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Comparison Between Reception Field Block and the proposed Selec-
tive Reception Field Block

We propose a Selective Reception Field Block (SRFB) for defocus blur detec-
tion. Here, we provide the details of the differences between Reception Field
Block (RFB) [5] and the proposed block. First, our block is especially designed
for DBD while theirs is used in general object detection. Second, their block
aims to encode features for detection, while ours is designed as decoder in FCN.
Third, as shown in Figure. 1, their block is an inception-like structure, while
ours only uses a similar idea(increasing the dilation rate and kernel size at the
same time) to build feature pyramids.

Fig. 1: The architecture of RFB.

Evaluation of Distilled Depth

Although depth estimation is not our main target and our network can only
predict the depth for partial defocus images, we still compare the distilled depth
with our teacher network (Chen et al. [1]). We plot some visual comparisons
in Fig. 2. It is obvious that original results in Chen et al. [1] are sensitive to
color (first and third examples) because their network only trains on sparse
points. Differently, our network can generate more convincing relative depth
between the blurry and sharp region. It is because the distilled depth of our
framework will consider the sharp, DOF region to have a similar depth. For
there is no ground truth depth in the defocus dataset, we conduct the subjective
experiments between ours and Chen et al. [1]. Similar to the user study exper-
iments in Hu et al. [3], we randomly choose 30 samples from each method on
DUT dataset and ask 50 people (both male and female, aging 20-28) to identify
which result is more convincing. We collect the numbers of positive opinion on
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our method from each participant and show the histogram of opinions in Fig. 3,
where 66% participants prefer our results to those of Chen et al. [1]

(a) Input (b) GT (c) Ours (d) Chen [1] (e) Ours

Fig. 2: Comparison of relative depth on DUT dataset. Our depth gain the in-
formation from defocus detection which is robust to low-level features (such as
color).

Fig. 3: User study. We plot the votes histogram of each participate. The x-axis
means the count of positive choice for each individual. The positive choice is
defined as: in each control group of the questionnaire, they think our depth
is more convincing. The y-axis means the distribution (histogram) of all the
participants. There are 30 samples in the subjective study and when the positive
choice is larger than 15, we consider this participant prefers our method. Thus,
in above figure, 66% of the participant choice our method.

More Details of Decoder
As shown in the decoder Figure of the main paper (marking the original fea-
ture channels equal to x), in the first CONV(3 × 3)-BN-ReLU block, we re-
duce the channels of feature map to 1

4x for efficient memory usage. The second
CONV(1×1)-BN-ReLU increases the channels of feature map to 1

2x for meeting
the requirements of next decoder.
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We build 5 branch SRFB (4 different kernels: 1x1 Conv. (dilation=1), 3x3
Conv. (dilation=3), 5x5 Conv. (dilation=5), 7x7 Conv. (dilation=7), the orig-
inal feature) in all the experiments. In each SRFB, we use the same default
parameters for attention as SK-Block.

As for SAB, firstly, two CONV(1 × 1) blocks are mapping the features to
side depth map and side defocus map. These side outputs need the supervision
from the ground truth or depth distillation. Then, we concatenate them into
2 channel features, and feed it into two convolutional blocks for attention map
generation. Here, the first CONV(3×3)-BN-ReLU increases the channel number
of concatenated side outputs to 32 while the second one reduces it to a single
feature map for Sigmoid(·).

More Results on Defocus Blur Detection
We plot more results of ours and other state-of-the-art DBD methods in Fig-
ure. 4. Besides, we show some results of ours compared with state-of-the-art
methods from related tasks (Shadow Detection and Salient Object Detection) in
Figure. 5.

More Results on Depth Estimation
We compare the distilled depth from our network with Chen et al. [1] in the last
two columns of Figure. 5. It is obvious that our method can predict the depth
well in partial defocus images.

Side Outputs
We plot final result and all levels of side outputs in Figure. 6. Our prediction
fusion block merges the side outputs using a 1 × 1 convolutional block and the
final result benefits from all the knowledge from side outputs.
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(a) Ipt (b) GT (c) our (d) [12] (e) [11] (f) [13] (g) [10] (h) [6] (i) [2] (j) [8]

Fig. 4: More comparisons with states-of-the-art DBD methods from DUT and
CUHK datasets. From left to right: (a)Input, (b)Target, (c)Ours, (d)BTBC [12],
(e)BTBF [12], (f)CE [13], (g)LBP [10], (h)DHCF [6], (i)HiFST [2], (j)DF [8].
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(a) Ipt (b) GT (c) Ours (d) [7] (e) [14] (f) [9] (g) [4] (h) [1] (i) Ours

Fig. 5: More comparisons with states-of-the-art methods on relative tasks as il-
lustrated in the main paper. Also, we plot more comparison on depth estimation
in the last two columns. From left to right: (a)Input, (b)Target, (c)Our defo-
cus mask, (d)BAS [7], (e)BDRAR [14], (f)CPD [9], (g)DSC [4], (h)Depth in
Chen [1],(i)Our depth.
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(a) Input (b) GT (c) Final (d) 1/16s (e) 1/8s (f) 1/4s (g) 1/2s (h) 1s

(i) Input (j) Dp [1] (k) Final (l) 1/16s (m) 1/8s (n) 1/4s (o) 1/2s (p) 1s

Fig. 6: More visualizations on side outputs. Our network fuses all the side outputs
to generate the final result. We plot each level of the side defocus map from finer
to coarser in (d)-(h) while each level of the side depth map from finer to coarser
in (l)-(p). The 1/ks means the resolution in this side output is 1/k of the original
image size.
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