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Abstract. We study the problem of common sense placement of visual
objects in an image. This involves multiple aspects of visual recogni-
tion: the instance segmentation of the scene, 3D layout, and common
knowledge of how objects are placed and where objects are moving in
the 3D scene. This seemingly simple task is difficult for current learning-
based approaches because of the lack of labeled training pair of fore-
ground objects paired with cleaned background scenes. We propose a
self-learning framework that automatically generates the necessary train-
ing data without any manual labeling by detecting, cutting, and inpaint-
ing objects from an image. We propose a PlaceNet that predicts a di-
verse distribution of common sense locations when given a foreground
object and a background scene. We show one practical use of our object
placement network for augmenting training datasets by recomposition of
object-scene with a key property of contextual relationship preservation.
We demonstrate improvement of object detection and instance segmen-
tation performance on both Cityscape [4] and KITTI [9] datasets. We
also show that the learned representation of our PlaceNet displays strong
discriminative power in image retrieval and classification.
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1 Introduction

Studies in humans and animals suggest that the mental replay of past experiences
is essential for enhancing visual procession as well as making action decisions [3].
We ask the question: can developing a computational mental replay model help to
improve AI visual perception tasks such as recognition and segmentation? More
specifically, would the mental replay of object placement and scene affordance
boost visual recognition systems?

This is not only a scientific question, but also a highly practical one for train-
ing a deep learning network. Most AI systems based on deep learning have a large
appetite for a vast quantity of human-labeled training dataset, and all mod-
ern deep learning based algorithms implicitly use contextual cue for recognition
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Fig. 1: Given a foreground object and a background scene, we aim to learn a set
of reasonable and diverse locations and scales to insert the object into the scene.

tasks. Several recent works demonstrated ‘copy-paste’ like data augmentation by
inserting objects into a background image in order to boost object recognition
performance [5][7][6][10][30]. If the mental replay of object placement could be
carried out reliably with the preservation of contextual relationship, this method
leads to a new way of data augmentation by utilizing self-supervised learning of
object placement.

Motivated by vast amount of driving scenes in public datasets, we create
a self-supervised mental replay task of learning object placements into street
scenes. Our system starts by observing many street scene images along with in-
stance segmentation labels. It learns to mental replay: transferring objects from
one scene and composite them into other plausible scenes at plausible new lo-
cations. This task has many useful side-effects: 1) it encourages the algorithm
to discover functionality based object and scene features, and their contextual
dependency; 2) it helps to create new object-scene compositions that could po-
tentially balance out biases or augment hard examples in the training dataset.

The self-learning can also come for ‘free’ just by observing unlabeled scenes.
Our insight is that we can generate ‘free’ labeled training data using an instance
segmentation network [11] to cut out objects and fill in the holes using an image
inpainting network [31]. The ‘free’ labeled object-background pairs tell us what
the object looks like and where it is placed.

The ‘free’ labeled object-background pairs are then fed into our proposed
PlaceNet, which predicts the location and scale to insert the object into the back-
ground. The key challenge is to learn diverse yet plausible object placements.
There is a many-to-many mapping between the objects/scenes with plausible
placement solutions. For example, one object-scene image pair can correspond
to many different object placements (one-to-many). At the same time, similar
object-scene pairs can correspond to the same object placement (many-to-one).
The two key properties we want are 1) diversity: learns a many-to-many map-
ping, where images consisting of similar object-scene pairs can share the similar
distributions of solutions; and 2) modularity: the objects and scenes are rep-
resented modularly to allow for maximal composition possibility for inserting
objects into scenes.

We demonstrate that our PlaceNet can outperform strong baselines in terms
of plausibility and diversity in object placement learning. In addition, we show
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two useful applications of our object placement learning. First, we use the learned
PlaceNet to insert objects from one scene into many other scenes with natural
object-context relationship in order to augment training data for boosting ob-
ject detection and instance segmentation. Our hypothesis is that by compositing
scenes that model the distribution of any object, we are able to improve the de-
tection and segmentation performance by allowing the detectors [25][11] see more
object-context relationships. Second, we show that our self-learning PlaceNet can
learn meaningful features for object/scene retrieval as well as image classifica-
tion.

2 Related Work

2.1 Learning Object Placements.

There have been several attempts to solve the task of object placement with
deep learning. Tan et al [27] proposed a branching CNN to jointly predict the
location and size for inserting person into a scene. Lin et al [18] proposed Spa-
tial Transformer Generative Adversarial Networks (ST-GAN) that iteratively
warps a foreground instance into a background scene with a spatial transformer
network via adversarial training against geometric and natural image manifolds.
Similarly to [18], Tripathi et al [29] proposed to composite synthetic images with
STN [13] by discriminating them from the natural image datasets. Azadi et al [1]
proposed a self-consistent composition-by-decomposition network named Com-
positional GAN to composite a pair of objects. The insight is that the composite
images should not only look realistic in appearance but also be decomposable
back into individual objects, which provides the self-consistent supervisory sig-
nal for training the composition network. Li et al [17] focused on predicting a
distribution of locations and poses of humans in 3D indoor environments using
Variational Auto-Encoders [14].

The work closest to ours is Lee et al [16], where they proposed a two-step
model that predicts a distribution of possible locations where a specific class of
objects (person/car) could be placed and how the shape of the class of objects
could look like using semantic maps. In contrast with [16], we learn object place-
ments using images of objects and backgrounds as input without compressing
them to abstract category names. Using image appearances as input is much
harder due to large feature dimensionality, but it allows us to create more con-
textually natural scenes compared to using GAN generated objects.

2.2 Data Augmentation for Object Detection

There have been many efforts to improve performance of object detection or
instance segmentation through data augmentation. The most straightforward
method to accomplish this is through geometric transformations of the images
[11][8][20][26] such as scale changes, horizontal flips, cropping, and rotations. By
varying the levels of context around objects, the orientation, and the size of
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objects, their aim is to augment the data distribution that better matches the
natural distribution of objects. Another method includes adjusting the signal-
to-noise ratio to model the uncertainty in object boundaries and other possible
sampling noises [8] by distorting the color information.

It has been demonstrated that context plays a key role in vision recogni-
tion systems [24][28]. Having contextually related objects in a scene has more
of an multiplicative effect than an additive one. That is, a scene composed of
contextually sound objects is more than the sum of the constituent parts. Both
[24][28] validate that having contextually related objects provides more evidence
for recognition than beyond just the local evidence of the object instance itself.

Instead of operating on the original data, one way to generate new images is
to cut-and-paste object instances onto an image [5][7][6][10][30]. This has been
shown to be effective for both object detection and instance segmentation.

The context-based cut-and-paste method most related to our work is [5],
in that placement is learned based on context. But [5] does not condition the
placement of the object on both the context and the appearance of the instance
itself like ours. Instead the locations are classified on which class is most likely
to be present in each location given the context. The method used is unable to
distinguish if specific object instances of the same semantic class actually belong
in the scene given the context.

Another closely related work is [7], which perturbs the object locations in
the original image to augment object-context relationships. In contrast with this
work [7], we can sample directly from the joint distribution of three disjoint vari-
ables: object appearance, scene appearance, and stochastic variations of object-
scene interaction, without being forced in the original background context. This
allows us to generate a far greater diversity of scene compositions.

3 Methods

Our work aims to learn the placement of foreground objects into background
scenes without heavy human labeling. To do so, we first propose a novel data
acquisition technique to generate training data for free. Then, we propose a
generative model PlaceNet to predict a set of diverse and plausible locations
and scales to insert foreground object into background scene. With the learned
PlaceNet, we further propose a data augmentation pipeline to shuffle foreground
objects into many different background scenes to composite new training data
in order to boost object detection and instance segmentation performance.

3.1 Data Acquisition by Inpainting

What kind of data do we need in order to learn common sense object placements?
Intuitively, our training set needs to contain paired examples of a foreground ob-
ject, a cleaned background scene without objects, and labeled plausible locations
to place the object. While such labeled data would be extremely difficult and
expensive to obtain, we propose a novel data acquisition system. Our system
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Fig. 2: In our data acquisition pipeline, we first cut out the object region with
the instance segmentation mask, and save the original bounding boxes as the
ground truth plausible placement locations and scales. In the meantime, we
crop out segmented objects corresponding to the bounding boxes. Finally, we
use inpainting network to fill the holes of the occluded region and generate the
clean background.

leverages existing instance segmentation dataset and a self-supervised image in-
painting network to generate the necessary training data for learning object
placement.

Our insight is that we can generate such training data by removing objects
from the background scenes. With an instance segmentation mask, we first cut
out the object regions and then fill in the holes with an image inpainting net-
work. After that, we simultaneously obtain a clean background scene without
objects in it and the corresponding ground truth plausible placement locations
and scales for placing these objects into the scene. The overall process is de-
scribed in Figure (2). The instance segmentation can be obtained from labeled
data or a pretrained Mask R-CNN network [11]. The inpainting network [31] is
trained by randomly cropping out regions in the street scene images. After the
training, the inpainting network learns a prior to fill the holes with background
information even if the holes were previously occupied by some objects, which
has been studied in [2]. Overall, our proposed data acquisition technique pro-
vides a way to generate large-scale training data for learning object placement
without any human labeling.

3.2 Learning Object Placements

Objects can have a multitude of possible placements in a given scene. For ex-
ample, a person could stand on the left or right side of the street, walk across
the street, or stand besides a car. To model such diverse and dense object place-
ments is challenging, since the observation of real-world object placements could
be sparse. In order to tackle this problem, we design our PlaceNet to achieve
two major properties. First, our model is able to share information across sparse
observations of foreground and background affordance in order to accumulate
knowledge for dense placement predictions. Second, our model has the ability to
actively explore diverse possible solutions for object placements.

To share information across sparse observations, our insight is that objects
with similar poses and background with similar layouts could share the observed
object placement with each other. Therefore, we encode foreground objects and
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Fig. 3: This is an overview of our PlaceNet. We first encode foreground and
backgroud into compact feature vectors, combine them with a random variable
sampled from a U(1, 0) uniform space, and finally decode to the predicted object
placement. The plausibility of predicted placement is checked by a discrimina-
tor conditioned on the foreground and the background. The diversity of object
placement is achieved by preserving the pairwise distance between predicted
placements and the corresponding random variables. The green, blue, yellow,
purple circles and boxes denote the sampled random variables and the corre-
sponding predicted placements respectively, and the red dashed double-arrow
lines denote the pairwise distance.

background scenes into two compact feature vectors, where the foreground fea-
ture encodes the object semantics and pose and the background feature encodes
background layout. We demonstrate that the learned features can indeed encode
such information through image retrieval and feature visualization in section 4.7.
With the foreground and background features, we further concatenate them with
a random variable sampled from U(1, 0) uniform distribution, and finally decode
to a predicted object placement. In this work, we parameterize object placement
as normalized horizontal and vertical locations and scales in the range of 0 ∼ 1.

To achieve active exploration of object placements, our insight is that we can
enforce the sampled random variables to generate unique and diverse placement
solutions. This is achieved by preserving the pairwise distance of the predicted
placements with respect to the pairwise distance of the corresponding random
variables in the sampling space [19]. To be more specific, we define the diversity
loss as follows in Equation (1).

Lndiv(y, z) =
1

N2 −N

N∑
i=1

N∑
i6=j

max(0, αDz
ij −D

y
ij) (1)

Dz
ij =

dz(zi, zj)∑
j dz(zi, zj)

, Dy
ij =

dy(yi, yj)∑
j dy(yi, yj)

(2)

where z denotes the random variable, y denotes the predicted placements, N
is the number of sampled random variables, i, j indicate the sample indices, and
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α is a relaxation hyperparameter in the hinge loss. In equation (2), Dz
ij , D

y
ij ∈

RN×N are the normalized pairwise distance matrices. The distance metric d(·, ·)
for random variable z and placement y is simply the Euclidean distance, which
is defined as follows.

dz(zi, zj) = ||zi − zj || , dy(yi, yj) = ||yi − yj || (3)

In our implementation, we sample four random variables (N = 4) at each
iteration, and optimize the network to preserve the pairwise distance between
the four predicted placements with respect to the four latent variables in the
uniform space. With such learning objective, our model is able to produce diverse
placement solutions for each pair of foreground and background inputs.

While the diversity loss Lndiv encourages the network to sample diverse place-
ments, we use a conditional GAN loss [22] to check whether the predicted place-
ments are plausible in the meantime. We train a discriminator that takes fore-
ground, background, and object placement as inputs and computes the probabil-
ity of whether the predicted placement is realistic conditioned on the foreground
and background. This conditional adversarial loss is defined as follows,

Ladv =Ex∼pdata(x) [log(D(y|f, b))] + Ez∼p(z) [log(1−D(G(z|f, b)|f, b))] (4)

where D is discriminator, G is generator, f is foreground, b is background, y is
ground truth placement, z is the random variable, and G(z|f, b) is the predicted
placement. To stabilize training, we apply the spectral normalization [23] to scale
down the weight matrices in the discriminator by their largest singular values,
which effectively restricts the Lipschitz constant of the network.

3.3 Data Augmentation

We randomly select a background to start placing objects, but the starting back-
ground could be completely empty and filled in with inpainting or only a few
objects removed. This allows us to combine the natural distribution of the ob-
ject placements with our own generated ones. This essentially can generate more
contextually natural and more varied scenes around objects. The overall pipeline
is shown in Figure (4).

After selecting the background, we then choose objects that are semantically
similar to the ones previously removed from the scene. This is done because
there can be multiple reasons why two instances of the same class might not
belong in the same scenes. The most obvious reason why an object might not
belong is that some instances are occluded. For example there are many ”floating
heads” in Cityscapes [4] because cars are in front of the person. This is done
by selecting top K nearest neighbors from the foreground database for each of
the previously existing objects in the scene. We use our pretrained encoder to
extract features of foregrounds and use cosine similarity as a distance metric to
find top K neighbors. Basically, the K nearest neighbors search finds a plausible
subset of foregrounds to add into a specific background.
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Fig. 4: In our data augmentation pipeline, the foreground database contains
masked foreground objects and the background database contains ”cleaned”
backgrounds with no objects. To make sure the selected foregrounds semanti-
cally make sense to be placed into a background, we retrieve top K nearest
neighbors of foregrounds with respect to the objects that were previously in the
background scene. Then, we randomly select several foregrounds in the retrieved
subset of foregrounds and copy-and-paste them into a selected background with
predicted locations and scales from our PlaceNet.

From there, we randomly select an object from a retrieved foreground subset
and feed them into PlaceNet together with a background image one at a time.
From the predicted locations and scales, we simply cut and paste to synthesize
the new image. The method of cut-and-paste has been demonstrated by previous
works [30][5][7] to not be detrimental for detection or instance segmentation
despite the visual flaws at the borders.

Due to the diversity property of the PlaceNet, we are better able to model
the probability distribution map of objects in a scene. The modularity of our
data composition design allows us to generate any pair of object-context images.
These two properties combine to generate novel scenes with contextually related
objects that appear sufficiently different yet natural. Another effect of this is that
we can decorrelate instances from a specific scene and location using diversity
and modularity since objects can be naturally shuffled into different background
scenes.

4 Experiments

We evaluate the performance of our method through comparison between strong
baselines and the state-of-the-arts in three sub-tasks: object placement, data aug-
mentation for object detection and instance segmentation, and feature learning.
In the following sub-sections, we first elaborate our baseline methods and imple-
mentation details. Then, we dive into the detailed evaluation and discussion for
all the experiments.
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4.1 Baselines

To evaluate the performance of object placements, we proposed three base-
line models, which are Random Placement, Regression, cVAE-GAN, and cVAE-
GAN+Div. In addition, we proposed a k-nearest-neighbor Object Swap baseline
and an Object Jitter [7] baseline to evaluate the data augmentation.

Random Placement: This approach places objects into a scene with ran-
domly sampled location and scale, where the random sampling is bounded by
the extreme object location and size in the dataset.

Regression: The regression model directly predicts the bounding box loca-
tion and scale using MSE loss, and does not have stochastic sampling property.

cVAE-GAN [15]: The name of cVAE-GAN is conditional Variational Auto-
Encoder with Generative Adversarial Network. This model contains a cVAE to
stochastically sample outputs, which are followed by a discriminator to check
the plausibility of the outputs.

cVAE-GAN+Div [15][21]: This model is simply the cVAE-GAN model
with an additional diversity regularization loss [21].

Object Swap: For each segmented object in the scene, we swap the object
with one randomly chosen object from the k-nearest-neighbors in the foreground
object database.

Object Jitter [7]: This method proposed to inpaint the segmented object
and randomly perturb its original locations with a learned probability heatmap
to augment the training data variation.

For our baselines regression, cVAE-GAN and cVAE-GAN+Div, we use the
same network architectures for the encoder, decoder, and discriminator mod-
ules, and different loss functions. For example, the regression baseline uses MSE
loss only. The cVAE-GAN baseline uses KL-Divergence, MSE and adversarial
loss with weights of 0.01, 1, 1 respectively. On top of cVAE-GAN, the cVAE-
GAN+Div baseline uses an additional diversity loss [21] with weight of 1 that
maximize the ratio of the distance between sampled outputs with respect to the
corresponding latent codes. The implementation details in the supplementary.

4.2 Object Placements

We evaluate object placement in two criterion: plausibility and diversity. While
there is generally a trade-off between plausibility and diversity in generative
models [32][21][19], we emphasize that our model aims to produce diverse results
without sacrificing the plausibility in the meantime.

For the placement plausibility, we conduct user study that asks user whether
the sampled bounding boxes are reasonable for a pair of foreground and back-
ground. The final result is averaged across 200 testing examples from ten sub-
jects. In addition, we quantify placement plausibility by computing the Frechet
Inception Distance (FID) [12] between composite and real images. Lower FID in-
dicates that the composite distributions are more similar to the real distribution,
and that object placements are more realistic and plausible. On the other hand,
we compute the diversity of placement by calculating the pairwise Euclidean
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distance between pairs of sampled object bounding boxes. Overall, the results
indicate that our model can generate much more diverse composite locations
with even better plausibility scores, as shown in Table (1) and Figure (5).

Models Plausibility (User Study) ↑ Plausibility (FID) ↓ Diversity ↑
Random 22.4% 70.36 0
Regression 73.1% 57.86 0
cVAE-GAN[15] 75.9% 52.13 0.0219
cVAE-GAN+Div[15][21] 74.5% 53.54 0.0335
PlaceNet (Ours) 76.4% 48.15 0.0392

Table 1: Quantitative evaluation of object placements. Our method achieves the
highest diversity as well as the best plausibility.

Fig. 5: This is a qualitative comparison of object placement predictions between
two baseline models and our PlaceNet. Our method can generate the most diverse
object placements in the comparison.

4.3 Overfitting Inpainting Artifacts?

We study whether the our PlaceNet will overfit to the inpainting artifacts. The-
oretically, since many different objects are inpainted at the same time in an
image, the network can not use the artifacts as cues to find reasonable place-
ments for a specific class of objects. For example, artifacts of inpainted cars
do not provide cues for placements of traffic lights, and vice versa. Empirically,
we evaluate how many generated boxes are covering the original object loca-
tions. With a Intersection-over-Union (IoU) threshold of 0.5, we observe that
only 37.62% of generated boxes are covering the original locations by sampling
across 1,000 examples. In Figure (6), we show four examples that the predicted
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locations (purple boxes) are not covering the original inpainting object locations
(white boxes).

Fig. 6: Inpainting locations (white boxes) and predicted locations (purple boxes).
The predicted locations do not covering the inpainting locations most of the time,
this indicates that our PlaceNet does not overfit to the inpainting artifacts.

4.4 Data Augmentation for Object Detection

To evaluate the data augmentation performance for object detection, we use the
same detector YOLOv3 [25] on all augmented datasets and use mean average
precision (mAP) as the evaluation metric. The baseline is the model trained
with the original dataset only. Compared to this baseline, our method can boost
the object detection for all the classes except for car, as shown in the last row
of Table (2). This comparison shows that our data augmentation can boost the
rare and hard class detection by an obvious margin, such as rider and truck, by
generating more rare object-and-context scenes to balance out the original data
bias.

Compared to the other methods, our method can achieve the best overall
mAP performance boosting on both Cityscape [4] and KITTI [9] dataset. From
the random placement baseline, we can see that introducing any wrong contex-
tual relationship could harm the data augmentation and perform even worse
than the baseline. By looking at the comparison between cVAE-GAN/cVAE-
GAN+Div between our method, we can see that by generating more diverse
composite scenes, as shown in Table (1), our method can further boost the data
augmentation performance. From the visual comparison in Figure (7), we can
see that our method is able to identify bicycle, person, and cars with better
precision and recall.

4.5 Data Augmentation for Instance Segmentation

Similarly to object detection, we use the instance segmentation algorithm Mask
R-CNN [11] and train it on all the augmented datasets with mAP as the evalua-
tion metric. The quantitative evaluation is shown in Table (3). We show that our
method can boost individual class mAP for rider, car, bus, train and motorcycle
compared to the baseline. Our method can also achieve the best overall mAP
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Object Detection
Cityscape[4] KITTI[9]

Person Rider Car Truck Bus Train Motorcycle Bicycle Overall ↑ Overall ↑
Baseline 0.412 0.238 0.754 0.154 0.153 0.105 0.080 0.224 0.265 0.359
Random 0.454 0.278 0.738 0.104 0.135 0.099 0.058 0.218 0.260 0.203
cVAE-GAN[15] 0.441 0.323 0.745 0.154 0.203 0.105 0.104 0.223 0.287 0.274
cVAE-GAN+Div[15][21] 0.462 0.293 0.753 0.214 0.170 0.145 0.059 0.248 0.293 0.322
Object Swap 0.437 0.303 0.757 0.162 0.160 0.123 0.082 0.244 0.283 0.275
Object Jitter[7] 0.441 0.323 0.744 0.154 0.202 0.105 0.104 0.223 0.278 0.354
Object Placement (Ours) 0.448 0.381 0.749 0.200 0.179 0.140 0.088 0.227 0.302 0.371

Improvement over Baseline 0.036 0.143 -0.005 0.046 0.026 0.035 0.008 0.003 0.037 0.012

Table 2: Object detection on Cityscape [4] and KITTI [9]. We run YOLOv3 [25]
detector on all the data augmentation methods, and evaluate the results using
mean average precision (mAP).

Fig. 7: A visual comparison that shows the results from the baseline (top row)
and the results from our approach (bottom row) using YOLOv3 [25].

compared to all other methods in both Cityscape [4] and KITTI [9] datasets.
Overall, we can see similar performance trend as we have seen in object detection.
From the quantitative results of both tasks, we can conclude that generating rare
object-and-context scenes could alleviate dataset bias, which boosts the recogni-
tion performance on the rare classes. In addition, the more diverse the composite
scenes could boost more recognition performance.

From the visual comparison in Figure (8), in the first image, there is a small
car clearly ahead of the ego vehicle yet the baseline fails to capture it. In the
second picture we detect all the bikes on the bike rack. For the third picture, the
baseline has a difficult time in crowded scenes, and it misses multiple people. The
motorcycle in the last image is completely missed probably due to its low class
appearance. Overall, we can detect more highly occluded and small instances
where context is more important for identifying them.

4.6 Feature Representation Learning

A key property of our PlaceNet is to share information across sparse observations
such that we can learn a dense distribution of diverse object placements. This
property is achieved in that our foreground and background encoders are able to
learn feature representations that can cluster foreground and background based
on their semantics and functionality. By clustering objects and scenes in the
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Instance Segmentation
Cityscape[4] KITTI[9]

Person Rider Car Truck Bus Train Motorcycle Bicycle Overall ↑ Overall ↑
Baseline 0.202 0.069 0.620 0.495 0.493 0.156 0.133 0.118 0.286 0.235
Random 0.210 0.097 0.619 0.449 0.471 0.143 0.128 0.118 0.279 0.228
cVAE-GAN[15] 0.210 0.093 0.616 0.477 0.460 0.162 0.112 0.113 0.281 0.243
cVAE-GAN+Div[15][21] 0.213 0.090 0.620 0.496 0.478 0.187 0.133 0.104 0.291 0.247
Object Swap 0.221 0.087 0.621 0.481 0.481 0.155 0.129 0.117 0.287 0.254
Object Jitter[7] 0.202 0.164 0.627 0.465 0.479 0.196 0.143 0.121 0.300 0.281
Object Placement (Ours) 0.198 0.080 0.621 0.487 0.512 0.264 0.143 0.109 0.302 0.307

Improve over Baseline -0.004 0.011 0.001 -0.008 0.019 0.108 0.010 -0.009 0.016 0.072

Table 3: Instance segmentation on Cityscape [4] and KITTI [9]. We run Mask
R-CNN [11] detector on all the data augmentation methods, and evaluate the
results using mean average precision (mAP).

Fig. 8: A visual comparison that shows the results from the baseline (top row)
and the results from our approach (bottom row) using Mask R-CNN [11].

latent space, our network can then share the object-and-context relationships
from the sparse observations of objects/scenes pairs.

We run the k-nearest-neighbor image retrieval on the foreground and back-
ground images using the learned encoders. As shown in Figure (9), foreground
features can cluster object pose regardless of appearance and the background
features can cluster background scenes with similar scene layouts. We further
visualize the feature activation of background encoders, and find that the back-
ground features implicitly segments the street and non-street regions, which
encode the street scene layout, as shown in Figure (10).

In addition to image retrieval and feature visualization, we test out how well
the pretrained encoder can be used for foreground image classification. In this
experiment, we collect 10K foreground images for training and 1K foreground
images for testing, and we aim to classify eight classes of semantic objects in
Cityscape [4]. We set up three experiment trials, where we use 1K, 5K ,and 10K
training images in each of the three trials. We compare the model trained from
scratch and the model that fine-tunes on the learned foreground encoder from
PlaceNet. As shown in Table (4), the PlaceNet encoder can consistently outper-
form the model trained from scratch. This experiment, once again, shows that
our PlaceNet can learn meaningful and discriminative feature representation.
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Number of Training Images Classifier Trained from Scratch PlaceNet foreground encoder

1,000 34.3% 46.5%
5,000 52.5% 74.8%
10,000 67.7% 86.3%

Table 4: Comparison between model trained from scratch and model fine-tuned
on the foreground encoder on image classification. The numbers in the 2nd and
3rd columns are the classification accuracy on 1K testing images when using
different amount of training data.

Fig. 9: Foreground and background image retrieval. The foreground encoder can
retrieve the objects based on the semantics and pose regardless of color. The
background encoder can retrieve the scene based on the street layouts.

Fig. 10: Visualization of feature activation from the background encoder. This
shows that the features fire on street segments and non-street segments, which
encode the street layout.

5 Conclusion

We formulated the self-learning task of object placement. We first proposed a
novel data generation technique that can generate large-scale training data for
’free’. Then, we proposed PlaceNet that can learn the distribution of diverse and
plausible locations to place a given object into a background. We show that our
object placement provides two useful side-effects. First, our learned PlaceNet
can be used to shuffle segmented objects into different background scenes to
enrich object-context variations for boosting object detection and segmentation.
Second, we show that our self-learning PlaceNet can learn meaningful feature
representations for object/scene retrieval and classification. Extensive experi-
ments have been conducted to demonstrate the effectiveness of our method for
data augmentation.
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