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A Statistics on the used datasets

In Tables 4 & 5, we summarize statistical information on the number of in-
stances and categories considered in our evaluation. As we require parts annota-
tions as an important ingredient in our deformation, we only select instances in
Scan2CAD [5] where the associated parts annotation in PartNet [31] is available,
resulting in total in 9 categories (25%), 572 instances (18%), and 1979 annotated
correspondences (14%). Note that the vast majority of cases remain within our
consideration, keeping our evaluation comprehensive.

Collection Categories Instances Corresp.

Scan2CAD [5] 35 3,049 14,225
w/parts annotations 24 2,477 12,246

Table 4: Overall statistics on the numbers of categories, instances, and correspon-
dences present in our datasets.

We further select the most well-presented six shape categories as our core
evaluation set, outlined in Table 5. Note that as our method is non-learnable,
we can just as easily experiment with the remaining categories, at the cost of
somewhat reduced statistical power.

B Optimization details

Our full experimental pipeline is a sequence of deformation stages with differ-
ent optimization parameters, and Hessian being recomputed before each stage.
Specifically, we perform one part-to-part optimization with parameters αshape =
1, αsmooth = 0, αsharp = 0, αdata = 5 × 104 for 100 iterations, then we per-
form 5 runs of nearest-neighbor deformation for 50 iterations with parameters
αshape = 1, αsmooth = 10, αsharp = 10, αdata = 103. Such number of iterations was
sufficient to achieve convergence with energy changes less than 10−1 in our exper-
iments. Runtime of our method breaks into cost computation (∼0.3 s), backward
(∼0.2 s), and optimization steps containing the main bottleneck (sparse matrix-
vector multiplication) (∼1.2 s) for a typical 104 vertices mesh. All operations can
be easily further optimized.

C Qualitative fitting results

In Figure 6, we display a series of qualitative results with a variety of shape
deformations with different classes of instances. Comparing to baselines, our
framework achieves accurate fit while preserving sufficient perceptual quality.
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Name
Scan2CAD PartNet ∩ Scan2CAD

corresp. shapes corresp. shapes

Shape categories used in our evaluation:
chair 4677 652 4351 632
table 2616 830 2594 822
cabinet 1401 310 1258 294
trash bin 1044 89 1042 88
bookshelf 824 150 812 145
display 770 165 762 161

Shape categories NOT used in our evaluation:
bed 355 50 342 47
file cabinet 294 70 290 68
bag 165 9 165 9
lamp 135 55 135 55
bathtub 474 96 129 25
microwave 99 37 98 36
sofa 577 247 60 20
laptop 51 24 51 24
keyboard 62 11 48 9

Table 5: The top 15 most frequent ShapeNet categories in Scan2CAD dataset includ-
ing a detailed information on those with the availability of the corresponding parts
annotations.

Method bookshelf cabinet chair display table trash bin other class avg. avg.

ARAP 52.48 41.77 45.52 51.30 41.77 57.00 39.75 47.08 45.67
Harmonic 64.77 58.74 68.06 64.22 58.26 80.13 61.70 65.12 65.18

Ours: NN only 21.54 23.39 7.31 18.37 18.69 18.13 16.07 17.64 14.14
Ours: p2p only 22.44 24.28 9.51 21.12 18.76 15.30 18.34 18.54 15.57
Ours: w/o smooth 27.15 29.27 14.50 27.05 24.48 24.39 23.26 24.30 20.95
Ours: w/o sharp 26.43 25.98 13.34 24.87 22.47 21.04 21.18 22.19 19.10
CAD-Deform 24.8 24.1 11.4 24.4 21.6 19.4 17.6 20.5 17.2

Table 6: Quantitative results of local surface quality evaluation using DAME mea-
sure [41] (the smaller, the better, normalized to a maximum score of 100), where our
CAD-Deform compares favourably to the baselines across all considered categories.
Note, however, how surface quality significantly decreases when smoothness and sharp
feature-related terms are dropped.

Table 6 reports the results of surface quality evaluation using deformations
obtained with our CAD-Deform vs. the baselines, category-wise. While outper-
forming the baseline methods across all categories, we discover the smoothness
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EMD ×10−3 bookshelf cabinet chair display table trash bin class avg. avg.

Ground-truth 77.8 78.9 76.1 77.5 77.3 73.1 76.8 77.0

ARAP [38] 80.3 86.5 88.5 85.4 86.8 98.1 87.6 87.3
Harmonic [7,26] 94.0 110.6 95.8 95.3 103.2 122.6 103.6 101.7
CAD-Deform 79.0 81.1 80.3 91.7 87.0 87.4 84.4 83.8

Table 7: Results of LSLP-GAN reconstruction in terms of Earth-Mover’s Distance
between reconstructed and original point clouds of mesh vertices.

and sharpness energy terms to be the crucial ingredients in keeping high-quality
meshes.

Figure 7 displays visually the deformation results using the three distinct
classes, highlighting differences in surfaces obtained using the three methods.

Table 7 reports shape abnormality evaluation results across the six considered
categories. Baselines show (Fig. 8) low reconstruction quality as evidenced by a
larger number of black points. In other words, comparing to CAD-Deform, the
distance from these meshes to undeformed ones is mush larger.

In Figure 9, we show a series of examples for CAD-Deform ablation study.
Perceptual quality degrades when excluding every term from the energy.

D Morphing

In this section, we present an additional series of examples of morphing properties
(Fig. 10). Every iteration of optimization process gradually increases the quality
of fit. With CAD-Deform we can morph each part to imitate the structure of
the target shape.

E PartNet annotation

Accuracy, % class avg. avg.

Ground-truth 89.22 90.56
Level 1 (object) 89.25 90.79
Level 2 89.16 91.21
Level 3 89.40 91.05
Level 4 (parts) 91.65 93.12

Table 8: Comparative evaluation of our approach in terms of Accuracy on different
levels of detail.

This set of experiments shows how quality of fitting depends on mesh vertices
labelling. We can provide labels for mesh in diffirent ways depending on the level
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in PartNet hierarchy [31]. We observe the increase of fitting quality with greater
level of detail (Table 8). Examples presented in Figure 11 are selected as the
most distinguishable deformations on different levels. There are minor visual
differences in deformation performance of part labeling level.

F Fitting Accuracy analysis

CAD-Deform deformation framework is sensitive to Accuracy threshold τ for the
distance between mesh vertices and close scan points. In Figure 12 variation of
τ threshold is presented and we selected τ = 0.2 m for fitting Accuracy metric.

G Perceptual assessment and user study details

Having obtained a collection of deformed meshes, we aim to assess their visual
quality in comparison to two baseline deformation methods: as-rigid-as-possible
(ARAP) [38] and Harmonic deformation [7,26], using a set of perceptual quality
measures. The details of our user study design and visual assessment are pro-
vided in the supplementary. To this end, we use original and deformed meshes
to compute DAME and reconstruction errors, as outlined in Section 6.1, and
complement these with visual quality scores obtained with a user study (see be-
low). These scores, presented in Table 3, demonstrate that shapes obtained using
CAD-Deform have 2× higher surface quality, only slightly deviate from unde-
formed shapes as viewed by neural autoencoders, and receive 2× higher ratings in
human assessment, while sacrificing only 1.1–4.5 % accuracy compared to other
deformation methods.

Design of our user study. The users were requested to examine renders of
shapes from four different categories: the original undeformed shapes as well
as shapes deformed using ARAP, Harmonic, and CAD-Deform methods, and
give a score to each shape according to the following perceptual aspects: surface
quality and smoothness, mesh symmetry, visual similarity to real-world objects,
and overall consistency. Ten random shapes from each of the four categories have
been rendered from eight different views and scored by 100 unique users on a
scale from 1 (bad) to 10 (good). The resulting visual quality scores are computed
by averaging over users and shapes in each category.

In Figure 13, we present a distribution of user scores over different deforma-
tion methods and shapes. It can be clearly seen that users prefer our deformation
results to baselines for all of the cases, which is obvious from the gap between
histogram of CAD-Deform and ARAP/Harmonic histograms. At the same time,
shapes deformed by CAD-Deform are close to undeformed ShapeNet shapes in
terms of surface quality and smoothness, mesh symmetry, visual similarity to
real-world objects, and overall consistency. Besides, in Tables 9, 10 we provide
numbers for evaluation of ARAP/Harmonic deformations w.r.t. the change of
Laplacian term weight.
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Lap. term Class avg. Instance avg.
weight GT S2C [5] E2E [6] GT S2C [5] E2E [6]

αLap = 10−2 90.9 81.3 90.0 92.0 80.9 90.8
αLap = 10−1 91.0 81.3 90.0 92.0 80.9 90.7
αLap = 1 91.0 81.3 89.9 91.9 80.9 90.7
αLap = 5 90.9 81.2 89.9 91.9 80.9 90.7
αLap = 20 90.9 81.2 89.9 91.8 80.8 90.6

Table 9: Comparative evaluation of ARAP deformations w.r.t. the change of Laplacian
term weight in terms of Accuracy (%).

Lap. term Class avg. Instance avg.
weight GT S2C [5] E2E [6] GT S2C [5] E2E [6]

αLap = 10−2 96.3 94.3 96.6 96.7 94.5 96.9
αLap = 10−1 96.3 94.2 96.6 96.7 94.4 96.9
αLap = 1 96.3 94.2 96.6 96.7 94.2 96.9
αLap = 5 96.2 94.0 96.6 96.6 94.0 96.8
αLap = 20 96.2 93.8 96.5 96.6 93.8 96.7

Table 10: Comparative evaluation of Harmonic deformations w.r.t. the change of
Laplacian term weight in terms of Accuracy (%).
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Fig. 6: Qualitative shape deformation results using obtained using ARAP [38], Har-
monic deformation [7,26], and our CAD-Deform. Mesh surface is colored according to
the value of tMMD measure, with darker values corresponding to the larger distance
values.
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Fig. 7: Qualitative comparison of deformations obtained using ARAP [38], Harmonic
deformation [7,26], and our CAD-Deform, with shapes coloured according to the value
of DAME measure [41]. Our approach results in drastic improvements in local surface
quality, producing higher-quality surfaces compared to other deformations.
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Fig. 8: Qualitative comparison of reconstruction of point clouds extracted from mesh
vertices. These meshes are obtained using ARAP [38], Harmonic deformation [7,26],
and our CAD-Deform, the first column corresponds to original undeformed meshes.
The color of reconstructed point clouds is related to Earth-Mover’s Distance between
reconstructed and original point clouds of mesh vertices.
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Fig. 9: Qualitative results of ablation study usind our deformation framework, with
mesh coloured according to the value of the tMMD measure.
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Fig. 10: Qualitative shape translation results, interpolating between the original mesh
(left) and the target mesh (right).



28 V. Ishimtsev, A. Bokhovkin et al.

Fig. 11: Deformation performance depending on different level of labelling from the
PartNet dataset [31]. Deformed mesh surfaces are colored according to the value of
tMMD measure, with darker values corresponding to the larger distance values.
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Fig. 12: Fitting Accuracy vs. varying τ threshold for the distance between mesh ver-
tices and close scan points.

Fig. 13: Distribution of user scores averaged by ten shapes from original ShapeNet [9],
meshes deformed with ARAP [38], Harmonic [7,26] and CAD-Deform.


