195.6| 98.4 |60.1]88.8|94.7 |513.4
BFAN + OffQuin  [76.3]95.7| 98.4 [60.5(89.0| 94.8 |514.7
BFAN + AdapOffQuin|77.3{96.0| 98.5 |61.2(89.2|95.0 |517.2
VSRN [17] 76.2194.8| 98.2 [62.8]89.7| 95.1 [516.8
VSRN + OffTri 76.8195.2| 98.4 [63.1/89.9|95.2 |518.6
VSRN + OffQuin |76.9|95.3| 98.4 [63.3/90.2| 95.5 |519.7
VSRN + AdapOffQuin|77.5/95.5| 98.6 [63.5/90.5|95.8 [521.4
5K Test Images
SCAN [11] 50.4(82.2| 90.0 |38.6/69.3|80.4(410.9
SCAN + AdapOffQuin|51.2({82.5| 90.1 |39.4/69.7| 80.4 |413.3
BFAN [18] 52.9(82.8| 90.6 |38.3|67.8] 79.3 |411.7
BFAN 4 AdapOffQuin|57.3|84.5| 91.7 |40.1/69.2| 80.1 |422.9
VSRN [17] 53.0{81.1| 89.4 |40.5|70.6| 81.1 |415.7
VSRN + AdapOffQuin|55.1|83.3| 90.8 |41.1|71.5| 82.0 |423.8

Table 1 shows the performance comparison of models trained by different
approaches on MS-COCO. We can see that all the three models are significantly
improved on all the settings when trained by our proposed training approach. As
mentioned in Section 4.2, for all the models, the offline hard negatives in their
second-round training are sampled from the prediction of the first-round trained
VSRN. It indicates that the proposed training approach is insensitive to the
model consistency of the two-round training. When the global similarity score
prediction step is intractable for the current model, we can train it by sampling
offline hard negatives based on the prediction of another more efficient model.
Overall, we achieve the most significant improvement on BFAN. In particular,
on the more reliable 5K test set, it outperforms the baseline by 8.3% and 4.7%
in top-1 sentence retrieval and top-1 image retrieval.
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Fig. 4. Plotting training epoch against R@Q1 on the MS-COCO validation set for dif-
ferent training approaches applied on VSRN and BFAN. For the proposed approaches,
the training curves correspond to the second-round training. “t2i” and “i2t” represents
image retrieval and sentence retrieval, respectively.

Table 2 shows the performance comparison on Flickr30K. It should be noted
that Flickr30K is much smaller than MS-COCO as it contains fewer very confus-
ing negative image-text pairs to be served as high-quality offline hard negative
pairs. However, significant improvements are still observed for all the models. In
Section 4.4, we show that our proposed training approach has strong robustness
for the quality of offline hard negatives.

Table 2. Quantitative evaluation results of sentence retrieval and image retrieval on
the Flickr30K test set.

Sentence Retrieval| Image Retrieval
Model R@1|R@5| R@10 |R@1|R@5|R@10| rsum
1K Test Images

SCAN [11] 67.4(90.3| 95.8 [48.6(77.7| 85.2 {465.0
SCAN + AdapOffQuin|70.3/92.0| 95.5 |50.0|/79.2| 86.2 |473.2
BFAN [13] 68.1191.4| 95.9 |50.8(78.4| 85.8 |470.4
BFAN + AdapOffQuin|73.2{94.5| 97.0 |54.0/80.3| 87.7 |486.7
VSRN [17] 71.3]90.6| 96.0 |54.7|81.8| 88.2 |482.6
VSRN + AdapOffQuin|72.8|91.8| 95.8 |55.3|82.2| 88.4 |486.3

We look deeper into different training approaches by examining VSRN and
BFAN’s training behaviours® on the widely-used MS-COCO 1K validation set
[6,15,14] (i.e. the first fold of the 5K validation set). As shown in Figure 4,
both models’ performance obtains continuous improvement as we feed different
proposed mechanisms into the training process. When the models are trained by
Equation 5, they converge significantly faster than the baselines as it takes less
than 10 epochs for them to outperform the highest R@Q1 of their baselines.

3 The final BFAN model is an ensemble of two independently trained models BFAN-
equal and BFAN-prob [18], here we show the behaviours of BFAN-prob.
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line training approach and ours on the MS-COCO test set.

4.4 Ablation Study and Visualization

Table 3. Performance of different training approach variants on MS-COCO 1K test
set. “OnlyOffline” represents the model that is only trained by the offline term. “Fine-
tune” represents the model that is fine-tuned in the second-round instead of re-trained
from scratch. “OnlineQuin” indicates that we apply gnline quintuplet loss instead
of offline in Equation 4 (i.e replace S(ioff,%oss))), S(iofsstors)) With S(ion,ton))),
S(ion,ton))) to train the model. “w/o OfflineAdap” represents that we replace S(i,%ozy)
and S(ioff,t) by S(i,t) for the new added terms in Equation 5 to train the model. Per-
formance of selecting different top list size h for offline hard negative text sampling is
also studied. The values in parentheses indicate the performance difference between the
models trained by the variant and by the proposed approach with the final settings.

Sentence Retrieval Image Retrieval
Model R@1 | R@5 | R@10 R@1 | RG@5 | R@10
1K Test Images

BFAN (OnlyOffline) [1.1(-76.2) [2.5 (-93.5)] 4.9 (-93.6) | 0.5 (-60.7) [1.4 (-87.8)[2.6(-92.4)
VSRN (OnlyOffline) |0.7(-76.8) | 2.1(-93.4) | 3.8(-94.8) | 0.4(-63.1) |1.2(-89.3) |2.3(-93.5)
BFAN (Fine-tune) 74.3 (-3.0)[94.7 (-1.3)[ 98.2 (-0.3) | 58.7 (-2.5) [88.1 (-1.1)[94.2(-0.8)
VSRN (Fine-tune)  |74.5 (-3.0)[94.3 (-1.2)| 98.1 (-0.5) | 62.0 (-1.5) | 89.3(-1.2) |94.8(-1.0)
BFAN (OnlineQuin) [75.3 (-2.0)[95.8 (-0.2)|98.5 (+0.0)| 59.8 (-1.4) [88.6 (-0.6)[94.6(-0.4)
VSRN (OnlineQuin)  [76.4 (-1.1)]94.9 (-0.6)| 98.2 (-0.4) | 62.8 (-0.7) | 89.9(-0.6) |95.2(-0.6)
BFAN (w/o OfflineAdap)|76.6 (-0.7)[ 95.8(-0.2) | 98.4 (-0.1) | 60.8 (-0.4) [89.1 (-0.1)[94.8(-0.2)
VSRN (w/o OfflineAdap)|77.1 (-0.4)| 95.4(-0.1) | 98.4 (-0.2) | 63.4 (-0.1) [90.2 (-0.3)|95.5(-0.3)
VSRN (h = 200) 77.1 (-0.4)] 95.3(-0.2) [ 98.4 (-0.2) | 63.3 (-0.2) [90.4 (-0.1)[95.6(-0.2)

)

)

VSRN (h = 500)  |77.4 (-0.1)|95.6(+0.1)|98.6 (+0.0)|63.5 (+0.0)/90.4 (-0.1)[95.7(-0.1)
VSRN (h = 1000)  |77.3 (-0.2)| 95.4(-0.1) [98.6 (+0.0)| 63.3 (-0.2) [90.3 (-0.2)|95.6(-0.2)

First, we validate whether the offline hard negatives can completely replace
online hard negatives to train the model. Specifically, we remove the online
loss term in Equation 4 to train VSRN and BFAN. As shown in Table 3, the
training process fails as it is too difficult for the model to directly learn to
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distinguish between the positive pairs and these extremely confusing negative
pairs. Also, we demonstrate the usefulness of re-training the model from scratch
in the second round. As shown in Table 3, when we apply Equation 5 to fine-
tune the model that has already been trained by the online triplet loss and
get trapped in a local optimum, it cannot obtain additional improvement. In
Equation 4, we create two new terms based on offline negatives. Indeed, we
can instead apply them based on online negatives. However, the performance of
“OnlineQuin” models are remarkably worse than the models train by Equation 4,
this supports our claim of the second problem in Section 1. On the other hand,
in Equation 5, we feed the offline hard negative information into the online term
for hierarchical penalization. To validate its effectiveness, we replace S(i,%of7)
and S(iyrf,t) by S(i,t) for the new added terms in Equation 5 to break this
hierarchical relation. « and 8 are re-adjusted to achieve the best performance on
the validation set. The performance drops to the same level of using Equation 4
to train the models, indicating the effectiveness. In the end, for VSRN, we present
the model’s performance when selecting different top list size h for offline hard
negative text sampling (we always keep it 5 times larger than the top list size for
offline hard negative image sampling). We can find that even when h is set to 1000
which indicates significant drops of “hardness” degree of offline hard negatives,
the model still achieves great performance. This is consistent with the excellent
performance on Flickr30K and proves the robustness of our training approach
on smaller datasets when very confusing hard negative pairs are limited.
Figure 5 shows the qualitative comparison between the models trained by
different approaches on MS-COCO. For sentence retrieval, given an image query,
we show the top-5 retrieved sentences. For image retrieval, given a sentence
query, we show the top-3 retrieved images. The correct retrieval items for each
query are ticked off. Overall, our training approach guides the model to better
find and attend to the detailed non-correspondences of negative image-text pairs
such as “snow covered field”, “rhiho”, “blowing out a candle” and “poster”.

5 Conclusion

We present a novel training approach for image-text matching. It starts by min-
ing “harder” negatives offline from the whole training set. Based on the mined
offline hard negatives, an effective quintuplet loss is proposed to complement the
online triplet loss to better distinguish positive and negative pairs. Furthermore,
we take the distance relations among positive, offline hard negative and online
hard negative pairs into consideration and effectively achieve adaptive penaliza-
tion for different pairs. Extensive experiments demonstrate the effectiveness and
generality of the proposed approach.
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