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We provide additional details on the neural network architecture and training
process in Sections A and B. Details of our postprocessing can be found in
Section C. We compare runtimes of the methods in Section D. In Section E
we show the performance of [1,2,3] on small patches in comparison to whole
images. We show example results of our system for cartoon drawings in Section F.
We provide additional comparisons from the ablation study in Section H and
additional comparisons with other methods in Section G. In Section I we describe
our refinement algorithm in detail.

A Neural Networks architectures

For image cleaning we use U-net [7] encoder-decoder architecture. It consists
of blocks of layers, each containing convolutional and batch normalization lay-
ers and ReLU activations. We use seven such blocks interleaved with MaxPool
downsampling in the encoder, and seven blocks interleaved with nearest neighbor
upsampling in the decoder. We connect the blocks of the encoder and decoder
with the same resolution of feature maps with skip connections, as in the original
U-net.

We build our primitive extraction network from two parts: the encoder con-
sisting of ResNet18 blocks [4], which extracts features from the raster, and the
decoder Transformer model [9], which estimates the primitive parameters. The
architecture of our primitive extraction network is shown in Figure 1.

We use nres = 1 ResNet18 block with c = 64 channels in each convolution.
We use ndec = 8 Transformer blocks with 4 heads of multi-head attention and
512 neurons in the last fully-connected layer.

We set the hidden dimensionality of the primitive representations in the
Transformer part of the network demb equal to the number of primitive parame-
ters, 6 for lines and 8 for curves: one for the width, one for the confidence value
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Fig. 1: Architecture of our vectorization network. A batch of b grayscale raster
patches is first encoded with the sequence of nres ResNet blocks. Then, c channel
feature maps of size h × w are decoded with a sequence of ndec Transformer
blocks. Finally, the output of the last Transformer block is converted with a
linear layer into nprim sets of primitive parameters per sample in batch.

and the rest for coordinates of the control points. We keep the other hyper-
parameter values the same for lines and curves.

B Training details

We used Pytorch 1.2 for GPU computations and model training [6] and GNU
Parallel to speed up the metric calculations [8] for our methods. We trained
our models for 15 epochs on ABC dataset and 17 epochs on PFP dataset. The
batch size was 128. We used Adam [5] for optimization with a scheduler with
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the same hyperparameters as in the original Transformer paper [9]. It took us
approximately four days to train each model on a single Nvidia v100. To speed
up the training, we pre-calculated all data augmentations, including cropping,
and trained our model on this augmented data. First, we split original images
into train, validation, and test sets. Then we cropped and augmented images to
prevent overfitting.

In Figure 2 and Figure 3 we provide metrics on train and validation sets for
patches with size 64× 64 from ABC and PFP datasets correspondingly.
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Fig. 2: Metrics and loss function for train and validation on ABC dataset. One
step of X-axis represents calculations on a single batch.

C Merging algorithm

For lines we start by building a graph with the primitives as nodes and edges
between nodes that correspond to a pair of lines that are close and collinear
enough but not almost parallel (Figure 4 (a, b)). Then, we replace the lines in
each connected component of the graph with a single least-squares line fit to
their endpoints (Figure 4 (c, d)). Finally, we snap the endpoints of intersecting
primitives by cutting down the “dangling” ends shorter than a few percent of
the total length of the primitive. (Figure 4 (e)).
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Fig. 3: Metrics and loss function for train and validation on PFP dataset. One
step of the X-axis represents computations on a single batch.

For quadratic Bézier curves, we iteratively try to replace pairs of curves with
a single one. For each pair of curves P (t), t ∈ [0, 1], Q (s), s ∈ [0, 1], we first
check if their widths are close (Figure 5 (b)). Then, we check if the “midpoint”
(Figure 5 (a)) and the endpoints of the second curve are close to the first one,
as illustrated in Figure 5 (c). If all checks are passed, we find a new quadratic
Bézier curve R (u), u ∈ [0, 1] as a least-squares fit to the endpoints and midpoints
of the curves in the pair (Figure 5 (d)). Specifically, we minimize the distances
between the points

P1 = P (0) , Pb = P (tb) , P3 = P (1) ,

Q1 = Q (0) , Qb = Q (sb) , Q3 = Q (1)
(1)

and the points on the new curve

R (0) , R (tbuq1/tq1) , R (uq1/tq1) ,

R (uq1) , R (1− (1− sb) (1− uq1)) , R (1)
(2)

respectively w.r.t. control points of the new curve. Here, tb and tq1 are the
parameter values of Pb and the projection of Q1 on the first curve, sb is the
parameter value of Qb on the second curve, uq1 is the parameter value of Q1

on the new curve. We find the value of uq1 with brute-force search and take the
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a) b) c) d) e)

Fig. 4: Our algorithm of line merging: (a) we find close lines, (b, c) we join them
in the connected components of the graph, (d) we fit the endpoints of the lines in
each connected component with least squares, (e) and finally snap the endpoints
of the lines.
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Fig. 5: (a) Our definition of the “midpoint” for quadratic Bézier curve, and (b-
d) single step of our algorithm of curve merging: (b) we check that the widths
are close, (c) we check that the curves are close, (d) we fit the endpoints and
midpoints of the curves with least squares.

best fit. Finally, if the best fit is close enough, we replace the pair of the curves
with the fit. We repeat this process until no more pairs allow for a close fit.

D Computation time

Our refinement step is iterative and allows trading longer computation times for
more accurate results. In Table 1 we show example computation times for the
prior work along with IoU values, and the computation times required by our
system to reach similar IoU values.

Our system without the final merging step reaches the same IoU value as
CHD [2] in a similar time, and the same IoU values as FvS [3] and PVF [1] in
much less time. We note however that none of the methods were optimized for
performance and that we run the methods in different environment because of
technical requirements.
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IoU, % Time #P

CHD [2] 64 10 s 994
FvS [3] 74 17.5 m 433
PVF [1] 91 25 h 43k

Our, w/o final merging 68 35 s 2108
Our, w/o final merging 75 50 s 2106
Our, w/o final merging 91 5.5 m 1502

Our, w/o final merging, converged 92 12 m 1435
Our, with final merging 76 26 m 579

Table 1: IoU, computation time, and number of primitives for the results on the
Globe (Figure 9) produced by the prior work, for intermediate results of our
method with similar values of IoU, and for our final result.

E Prior work on patches

The main steps of our vectorization system, the primitive extraction network
and refinement, operate on small patches of the image, while the methods that
we compare with operate on whole images. To demonstrate that our method
outperforms these ones not only because of this divide-and-merge strategy, in
Figure 6 we show example outputs of these methods applied to small patches in
comparison to the respective patches cut from the results on whole images.

The methods of [1,2] produce similar results on small patches and whole
images, as expected since they use local operations. The method of [3] produces
worse results on patches.

F Generalization to cartoon drawings

Figure 7 shows the results produced by our system on clean cartoon drawings.
Here we used the version operating on curves, with the neural networks trained
on technical drawings.

Our system produces reasonable results, although the predictions of the prim-
itive extraction network are qualitatively less accurate than in case of technical
drawings that we focused on. A proper extension of our system to a different
kind of drawings would require (1) the corresponding training dataset for the
primitive extraction network, and (2) in case of rough sketches, either a proper
training dataset with clean targets for the preprocessing cleaning step, or signif-
icant changes of the refinement step.

G Additional results

In this section, we show more qualitative comparisons on test set for both PFP
in Figure 8 and ABC in Figure 9 datasets and on real data in Figure 10.



Deep Vectorization of Technical Drawings 7

FvS [3] CHD [2] PVF [1] GT / Our method

O
n

p
a
tc

h
O

n
fu

ll
im

a
g
e

FvS [3] CHD [2] PVF [1] GT / Our method

O
n

p
a
tc

h
O

n
fu

ll
im

a
g
e

Fig. 6: Results of the prior work on small patches and the respective patches
cut from the results on whole images. Endpoints of the primitives are shown in
orange. The whole images are shown at the top of Figure 8 and in Figure 6 from
the main text.

H Qualitative ablation study

In this section, we show qualitative results obtained using our system with the (a)
full model without refinement and post-processing steps, (b) full model without
post-processing, (c) full model. You can see this comparison on ABC dataset in
Figure 11 and Figure 12.
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Fig. 7: Qualitative results of our system on clean cartoon drawings. Endpoints
of primitives are shown in orange.
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Fig. 8: Qualitative comparison on PFP images, and values of metrics IoU / dH

/ dM / #P with best in bold. Endpoints of the primitives are shown in orange.
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Fig. 9: Qualitative comparison on ABC images, and values of IoU / dH / dM /
#P metrics, with the best result in boldface. The endpoints of primitives are
shown in orange.
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Fig. 10: Qualitative comparison on real noisy images, and values of metric IoU /
#P with best in bold. Primitives are shown in blue with the endpoints in orange
on top of the cleaned raster image.
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Fig. 11: Qualitative comparison on ABC images, and values of IoU / dH / dM /
#P metrics, with the best results shown in boldface. The endpoints of primitives
are shown in orange.
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Fig. 12: Qualitative comparison on ABC images, and values of metrics IoU / dH

/ dM / #P with best in bold. Endpoints of the primitives are shown in orange.
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I Details on refinement algorithm

I.1 Overall idea

The underlying idea in our approach is to use interaction potentials, qualita-
tively similar, e.g ., to electrostatic interaction, to construct our optimization
functionals. Fixed charges are associated with filled pixels, and moving charges
to the points on primitives. Primitives and filled pixels of the raster image are
assigned charges of different signs: negative for pixels and positive for primitives.
As a consequence, primitives and filled pixels and are attracted, and primitives
repulse other primitives. Internal charges push primitives to expand, because
their internal charges are repulsing each other. A number of modifications need
to be made to this general approach to avoid undesirable minima.

The interaction energy of two charges at points r1, r2 is given by

q1q2ϕ (‖r1 − r2‖) , (3)

where q1, q2 are signed charges, and ϕ (r) is the interaction potential of two
charges at the distance r from each other. The standard 3D electrostatic potential
is 1

r ; we replace it by an exponentially decaying potential as explained at the
end of this section. The total energy is obtained by summation/integration over
all charge pairs.

Energy. We split our energy into three parts: primitive-pixel interactions,
interactions between distinct primitives and interaction between charges inside
the same primitive. As the charges at pixels do not move, their interactions with
each other can be ignored.

E =
∑

kprim,ipix

Eprim,pix
kprim,ipix

+
∑

kprim<jprim

Eprim,prim
kprim,jprim

+
∑
kprim

Eprim
kprim

. (4)

Three parts of the energy have the following form:

Eprim,pix
kprim,ipix

= −q̂ipix
∫∫

Ωkprim

ϕ
(
‖r − ripix‖

)
dr2, (5)

where q̂ipix
is the pixel intensity, ripix andΩkprim domain covered by the primitive;

Eprim,prim
kprim,jprim

=

∫∫
Ωkprim

∫∫
Ωjprim

ϕ (‖r1 − r2‖) dr21dr22; (6)

and

Eprim
kprim

=
1

2
Eprim,prim
kprim,kprim

=
1

2

∫∫
Ωkprim

∫∫
Ωkprim

ϕ (‖r1 − r2‖) dr21dr22. (7)
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Energy properties. Observe that pixel-primitive interaction is negative and
decays (increases in magnitude) as primitive get close to a pixel, and also de-
creases as a primitive increase in size (more coverage is good). Primitive-primitive
interaction energy is positive, decreases as the primitives move apart and also
as the size of the primitives decreases. Finally, the self-interaction energy of a
primitive is positive, does not depend on the primitive position and decreases if
the primitive shrinks.

I.2 Mean-field-based optimization

For optimizing the energy efficiently, we use an approach based on a standard
approach in the mean-field theory: the interactions between particles are viewed
as individual interactions with a mean field, which is then updated using updated
particle positions.

The basic gradient descent update of αth parameter of kth primitive is:

θk,α ← θk,α − λ
∂E

∂θk,α
. (8)

We split the primitive parameters into size and position parameters and spell
out the derivatives explicitly in each case, highlighting in blue the parts of the
expressions that depend on the primitive.

∂

∂θ
{pos,size}
k,α

∑
kprim,ipix

Eprim,pix
kprim,ipix

= ∂
∑
ipix

Eprim,pix
k,ipix

=

−
∑
ipix

q̂ipix∂

∫∫
Ωk

ϕ
(
‖r − ripix‖

)
dr2,

(9)

∂

∂θ
{pos,size}
k,α

∑
kprim<jprim

Eprim,prim
kprim,jprim

= ∂
∑

jprim 6=k

Eprim,prim
k,jprim

=

∂

∫∫
Ωk

∑
jprim 6=k

∫∫
Ωjprim

ϕ (‖r1 − r2‖) dr21dr22,
(10)

∂

∂θposk,α

∑
kprim

Eprim
kprim

= 0, (11)

∂

∂θsizek,α

∑
kprim

Eprim
kprim

= ∂Eprim
k =

1

2
∂

∫∫
Ωk

∫∫
Ωk

ϕ (‖r1 − r2‖) dr21dr22 +
1

2
∂

∫∫
Ωk

∫∫
Ωk

ϕ (‖r1 − r2‖) dr21dr22 =

∂

∫∫
Ωk

∫∫
Ωk

ϕ (‖r1 − r2‖) dr21dr22,

(12)
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The complete expressions for the energy derivatives with respect to positional
parameters are:

∂E

∂θposk,α

= ∂
∑
ipix

Eprim,pix
k,ipix

+ ∂
∑

jprim 6=k

Eprim,prim
k,jprim

=

∂

∫∫
Ωk

 ∑
jprim 6=k

∫∫
Ωjprim

ϕ (‖r − r1‖) dr21 −
∑
ipix

q̂ipixϕ
(
‖r − ripix‖

) dr2. (13)

For size parameters, we obtain the following expression

∂E

∂θsizek,α

= ∂
∑
ipix

Eprim,pix
k,ipix

+ ∂
∑
jprim

Eprim,prim
k,jprim

=

∂

∫∫
Ωk

∑
jprim

∫∫
Ωjprim

ϕ (‖r − r1‖) dr21 −
∑
ipix

q̂ipixϕ
(
‖r − ripix‖

) dr2, (14)

where jprim ranges over all primitives including k
We can interpret these derivatives as derivatives of a different function

E∗ =
∑
k

Epos
k + Esize

k . (15)

with terms defined below. Each term corresponds to particular parameters of
one of the primitives, and can be viewed as the interaction energy of the prim-
itive with a background charge distribution defined by all primitives at a given
instance in time.

Ek (q) =

∫∫
S

q (r1)

∫∫
Ωk

ϕ (‖r1 − r2‖) dr22dr21, (16)

Epos
k = Ek (qposk )|

θsize
k =const

, Esize
k = Ek

(
qsizek

)∣∣
θpos
k =const

, (17)

qposk (r) =
∑

jprim 6=k

1
[
r ∈ Ωjprim

]
−
∑
ipix

q̂ipixδ
(
r − ripix

)
, (18)

qsizek (r) =
∑
jprim

1
[
r ∈ Ωjprim

]
−
∑
ipix

q̂ipixδ
(
r − ripix

)
, (19)

where 1 [ · ] is the Iverson bracket, and δ is the delta-function.
Expressions (15)-(19) provide the physics-based foundation for our optimiza-

tion: at every step, we use the new form of the energy terms to obtain the gradi-
ents using automatic differentiation; the “frozen” parts of each term are updated
after parameter update at every step. In this initial form, the functional has a
number of undesirable properties for our application; we make several modifica-
tions described in the next section.
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I.3 Discretization and functional modifications

Discretization. While for simple primitives the integrals in (15)-(19) can be
computed explicitly, we simplify the problem by using discrete charges instead
of continuous distributions.

The expression (15) becomes equation (8) from the submission.∫∫
S

q (r1)

∫∫
Ωk

ϕ (‖r1 − r2‖) dr22dr21 −→
∑
ipix

qipix

∫∫
Ωk

ϕ
(
‖r − ripix‖

)
dr2. (20)

Expressions (18) and (19) become∫∫
S

1 [r ∈ Ωk] f (r) dr2 −→
∑
ipix

qk,ipixf
(
ripix

)
, (21)

∫∫
S

∑
ipix

q̂ipix
δ
(
r − ripix

)
f (r) dr2 −→

∑
ipix

q̂ipixf
(
ripix

)
, (22)

qposk (r) −→ qposk,ipix
=

∑
jprim 6=k

qjprim,ipix − q̂ipix , (23)

qsizek (r) −→ qsizek,ipix =
∑
jprim

qjprim,ipix − q̂ipix , (24)

where q̂ipix
is the coverage of the ipix

th raster image pixel, and qkprim,ipix is the

coverage of the kprim
th primitive in ipix

th pixel.

Raster Primitives qpos
1 qsize

1

Fig. 13: Raster, primitives and charge grids of the first primitive. First primitive
in blue, second in orange. In charge grids red represents excess charge.

Charge saturation. The charge distributions qpos
k =

{
qposk,ipix

}
ipix

, qsize
k ={

qsizek,ipix

}
ipix

are excess or insufficient charges that need to be compensated by
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Raster Primitives qpos
1 qsize

1

Fig. 14: Overlap affection on other primitives. First primitive in blue, second in
orange. In charge grids red represents excess charge.

changing the kth primitive. The energy terms corresponding to a primitive should
not be affected by how many primitives cover a particular filled area. For ex-
ample, in Figure 13, the second primitive covers the filled part of the raster
perfectly, and this area does not affect the placement and size of the first prim-
itive. Figure 14, the second and third primitives are covering the area equally
well, but because of the overlap, the sum of their charges is higher than the
negative charge of the raster image, and this creates a force acting on the first
primitive.

To avoid the excess charge, we replace the sum of the charges with the max-
imum, leading to the following modification:

qposk,ipix
= q−k,ipix − q̂ipix , (25)

qsizek,ipix = qipix − q̂ipix , (26)

where qipix
is the sum of coverages of ipix

th pixel for all primitives, and q−k,ipix
is the same sum with kth primitive excluded.

Compared to (23), (24), modified charge distributions (25), (26) do not pe-
nalize overlaps.

Illustrative examples. Next, we consider several examples illustrating the
behavior of the functional, which also help us to explain the modifications we
make.
An isolated primitive.

For a single primitive (Figure 15 ) the position energy term is constant and
does not depend on the parameters, so it would not move. The size energy term
becomes lower with size: the primitive collapses to a point.
Primitive separated from the filled areas of the raster image. For a single prim-
itive sufficiently far from the filled part of the image (Figure 16) the energy
is decreasing if the primitive moves to the raster due to the second term in
(25). If the primitive shrinks, the first term in (26) decreases and the second
term increases. However, as we use fast-decaying potentials, we can neglect the
interactions with distant charges, and overall the energy favors size reduction.
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Fig. 15: Single primitive collapse. In charge grids red represents excess charge.
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Fig. 16: Primitive interaction with far raster filled part. In charge grids red rep-
resents excess charge and blue represents uncovered raster.

A primitive close to a raster image. If a primitive is close to a filled part of
the raster it will get aligned to the filled pixels, if these form a line and will
increase in size until it covers the filled area (Figure 17) If we add additional
filled pixels or other primitives at a distance, due to potential decay, they will
have a minimal effect on the behavior.

Primitive aligned with a filled part of the primitive. In this case, the potentials
from the raster image and the first primitive compensate each other, and the
second primitive will not be affected by either, as in scenario of I.3.
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Fig. 17: Primitive interaction with close raster filled part. In charge grids red
represents excess charge and blue represents uncovered raster.

Enabling primitive intersections. Consider the case in Figure 18. In this
case,it would be desirable for the second primitive to cover the entire horizontal
line, but this will not happen, as the second primitive, with the original energy
formulation will remain close to its initial state. Primitive 1 instead of expanding
will not change much either, as primitive 2 prevents its expansion.

To achieve the desired effect, i.e., expansion of the second primitive, we mod-
ify qpos

k as follows:

qposk,ipix
= qipix − qk,ipix − q̂ipix . (27)

With this definition, the primitive interacts with pixels covered by other primi-
tives, which allows it to expand across already filled areas, as in Figure 19

Penalty for overlapping collinear primitives Erdn
k . By itself, (27) allows

not just transversal intersections, but also aligned primitives covering the same
area (Figure 20). We add an additional penalty Erdn

k to avoid this. This term
is also based on the interaction of the primitive with a background charge ex-
cess/deficiency, in this case, created by nearby primitives with tangents close
to its tangent at close points. We define this term for segments first, and then
generalize to curves.
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Fig. 18: Primitives interaction with disable primitive intersections. In charge
grids red represents excess charge and blue represents uncovered raster.

Collinear penalty for line segments. For a system of two segments k and j
we define it as

Erdn
k = Ek

(
qrdn
k

)∣∣
close ϕ(r),θpos

k =const
, (28)

qrdnk,ipix
= qj,ipix exp

(
− (|lk · lj | − 1)

2

(|cosαcol| − 1)
2

)
, (29)

where close ϕ (r) means that we truncate the interaction at a fixed radius ϕ (r|r > r∗) =
0, as explained below, and charges qrdnk,ipix

are defined by jth primitive weighted by
the cosine of the angle between segment directions, lk, lj , and αcol is a threshold
angle for collinearity detection.
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Fig. 19: Primitives interaction with enabled primitive intersections. In charge
grids red represents excess charge and blue represents uncovered raster.

Raster Primitives qpos
1 qsize

1

Fig. 20: Primitives covering the same area.

For many segments, we define the charges as

qrdnk,ipix
= ‖mk,ipix‖ exp

(
−
(
|lk ·mk,ipix | − 1

)2
(|cosαcol| − 1)

2

)
, (30)

where mk,ipix
=
∑
j 6=k ljqj,ipix

is the sum of directions of all the other primitives
weighted w.r.t. the mean direction of other primitives.



Deep Vectorization of Technical Drawings 23

Collinearity penalization for curved segments. For curves, we use a similar
idea, but need to use a different direction for every pixel, lk,i

qrdnk,ipix
= ‖mk,ipix‖ exp

(
−
(
|lk,ipix ·mk,ipix | − 1

)2
(|cosαcol| − 1)

2

)
,

mk,ipix =
∑
j 6=k

lk,ipixqj,ipix .

(31)

This definition reduces to the definition for segments if the curve is straight.
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Fig. 21: Undesirable local minimum in which a primitive covers two disconnected
raster parts.

Connected area mask. Consider the example in Figure 21 (a). Clearly the po-
sition and width of the primitive cannot be changed so that the energy decreases.
Same is true for length: If the length increases or decreases (Figure 21 (b,c)), a
counteracting force immediately appears because of the charge excess or deficit.
We conclude that this is a local minimum, but clearly not a desirable solution.
To reduce the chances of a primitive getting stuck in such a minimum, we limit
the interaction of the primitive with the raster to the part that it can cover for
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its current position and orientation, but arbitrary size. To be more precise, for
line segments (Figure 22), for a fixed position and orientation, we find unfilled
pixels along the line of the segment closest to its center, determining the length
of the area. Once this is determined, then we find unfilled pixels closest to the
line of the segment on two sides. This determines the rectangle for which the
mask coefficient ck,ipix

is set to one, and for the rest of the image to zero.

Fig. 22: Stages of ck,ipix calculation.

For second order Bézier curves, we use a similar definition. Instead of a line
we use a parabola containing the Bézier segment, and the distance along the
parabola instead of the Euclidean distance.

The charge distribution for the size terms of the energy is redefined as follows

qsizek,ipix
=

{
qipix − q̂ipix if ck,ipix = 1,

qk,ipix if ck,ipix = 0.
(32)

Connected area mask for positional terms. If we use the same masks
for the charges used for the positional terms qposk,ipix

eliminating the influence of
everything outside the area where ck,ipix is positive, then the primitive will stay
within the filled area they initially overlap, which may be undesirable if the
initial position is inaccurate, or multiple primitives initially cluster in the same
place. For this reason, we only amplify the charge in the masked area leaving it
the same outside:

qposk,ipix
=

{
λpos

(
qipix − qk,ipix − q̂ipix

)
if ck,ipix = 1,

qipix
− qk,ipix − q̂ipix if ck,ipix = 0,

(33)

The amplification coefficient λpos is chosen empirically.

The choice of the potential function. The main property of the potential
function ϕ (r) used in our algorithm is rapid monotonic decrease with distance.
We use the function

ϕ (r) = e
− r2

R2
c + λfe

− r2

R2
f , (34)

which allows us to control interactions at close range ∼ Rc independently from
interactions at far range∼ Rf . We choose these ranges and the weight experimen-
tally Rc = 1 px, Rf = 32 px, λf = 0.02, and in Erdn

k disable the far interactions
by setting λf = 0.
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