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Abstract. Shape retrieval and alignment are a promising avenue to-
wards turning 3D scans into lightweight CAD representations that can
be used for content creation such as mobile or AR/VR gaming scenar-
ios. Unfortunately, CAD model retrieval is limited by the availability of
models in standard 3D shape collections (e.g ., ShapeNet). In this work,
we address this shortcoming by introducing CAD-Deform1, a method
which obtains more accurate CAD-to-scan fits by non-rigidly deforming
retrieved CAD models. Our key contribution is a new non-rigid defor-
mation model incorporating smooth transformations and preservation
of sharp features, that simultaneously achieves very tight fits from CAD
models to the 3D scan and maintains the clean, high-quality surface prop-
erties of hand-modeled CAD objects. A series of thorough experiments
demonstrate that our method achieves significantly tighter scan-to-CAD
fits, allowing a more accurate digital replica of the scanned real-world
environment while preserving important geometric features present in
synthetic CAD environments.
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1 Introduction

A wide range of sensors such as the Intel RealSense, Google Tango, or Microsoft
Kinect can acquire point cloud data for indoor environments. These data can
be subsequently used for reconstructing 3D scenes for augmented and virtual
reality, indoor navigation and other applications [25,32,33,42,40,12]. However,
available 3D reconstruction algorithms are not sufficient for many applied sce-
narios as the quality of the result may be significantly affected by noise, missing
data, and other artifacts such as motion blur found in real scans, disabling recon-
struction of fine-scale and sharp geometric features of objects. In most instances,
reconstructions are still very distant from the clean, 3D models created manually.

An approach to overcome these problems has been proposed in [36,30] and
more recently developed using modern ML methods in [5,6]. Building on the

? equal contribution
1 The code for the project: https://github.com/alexeybokhovkin/CAD-Deform

https://github.com/alexeybokhovkin/CAD-Deform


2 V. Ishimtsev, A. Bokhovkin et al.

Fig. 1: CAD-Deform takes as input a set of 3D CAD models aligned on a RGB-D scan
(left). In order to achieve tight fits (middle), we propose a novel part-based deformation
formulation that maintains the desired CAD properties such as sharp features.

availability of parametric (CAD) models [9,27] they perform reconstruction by
finding and aligning similar CAD models from a database to each object in a
noisy scan. To realize this approach, the authors of [5] introduced the Scan2CAD
dataset comprising of pairwise keypoint correspondences and 9 DoF (degrees of
freedom) alignments between instances of unique synthetic models from ShapeNet
[9] and reconstructed scans from ScanNet [11]; in order to find and align CAD
models to an input scan, they developed a deep neural model to predict corre-
spondences, with a further optimization over potential matching correspondences
for each candidate CAD model. The difference of [6] compared to the approach
from [5] is an end-to-end procedure, combining initially decoupled steps to take
into account additional feedback through the pipeline by learning the correspon-
dences specifically tailored for the final alignment task.

However, geometric fidelity achieved between scans and CAD objects re-
mains limited. CAD model geometry (clean and complete) differs significantly
from scan geometry in low-level geometric features. As these methods focus on
finding alignments by optimizing a small number of parameters (9 DoF), result-
ing alignments only roughly approximate scans, not capturing geometric details
such as variation in 3D shapes of parts of individual objects.

In contrast, to improve geometric fidelity while keeping the benefit of mesh-
based representations, we propose to increase the number of degrees of freedom
by allowing the CAD objects to deform rather than stay rigid. In this work, we
introduce a deformation framework CAD-Deform, which significantly increases
the geometric quality of object alignment regardless of the alignment scheme.
For an input scan, given object location and 9 DoF alignment of a potentially
matching CAD model, we apply a specially designed mesh deformation proce-
dure resulting in a more accurate shape representation of the underlying object.
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The deformation matches each semantic part of a 3D shape extracted from the
PartNet [31] to the corresponding data in the scans and keeps sufficient rigidity
and smoothness to produce perceptually acceptable results while minimizing the
distance to scanned points. Thus, even if the initial location and alignment are
not entirely accurate, the deformation can compensate to a significant extent for
the discrepancy.

Our approach builds highly detailed scene descriptions with a high level of
semantic accuracy for applications in 3D graphics. The approach outperforms
state-of-the-art methods for CAD model alignment and mesh deformation by
2.1–6.3% for real-world 3D scans. To the best of our knowledge, the approach
we propose is the first to use mesh deformation for scan-to-CAD alignment and
real-world scene reconstruction. In summary, our work has several contributions:

– We developed a mesh deformation approach that 1) is computationally ef-
ficient, 2) does not require exact correspondences between each candidate
CAD model and input scan, and 3) provides perceptually plausible defor-
mation thanks to a specially introduced smoothness term and inclusion of
geometric features of a CAD model in the optimization functional.

– We developed a methodology to assess the fitting accuracy and the percep-
tual quality of the scan-to-CAD reconstruction. The methodology includes
standard data fitting criteria similar to Chamfer distance to evaluate align-
ment accuracy, complimentary local and global criteria for visual quality
assessment of resulting deformations, and a user study.

– We performed an ablation study to assess the influence of inaccuracies in
the initial object location and alignment on the final reconstruction results.
For that we used both ground-truth alignments from Scan2CAD dataset [5]
along with predictions of their method, and alignments trained in the end-
to-end fashion [6]. We compared results with the state-of-the-art methods
for mesh deformation to highlight the advantages of our approach.

2 Related work

RGB-D scanning and reconstruction. RGB-D scanning and reconstruction are
increasingly widely used, due to the availability of commodity range sensors
and can be done both in real-time and offline modes. There are many meth-
ods for RGB-D-based real-time reconstruction such as KinectFusion [25], Voxel
Hashing [33] or Bundle Fusion [12] that use the well-known volumetric fusion
approach from [10]. ElasticFusion [42] is a representative offline approach to the
reconstruction. These methods can produce remarkable results for large 3D envi-
ronments. However, due to occlusions and imperfections of existing sensors, the
reconstructed scenes contain many artifacts such as noise, missing surface parts,
or over-smooth surfaces. Some methods aim to predict unobserved or corrupted
parts of 3D scans from depth data. In [18], the world is modeled as a grid of
voxels representing the signed distance to the nearest surface. Then structured
Random Forest is used to predict the value of the signed distance function for
each of the voxels computed to form a final occupancy estimate for unobserved
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voxels. [37] is to encode a depth map as a 3D volume and then aggregate both
local geometric and contextual information via a 3D CNN to produce the prob-
ability distribution of voxel occupancy and object categories for all voxels inside
the camera view frustum. Another approach is [13], where a 3D CNN architec-
ture predicts a distance field from a partially-scanned input and finds the closest
3D CAD model from a shape database. By copying voxels from the nearest shape
neighbors, they construct a high-resolution output from the low-resolution pre-
dictions, hierarchically synthesize a higher-resolution voxel output, and extracts
the mesh from the implicit distance field. However, although all these methods
can complete partial scans and improve 3D geometry reconstruction, the quality
of the results still is far from artist-created 3D content.

CAD model alignment. Instead of reconstructing 3D geometry in a bottom-
up manner, one can perform reconstruction by retrieving CAD models from a
dataset and aligning them to the noisy scans. Matching CAD models to scans
requires extracting 3D feature descriptors; thus, approaches have been proposed
for 3D feature extraction. Hand-crafted features are often based on various his-
tograms of local characteristics (e.g ., [16]). Such approaches do not generalize
well to inherent variability and artifacts in real-world scans. Deep learning ap-
proaches lead to further improvements: e.g ., [43] propose a view consistency
loss for a 3D keypoint prediction network based on RGB-D data; [14] develop
3D local learnable features for pairwise registration. After the descriptors are
extracted, one can use a standard pipeline for CAD-to-scan alignment: first,
matches between points based on 3D descriptors are identified, and then varia-
tional alignment is used to compute 6- or 9-DoF CAD model alignments. Typical
examples, realizing this two-step approach, are described in [36,30,28,5,6]. The
most recent ones [5,6] use learnable descriptors and differ in that the latter con-
siders an end-to-end scan-to-CAD alignment, reconstructing a scene in a single
forward pass. An obvious limitation of these two-step pipelines is that the re-
sulting alignments approximate scans only coarsely due to a pre-defined set of
available CAD models and a highly constrained range of transformations. Other
approaches in this category [4,21,22], although relying on the same two-step
strategy, use only a single RGB or RGB-D input.

Mesh deformation. To improve surface reconstruction accuracy and obtain a
more faithful description of geometric details (e.g ., preserve distinctive geomet-
ric features), it is desirable to consider a more general space of deformations than
a simple non-uniform scaling. To this end, a mesh deformation approach based
on Laplacian surface editing is presented in [39]. Another iterative mesh defor-
mation scheme [38] imposes rigidity on the local transformations. Despite their
conceptual simplicity, both methods require specifying correspondences between
mesh vertices and scan data points. The same is true for [29,1,3] and unsuitable
in our setting, due to extremely low (2–8) number of correspondences available
per part, that additionally may not even be well defined for noisy and incomplete
real-world scans. Many methods [1,8,34,15] focus on automatic posing of human
models, dense surface tracking and similar applications. However, while produc-
ing compelling results, the methods implicitly use the assumption that a tem-
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plate mesh and its target shape are very similar; as a result, the semantic parts
of individual 3D objects are not changed either in shape or relative scale. In our
work, we are comparing to ARAP (as-rigid-as-possible) [38] and Harmonic [7,26]
mesh deformation methods, however, with an added Laplacian smoothing term
to leverage second-order information about the surface. This modification makes
ARAP/Harmonic similar to [1,29] as far as non-data-dependent energy terms are
concerned. Other methods exist that propose non-linear constraints [23,20,19].
The energy terms of our framework were designed as a natural match for our
problem: we define local 3D transformations on the CAD model, mapping each
subpart to the 3D scene volume, and require smooth changes of these transfor-
mations over the model. In contrast to most deformation methods, we do not
aim to keep the surface close to isometric: e.g ., a table reference model can
be stretched highly anisotropically to match a different table in the data. Our
energy is defined using local 3D affine transform primitives, penalizing sharp
changes, without penalizing anisotropic deformations. These primitives also al-
low us to express 1D feature preservation simply, and the non-data terms are
quadratic which is critical for our efficient preconditioned optimization. Meth-
ods in [23,20,19] propose non-linear energies, focusing on large rotations, but
implicitly assuming quasi-isometry; adapting these methods is nontrivial.

3 Overview of CAD-Deform framework

Our approach is built on top of the framework from [5,6] for CAD model retrieval
and 9 DoF alignment in 3D scans. By running any of the approaches from [5,6]
for an input scan, we obtain initial object locations and 9 DoF alignments of
CAD models potentially matching specific parts of the scan. Next, we apply
our proposed mesh deformation procedure (see Section 4), resulting in a more
accurate shape representation of the aligned objects:

1. We segment the CAD models into semantic 3D parts following the labelling
from the PartNet dataset [31].

2. For each aligned object, we select points in the scan that are the nearest
(within some fixed radius) to each vertex of the CAD model. We assign a
label of the nearest part of the aligned CAD model to each such point.

3. As an input to the proposed mesh deformation procedure, we use the mesh
model with semantic part labels and labelled segment of the 3D scene.

4. We deform the mesh by optimizing the energy depending on the relative
positions of mesh vertices and labelled points of the scene, see Section 4.

4 Data-driven shape deformation

In this section, we describe our method for fitting a closest-match mesh from
the shape dataset to the scanned data. Our algorithm assumes two inputs:

– an initial mesh M from the dataset, with part labels assigned to vertices and
9 degrees-of-freedom (9 DoF) transformation assigned to mesh;
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Fig. 2: Data acquisition for CAD-Deform: we project PartNet labels onto aligned
ShapeNet CAD models (left), register these models to a 3D scene scan (middle), and
extract points on the scene within ε-neighborhood of aligned mesh surface (we set
ε = 10 cm), copying labels corresponding to nearest part of CAD model (right).

– a subset of the scanned data, segmented with the same part labels as M.

Fig. 2 shows an example of the input data, see also Section 3.

Notations. A mesh M = (V0,E,F) consists of a set of initial 3D vertex
coordinates V0 of size nv, the edge set E of size ne, and the triangle face set
F of size nf . We compute the deformed vertex positions V by minimizing a
deformation energy. All vertices are assigned with part labels, which is a map
Q : V0 → C, where C is the set of labels ci, i = 1, . . . , nc, and nc is the number
of parts in all objects in our dataset. For a mesh Mm, Cm ⊂ C is the set of labels
of its parts. The set of nP points P has the same labels as the mesh Mm we fit,
i.e., CP = Cm. In addition, we assume that for every mesh Mm on the scan we
have a scaling transformation, represented by a 4 × 4 matrix T 0

m, that aligns it
with voxelized points P. In our optimization, we use per-edge transformations
Te, discussed below, which we use to measure the deviation from a scaled version
of the original shape and deformation smoothness.

4.1 Deformation energy

Our goal is to define a deformation energy to match the scanned data as closely
as possible, while maintaining continuity and deformation smoothness, and pe-
nalizing deviation from the original shape. In addition, we include a term that
preserves perceptually important linear geometric features of the mesh.

Conceptually, we follow common mesh deformation methods such as ARAP [38]
which estimate a local transformation from vertex positions and penalize the
deviation of this transformation from the target (e.g ., closest rotation). An im-
portant distinction is that the transformation we need to estimate locally is a
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3D, rather than 2D transformation, and cannot be estimated from the deformed
positions of vertices of a single triangle.

Edge transformations. We associate local 3D affine transformations with
mesh edges. Each transformation is defined in a standard way by a 4 × 4 ma-
trix in projective coordinates, with the last row (0, 0, 0, c), c 6= 0. The vertices
of two faces (i1, i2, i3) and (i2, i1, i4), incident at an edge e = (i1, i2), form a
(possibly degenerate) tetrahedron. If it is not degenerate, then there is a unique
linear transformation Te mapping the undeformed positions (v0i1 , v

0
i2
, v0i3 , v

0
i4

) to
(vi1 , vi2 , vi3 , vi4). Matrix T 0 of the affine transformation has 12 coefficients that
are uniquely determined by the equations Tev

0
i = vi, i = 1 . . . 4; moreover, these

are linear functions of the deformed positions vi, as these are only present on the
right-hand side of the equations. Handling of degenerate tetrahedra is discussed
in Section 4.2.

Energy. We define the following non-linear objective for the unknown de-
formed vertex positions V and (a fixed) point set P:

E(V,P) = Eshape + αsmoothEsmooth + αsharpEsharp︸ ︷︷ ︸
quadratic problem

+αdataEdata + αLapELap,

Eshape =
∑
e∈E

‖Te(V)− T 0
e ‖22︸ ︷︷ ︸

deviation

; Esmooth =
∑
f∈F

∑
ei,ej∈f

‖Tei(V)− Tej (V)‖22;

Esharp =

np∑
k=1

∑
es∈Ek

sharp

‖Tes(V)− Tes+1
(V)‖22; Edata = fdata(V,P). (1)

The first term penalizes deviations of the 3D affine transformations defined
by the deformed vertex positions from the transformation (a non-uniform scale)
that aligns mesh with the data. This term directly attempts to preserve the
shape of the object, modulo rescaling.

As explained above, the transformations Te(V) are defined for non-degenerate
input mesh configurations. Suppose the four initial vertex positions (v0i1 , v

0
i2
, v0i3 , v

0
i4

)
form a degenerate tetrahedron W, i.e., two faces incident at the edge are close
to co-planar. In this case, we use an energy term consisting of two terms defined
per triangle. Instead of 4×4 matrix for each non-degenerate tetrahedron, there is
a 3×2 matrix for each triangular face of degenerate tetrahedron that represents
a transformation restricted to the plane of this face. Note that in this case, the
deformation in the direction perpendicular to the common plane of the triangles
does not affect the energy, as it does not have an impact on the local shape of the
deformed surface. We explain the remaining energy terms in the next sections.

To bring second-order information about mesh surface in our energy formu-

lation, we add the Laplacian smoothness term ELap(V,V′) =
∑|V|
i=1 ‖L(vi) −

L(v′i)‖2, where L(vi) = 1
Ni

∑|N (i)|
j=1 vj and N (i) is a set of one-ring neighbors of

vertex vi ∈ V (v′i ∈ V′).
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4.2 Quadratic terms

Smoothness term. This term can be thought of as a discrete edge-based Lapla-
cian, applied to the transforms associated with edges: the difference of any pair
of transforms for edges belonging to the same triangle is penalized.

Sharp features term. We have observed that a simple way to preserve some of
the perceptually critical geometric aspects of the input meshes is to penalize the
change of deformations Te along sharp geometric features, effectively preserv-
ing their overall shape (although still allowing, possibly non-uniform, scaling,
rotations and translations). We detect sharp edges based on a simple dihedral
angle thresholding, as this is adequate for the classes of CAD models we use.
Detected sharp edges are concatenated in sequences, each consisting of vertices
with exactly two incident sharp edges each, except the first and the last. Those
sequences are defined for each part of the mesh. Sequences of different parts has
no common sharp edges or vertices belonging to them. Effectively, the sharpness
term increases the weights for some edges in the smoothness term.

4.3 Data term

We use two approaches to defining the data term, one based on screened attrac-
tion between close points in the mesh Mm and P, and the other one based on
attraction between a priori chosen corresponding points of the mesh Mm and
data points in the set P. We found that the former method works better globally,
when the deformed mesh is still far from the target point cloud, while the latter
is able to achieve a better match once a closer approximation is obtained.

Part-to-part mapping. We define a data-fitting term based on point proximity:
we set an energy proportional to the distance between sufficiently close points. To
avoid clustering of mesh points, we add a screening term that disables attraction
for mesh vertices close to a given point.

We denote by H(x) the Heaviside function, i.e., a function with value 1 if
x > 0 and zero otherwise. We set

fp2pdata(V,P) =
∑
c∈C

∑
v∈Vc

∑
p∈Pc

ξσ(p,Vc)
(
dε(v − p)

)2
, (2)

where dε(v−p) = (v−p)·H(ε−‖v−p‖22), and ξσ(p,V) = H(min{v∈V} ‖v−p‖−σ)
is a “screening” function. The value for σ is chosen to be the mean edge length,
the value of ε is about 10 edge lengths. To make fp2pdata differentiable, instead of
the Heaviside function and min, we can use their smoothed approximations.

Nearest-neighbor mapping. Recall that the vertices {vi} of the mesh m and
the points {pi} of the set P have the same part label sets Cm = CP. For each
label c, we consider V0

c and Pc, the set of mesh vertices in initial positions and
the set of points with the same label c in P. Let BVc

, BPc
be the bounding

boxes of these sets, and consider the affine transform T cB that maps BVc
to BPc

.
Among all possible correspondences between corners of the boxes, we choose
the one that produces the affine transform closest to identity. Then the index
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i = ιT (p) of the vertex vi, corresponding to a point p ∈ Pc, is determined as
ιc(p) = arg min{i,vi∈Vc} ‖T cBvi − p‖22. Then the data term is defined as

fnndata(V,P) =
∑
c∈C

∑
p∈Pc

‖p− vιc(p)‖22. (3)

4.4 Optimization

The optimization of (1) is highly nonlinear due to the data term. However, all
other terms are quadratic functions of vertex coordinates, so minimizing

Equad = Eshape + αsmoothEsmooth + αsharpEsharp

= V
>
AshapeV + αsmoothV

>
AsmoothV + αsharpV

>
AsharpV + b>V

is equivalent to solving a system of linear equations. Denoting the sum of the
matrices in the equation by Aquad, we obtain the optimum by solving AquadV = 0
where the vector V is a flattening of the vector V of 3D vertex positions to a
vector of length 3nV.

The data term is highly nonlinear, but solving the complete optimization
problem can be done efficiently using A−1quad as the preconditioner. For our prob-
lem, we use the preconditioned L-BFGS optimizer summarized in Algorithm 1.

Algorithm 1: Preconditioned L-BFGS mesh optimization (PL-BFGS)

Mprecond = A−1quad // stored as LU decomposition

V = T 0
m(V

0
)

for i← 0 to Niter do
gtot = αdata

dEdata/dp +AquadV + b

V = L-BFGS-step(V, gtot,Mprecond)
end

5 Datasets

Our method relies on a number of publicly available datasets to compute mesh
annotations for our deformations and assess fitting performance. To assess fitting
performance, we use Scan2CAD dataset [5] that consists of 14225 ground-truth
9 DoF transformations between objects in 1506 reconstructions of indoor scenes
from Scannet [11] and 3049 unique CAD models from ShapeNet [9].

Our deformation framework requires high-quality watertight meshes to sup-
port numerically stable optimization, which does not hold for ShapeNet CAD
models. Thus, we remesh these to around 10k–15k vertices using [24], obtaining
more uniform discretizations. To annotate these remeshed CAD models with
semantic part labels required by our deformation procedure, we register them
with the corresponding part-labeled meshes from the PartNet dataset [31] by
first choosing an appropriate 90° rotation around each axis and then optimizing
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for a finer alignment using a point-to-point ICP algorithm [35] between vertices
of the two meshes. We annotate the semantic parts for vertices in each mesh by
projecting it from the respective closest vertices of the registered PartNet mesh.

The original ShapeNet meshes, however, are used to extract sharp geometric
features, as these have easily detectable sharp angles between adjacent faces. We
label as sharp all edges adjacent to faces with a dihedral angle smaller than the
threshold αsharp = 120°. We further project vertex-wise sharpness labels from
the original to the remeshed CAD models and select a sequence of edges forming
the shortest paths between each pair of vertices as sharp.

6 Results

6.1 Evaluation setup

Our performance evaluation of obtained deformations is multifaceted and ad-
dresses the following quality-related questions:

– Scan fitting performance: How well do CAD deformations fit?
– Perceptual performance for deformations: How CAD-like are deformations?
– Contributions of individual energy terms: Which energy terms are essential?
– Deformation flexibility: Can better shapes be achieved by approximating clean

meshes rather than noisy scans?

Fitting and perceptual metrics. We quantify the deformation performance
in terms of fitting quality between the scene scans and 3D CAD models us-
ing a family of related measures computed on a per-instance basis. For vertices
V = (vi) of the deformed mesh M, we compute distances to their respective near-
est neighbors (NN(vi,S)) in the scan S. We compute per-instance Accuracy =
|Vclose|/|V|, reflecting the fraction of closely located vertices, and trimmed min-
imum matching distance tMMD =

∑
vi∈V

min(τ, ‖vi − NN(vi,S)‖1)/|V|, where

Vclose = {vi ∈ V : ‖vi − NN(vi,S)‖1 < τ} is the set of vertices falling within
L1-distance τ to their nearest neighbor in the scan, and τ controls robustness
w.r.t. incomplete scans. We set τ = 0.2 (see supplementary) in our experiments
and report Accuracy and tMMD values averaged over classes and instances.

There is no universally agreed perceptual quality measure for meshes; thus,
we opted for a tripartite evaluation for our resulting deformations. First, we
measure dihedral angle mesh error (DAME) [41], revealing differences in local
surface quality between the original and the distorted meshes:

DAME(M,Mdef) =
1

|E|
∑

adjacentf1,f2

∣∣Df1,f2 −Df1,f2

∣∣ · exp
{

(ZDAMEDf1,f2)2
}
,

where Df1,f2 and Df1,f2 represent oriented dihedral angles between faces f1 and
f2 in the original and deformed meshes, respectively, and ZDAME =

√
log(100/π)/π

is a parameter scaling DAME values to [0, 100].
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Fig. 3: Deformations obtained using our method and the baselines, with mesh colored
according to the Euclidean distance to its nearest point in the scan. We note that
high accuracy scores for Harmonic and ARAP deformations are achieved at the cost of
destroying the initial structure of the mesh, particularly in regions where scan is missing
(note that back side and armrests are gone for chairs in the first and second rows). In
contrast, our method is better able to preserve smooth surfaces, sharp features, and
overall mesh integrity, while keeping accurate local alignment.

Second, we assess abnormality of deformed shapes with respect to the distri-
bution of the undeformed shapes, building on the idea of employing deep autoen-
coders for anomaly detection in structured high-dimensional data. By replicating
the training instances, autoencoders learn features that minimize reconstruction
error; for novel instances similar to those in the training set, reconstruction er-
ror is low compared to that of strong outliers. We train six autoencoders [2,17]
for point clouds using vertices of undeformed meshes separately for the top six
classes present in Scan2CAD annotation: table, chair, display, trashbin, cabinet,
and bookshelf. Passing vertices Vdef of a deformed shape to the respective au-
toencoder, one can assess how accurately deformed meshes can be approximated
using features of undeformed meshes. This property can be evaluated with Earth
Mover’s Distance (EMD) dEMD(Vdef,V

′
def) = min

φ:Vdef→V′
def

∑
v∈Vdef

‖v − φ(v)‖2,

where φ is a bijection, obtained as a solution to the optimal transportation
problem involving Vdef and V′def, that can intuitively be viewed as the least
amount of work needed to transport Vdef vertices to positions of V′def.

Lastly, we assess real human perception of deformations in a user study,
detailed in Section 6.3.

Optimization details. To perform quantitative comparisons, we use 299 scenes
in ScanNet constituting Scan2CAD validation set [5], but with 697 shapes present
in PartNet dataset, amounting to 1410 object instances. Our full experimental
pipeline is a sequence of deformation stages with different optimization param-
eters, and Hessian being recomputed before each stage. Specifically, we perform
one part-to-part optimization with parameters αshape = 1, αsmooth = 0, αsharp =
0, αdata = 5× 104 for 100 iterations, then we perform 5 runs of nearest-neighbor
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Class avg. Instance avg.
Method GT S2C [5] E2E [6] GT S2C [5] E2E [6]

# TPs 1410 499 882 1410 499 882
TP undeformed 89.2 83.7 88.5 90.6 79.4 93.9

Ours: NN only 89.7 84.3 89.0 91.4 84.7 94.4
Ours: p2p only 90.3 88.3 89.4 91.6 90.3 94.9
Ours: w/o smooth 90.6 90.0 89.6 92.3 90.3 95.0
Ours: w/o sharp 90.3 86.9 90.6 92.3 89.4 95.2
CAD-Deform 91.7 89.8 90.3 93.1 92.8 94.6

Table 1: Comparative evaluation of our deformations to true positive (TP) alignments
by non-deformable approaches in terms of Accuracy (%). Note that deformations im-
prove performance for all considered alignment approaches.

Method bookshelf cabinet chair display table trashbin other class avg. avg.
# instances 142 162 322 86 332 169 197 201.4 1410

Ground-truth 88.0 75.2 94.8 98.9 89.6 96.6 81.4 89.2 90.6
Ours 90.5 82.2 95.4 99.1 91.0 98.6 84.8 91.7 93.1

Table 2: Comparative evaluation of our approach to non-deformable ground-truth
and baselines in terms of scan approximation Accuracy (%). We conclude that our
deformations improve fitting accuracy across all object classes by 2.5 % on average.

deformation for 50 iterations with parameters αshape = 1, αsmooth = 10, αsharp =
10, αdata = 103. More details about optimization and timings are provided in
the supplementary.

6.2 Fitting Accuracy: How well do CAD Deformations fit?

We first demonstrate how deformation affects scan fitting performance for meshes
aligned using different methods, specifically, we use true-positive shape align-
ments computed using Scan2CAD (S2C) [5], End-to-End (E2E) [5], as well as
ground-truth alignments. We start with an aligned mesh, copy the 9 DoF trans-
formation to each of the mesh vertices, and optimize using our deformation
method with parameters described in Section 6.1. We report Accuracy scores
in terms of fraction of well-approximated points in the scan for aligned shapes
pre- and post-optimization in Table 2, achieving improved performance across
all considered alignment procedures.

Surprisingly, we improve even over ground-truth alignments by as much as
2.5 %. Thus, we compute per-class scores in Table 1 (comparison across align-
ments), reporting improvements of up to 7 % in average scan approximation
accuracy that are consistent across all object classes. We visualize example de-
formations obtained using our approach and baselines in Figure 3.

We have discovered our deformation framework to be robust w.r.t. level of
detail in the data term in (2) and provide more detail in the supplementary.
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6.3 CAD Quality: How CAD-like are deformed models?

Having obtained a collection of deformed meshes, we aim to assess their visual
quality in comparison to two baseline deformation methods: as-rigid-as-possible
(ARAP) [38] and Harmonic deformation [7,26], using a set of perceptual quality
measures. The details of our user study design and visual assessment are provided
in the supplementary.

6.4 Ablation study

To evaluate the impact of individual energy terms in (1) on both scan fitting per-
formance and perceptual quality, we exclude each term from the energy and com-
pute deformations by optimizing the remaining ones. First, we exclude sharpness
or smoothness terms, optimizing for deformations using the original two-stage
method; second, to better understand the influence of each stage, we perform
experiments with only the first or the second stage (a single run only). We ag-
gregate results into Table 1 and display them visually in Figure 4, concluding
that our CAD-Deform maintains the right balance between fit to the scan and
perceptual quality of resulting deformations.

6.5 Shape morphing results

To demonstrate the ability of our mesh deformation framework to perform shape
interpolation, we choose two different meshes in the same ShapeNet category and
optimize our energy (1) to approximate one with the other, see Fig. 5.

7 Conclusion

In this work, we have presented CAD-Deform, a shape deformation-based scene
reconstruction method leveraging CAD collections that is capable of improving
over existing alignment methods. More specifically, we introduce a composite
deformation energy formulation that achieves regularization from semantic part

DAME EMD ×10−3 User Accuracy
Method cls. inst. cls. inst. study cls. inst.

No deformation 0 0 77 77 8.6 89.2 90.6

ARAP [38] 47.1 45.7 88 87 4.0 90.8 91.8
Harmonic [7,26] 65.1 65.2 104 102 2.6 96.2 96.6
CAD-Deform 20.5 17.2 84 84 7.7 91.7 93.1

Table 3: Quantitative evaluation of visual quality of deformations obtained using
ARAP [38], Harmonic deformation [7,26], and our CAD-Deform, using a variety of
local surface-based (DAME [41]), neural (EMD [2,17]), and human measures.
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Fig. 4: Qualitative results of ablation study usind our deformation framework, with
mesh coloured according to the value of the tMMD measure. Note that including
smoothness term is crucial to prevent surface self-intersections, while keeping sharpness
allows to ensure consistency in parallel planes and edges.

Fig. 5: Qualitative shape translation results, interpolating between the original mesh
(left) and the target mesh (right).

structures, enforces smooth transformations, and preserves sharp geometric fea-
tures. As a result we obtain significantly improved perceptual quality of final
3D CAD models compared to state-of-the-art deformation formulations, such as
ARAP and polyharmonic deformation frameworks. Overall, we believe that our
method is an important step towards obtaining lightweight digital replica from
the real world that are both of high-quality and accurate fits at the same time.
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