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Abstract. We propose a new loss function, called motion loss, for su-
pervising models for monocular 3D Human pose estimation from videos.
It works by comparing the motion pattern of the prediction against
ground truth key point trajectories. In computing motion loss, we in-
troduce pairwise motion encoding, a simple yet effective representation
for keypoint motion. We design a new graph convolutional network ar-
chitecture, U-shaped GCN (UGCN). It captures both short-term and
long-term motion information to fully leverage the supervision from the
motion lossﬂ We experiment training UGCN with the motion loss on two
large scale benchmarks: Human3.6M and MPI-INF-3DHP. Our models
surpass other state-of-the-art models by a large margin. It also demon-
strates strong capacity in producing smooth 3D sequences and recovering
keypoint motion.
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1 Introduction

3D human pose estimation aims at reconstructing 3D body keypoints from their
2D projections, such as images [36/TI4I33126], videos [4I35], 2D pose [T7I27I15],
or their combination [24J34]. Unlike the 2D pose estimation, this problem is ill-
posed in the sense that the lack of depth information in the 2D projections input
leads to ambiguities. To obtain the perception of depth, recent works [11128)]
utilized multiple synchronized cameras for observing objects from different angles
and have achieved considerable progress. However, compared with monocular
methods, multi-view methods are not practical in reality because of their strict
prerequisites for devices and environments.

In recent years, video-based 3D human pose estimation [2/T5/T6l5] receives at-
tention quickly. Taking a video as input, models are able to perceive the 3D struc-
ture of an object in motion and better infer the depth information for 3D pose
estimation in each frame. Unlike image-based models, video-based models [152]
are supervised by a long sequence of 3D pose, which increase the dimensionality

! Codes and models at |http://wangjingbo.top/papers/ECCV2020-Video-
Pose/MotionLossPage.html.
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Fig. 1. A toy sample, the location estimation of pendulum motion. We show the hor-
izontal location as time varies, a sine curve, denoted in gray, and three estimated
traces, denoted in blue, orange and cyan. They have the same ¢; mean distance to
the groundtruth but have different temporal structure. Which estimated trace better
describes the pendulum motion? The loss under different matrices is also shown in the
right figure. Obviously, motion loss is good at answering the above question.

of solution space by hundreds of times. In most existing works, the common loss
function for supervising 3D pose estimation models is Minkowski Distance, such
as f1-loss and f5-loss. It independently computes the overall location error of the
predicted keypoints in 3D space with respect to their ground-truth locations.

However, there is a critical limitation for the Minkowski Distance. It does
not consider the similarity of temporal structure between the estimated pose
sequence and the ground-truth. We illustrate this issue by a toy sample, the
trace estimation of a pendulum motion. It is similar to pose estimation, but
only includes one ”joint”. We compare three estimated trajectories of pendulum
motion in Figure[l] The first trace function has a shape similar to the ground-
truth. The second one has a different tendency but still keep smoothness. And
the last curve just randomly fluctuates around the ground-truth. Both of them
have the same #; mean distance to the ground-truth but have various temporal
structures. Because the Minkowski Distance is calculated independently for each
moment, it failed to examine the inner dependencies of a trajectory.

The keypoints in a pose sequence describe the human movement, which are
strongly correlated especially in the time. Under the supervision of Minkowski
Distance as the loss, same as the above toy sample, it is difficult for models to
learn from the motion information in the ground-truth keypoint trajectories and
thus hard to obtain natural keypoints movement in the model’s prediction due
to the high dimensional solution space.

We address this issue by proposing motion loss, a novel loss function that
explicitly involves motion modeling into the learning. Motion loss works by re-
quiring the model to reconstruct the keypoint motion trajectories in addition
to the task of reconstructing 3D locations of keypoints. It evaluates the motion
reconstruction quality by computing the difference between predicted keypoint
locations and the ground-truth locations in the space of a specific representation
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called motion encoding. The motion encoding is built as a differentiable oper-
ator in the following manner. We first roughly decompose a trajectory into a
set of pairwise coordinate vectors with various time intervals corresponding to
different time scales. A basic differentiable binary vector operator, for instance,
subtraction, inner product or cross product, is applied to each pair. Then the
obtained results are concatenated to construct the full motion encoding. Though
simple, this representation is shown in the Figure[I| (taking subtraction operator
for example) to be effective in assessing the quality of the temporal structure.
The difference in motion loss values clearly distinguishes the motion reconstruc-
tion quality of the three trajectories. By applying it to the training of 3D pose
estimation models, we also observe that motion loss can significantly improve
the accuracy of 3D pose estimation.

To estimate the pose trajectories with reasonable human movements, the
3D pose estimation model must have the capacity to model motion in both
short temporal intervals and long temporal ranges, as human actions usually
have varying speeds over time. To achieve this property we propose a novel
graph convolutional network based architecture for 3D pose estimation model.
We start by repurposing an ST-GCN [38] model, initially proposed for skeleton-
based action recognition, to take as input 2D pose sequences and output 3D
pose sequences. Inspired by the success of U-shaped CNNs used in semantic
segmentation and object detection, we construct a similar U-shaped structure
on the temporal axis of the ST-GCN [38] model. The result is a new architecture,
called U-shaped GCN (UGCN), with strong capacity in capturing both short-
term and long-term temporal dependencies, which is essential in characterizing
the keypoint motion.

We experiment the motion loss and UGCN for video-based 3D pose estima-
tion from 2D pose on two large scale 3D human pose estimation benchmarks:
Human3.6M [J] and MPI-INF-3DHP [I8]. We first observe a significant boost
in position accuracy when the motion loss is used in training. This corroborates
the importance of motion-based supervision. When the motion loss is combined
with UGCN, our model surpasses the current state of the art models in terms
of location accuracy by a large margin. Besides improved location accuracy, we
also observe that UGCN trained with the motion loss is able to produce smooth
3D sequences without imposing any smoothness constraint during training or in-
ference. Our model also halves the velocity error [27] compared with other state
of the art models, which again validates the importance of having motion infor-
mation in the supervision. We provide detailed ablation study and visualization
to further demonstrate the potential of our model.

2 Related work

3D pose estimation. Before the era of deep learning, early methods for 3D
human pose estimation were based on handcraft features [29/98]. In recent years,
most works depend on powerful deep neural networks and achieve promising
improvements, which can be divided into two types.
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Fig. 2. Overview of our proposed pipeline for estimating 3D poses from consecutive 2D
poses. We structure 2D skeletons by a spatial-temporal graph and predict 3D locations
via our U-shaped Graph Convolution Networks (UGCN). The model is supervised in
the space of motion encoding.

In the first type, estimators predict 3D poses from 2D image directly [35/26/33].
For example, [I4] jointly regresses joint locations and detects body parts by slid-
ing window on the image. [35] directly regresses the 3D pose from an aligned
spatial-temporal feature map. [26] predicts per voxel likelihoods for each joint
based on the stacked hourglass architecture. [33] utilizes an auto-encoder to learn
a latent pose representation for modeling the joint dependencies.

Another typical solution builds on a two-stage pipeline [I7U27U2/T5]. Thereon,
a 2D pose sequence is firstly predicted by a 2D pose estimator from a video frame
by frame and lifted to 3D space by another estimator. For instance, [I7] proposes
a simple baseline composed of several fully-connected layers, which takes a single
2D pose as input. [27] generates 3D poses from 2D keypoint sequences by a
temporal-convolution method. [2] introduces a local-to-global network based on
graph convolution layers. [15] factorizes a 3D pose sequence into trajectory bases
and train a deep network to regress the trajectory coefficient matrix.

Although the appearance information is dropped in the first stage, the data
dimension is dramatically decreased as well, which makes long-term video-based
3D pose estimation possible. Our method also builds on the two-stage pipeline.

Graph convolution. Modeling skeleton sequence via spatial-temporal graphs(st-
graph) [38] and performing graph convolution thereon has significantly boosted
the performance in many human understanding tasks including action recogni-
tion [38], pose tracking [23] and motion synthesis [37]. The designs for graph con-
volution mainly fall into two stream: spectral based [6l12] and spatial based [1122].
They extended standard convolution to irregular graph domain by Fourier trans-
formation and neighborhood partitioning respectively. Following [38], we per-
form spatial graph convolution on skeleton sequences represented by st-graphs.

3 Approach

Figure. [2]illustrates our pipeline for estimating 3D pose sequences. Given the 2D
projections of a pose sequence estimated from a video P = {p; [t =1,....,T;j =
1,...,M}, we aim to reconstruct their 3D coordinates S = {s; [t =1,...,T;j =
1,..., M}, where T is the number of video frames, M is the number of human
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Fig. 3. Motion loss. By concatenating pairwise cross-product vectors between the co-
ordinate vectors of the same joints across time with various intervals, we construct
multi-scale motion encoding on pose sequences. The motion loss requires the model to
reconstruct this encoding. It explicitly involves motion modeling into learning.

joints, p; ; and s; ; are vectors respectively representing the 2D and 3D locations
of joint j in the frame ¢t. We structure these 2D keypoints by a spatial-temporal
graph and predict their 3D locations via our U-shaped Graph Convolution Net-
works (UGCN). The model is supervised by a multiscale motion loss and trained
in an end-to-end manner.

3.1 Motion Loss

In this work, motion loss is defined as the distance in the space of motion. There-
fore, a motion encoder is required for projecting skeleton sequences to this space.
Though there are myriad possible designs, we empirically sum up a few guiding
principles: differentiability, non-independence, and multi-scale. Differentiability
is the prerequisite for the end-to-end training. And the calculation should be
across time for modeling the temporal dependencies, i.e., non-independence.
Since the speed of motion is different, multi-scale modeling is also significant. In
this section, we introduce how we design a simple but effective encoding, named
pairwise motion encoding.

Pairwise motion encoding. We first consider the simplest case: the length
of the pose sequences is 2. The motion encoding on the joint j can be denoted
as:

mj = 8o * 81,5, (1)

where x can be any differentiable binary vector operator, such as subtraction,
inner-product and cross-product. In the common case, the pose sequence is
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longer. We can expand an extra dimension in the motion encoding:

My j = Stj* St1,5- (2)

Note that, this representation only models the relationship between two adjacent
moments. Since the speed of human motion has a large variation range, it inspires
us to encode human motion on multiple temporal scales:

Mt jr = Stj % S(t4r),j- (3)

where 7 is the time interval. As shwon in Figure. [3] to caculate the motion loss
of the full pose sequence, we compute the ¢; Distance on the encoded space for
all joints, moments and several time intervals. Mathematically, we have:

T—17 M

1
L= 2 > llmer —mi,

T€T t=1 j=1

E (4)

where the interval set T includes different 7 for multiple time scales. Pairwise
motion encoding decomposes a trajectory into coordinate pairs and extracts
features for each pair by a differentiable operation x. As the first work to explore
the supervision of motion for 3D pose estimation, intuitively, we choose the
three most basic operations in the experiments: subtraction, inner-product,
and cross-product. And we conducted extensive experiments to evaluate the
effectiveness of these encoding methods in Section

Loss Function. The motion loss only considers the second-order correlations
in the formulation of pairwise motion encoding, while the absolute location in-
formation is absent. Therefore, we add a traditional reconstruction loss term to
the overall training objectives:

M
t 2
Ly=2_> llsts = sfsll,- (5)
t=1 j=1
The model is supervised in an end-to-end manner with the combined loss:
L=1L,+ ALy, (6)

where A is a hyper parameter for balancing two objectives.

3.2 U-shaped Graph Convolutional Networks

Intuitively, the 3D pose estimator needs stronger long-term perception for ex-
ploring the motion priors. Besides that, keeping the spatial resolution is also
required by estimating 3D pose accurately. Therefore, we represent the skele-
ton sequence as a spatial temporal graph [38] to maintain their topologies, and
aggregating information by an U-shaped graph convolution network (UGCN).
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Graph Modeling It is an ill-posed problem to recover the 3D location of
a keypoint from its 2D coordinates independently. In general, the information
from other keypoints, especially the neighboring ones, play essential roles in 3D
pose reconstruction. To model the relationship with these relative keypoints,
it is natural to organize a skeleton sequence via a spatial temporal graph (st-
graph) [38]. In particular, a st-graph G is determined by a node set and an edge
set. Thenodeset V = {v, |t =1,...,T,j =1,..., M} includes all the keypoints
in a sequence of pose. And the edge set E is composed of two parts: one for
connecting adjacent frames on each joint, one for the connecting endpoint of each
bone in every single frame. These edges construct the temporal dependencies and
spatial configuration together. Then, a series of graph convolution operations are
conducted on this graph.

Graph Convolution. In this work, we adopt spatial temporal graph convolution
(st-gen) |38 as the basic unit to aggregate features of nodes on a st-graph.
It can be regarded as a combination of two basic operations: a spatial graph
convolution and a temporal convolution. The temporal convolution Conv; is a
standard convolution operation applied on the temporal dimension for each joint,
while the spatial graph convolution Conv, is performed on the skeleton for each
time position independently. Given an input feature map f;,, the output of two
operations can be written as:

fs = Convy(fin) (7)
fout - Convt(fs) (8)

, where f; is the output of the spatial graph convolution. We follow the formu-
lation of spatial graph convolution in [38]. And more details are in our supple-
mentary materials.

Network structure. As shown in Figure [4 the basic units for building net-
works are st-gen blocks, which include five basic operations: a spatial graph
convolution, a temporal convolution, a batch normalization, a dropout and an
activation function ReLU. Our networks are composed of three stages: down-
sampling, upsampling, and merging.

In the downsampling stage, we utilize 9 st-gen blocks for aggregating tem-
poral features. In addition, we set stride = 2 for the second, fourth, sixth, and
eighth st-gen blocks to increase the receptive field in the time dimension. This
stage embeds the global information of the full skeleton sequence.

The upsampling stage contains four st-gcn blocks. Each block is followed by
an upsampling layer. Thanks to the regular temporal structure in st-graph, the
upsampling in the time dimension can be simply implemented with the following
formula:

fup(vt,j) = fin(vt’,i)y (9)
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Fig.4. Network structure. We proposed a U-shaped graph convolution network
(UGCN) as the backbone of our pose estimation model to incorporate both local and
global information with a high resolution. This network consists of three stages: down-
sampling, upsampling and merging. The network first aggregates long-range informa-
tion by temporal pooling operations in the downsampling stage. And then recovers the
resolution by upsampling layers. To keep the low-level information, the features in the
downsampling stage are also added to the upsample branch by some shortcuts. Finally,
the multi-scale feature maps are merged to predicted 3D skeletal joints. In this way,
UGCN incorporates both short-term and long-term information, making it an ideal fit
for the supervision of the motion loss.

where t' = L%J With successive upsampling operations, the temporal resolution
gradually recovers and the global information spread to the full graph. Since the
2D inputs are projections of 3D outputs, the low-level information may provide
strong geometric constraints for estimating 3D pose. It motivated us to keep
low-level information in the networks. Thus, we add features in the first stage
to the upsampling stage with the same temporal resolution.

In the merging stage, the feature maps with various time scales in the second
stage are transformed to the same shape and fused to obtain the final embedding.
Obviously, this embedding contains abundant information on multiple temporal
scales.

In the end, the 3D coordinate for each keypoint is estimated by a st-gen
regressor. This model is supervised by the motion loss in an end-to-end manner.
Other details have been depicted in the Figure [4

Training & inference. We use st-gcn blocks with the temporal kernel size
of 5 and the dropout rate of 0.5 as our basic cells to construct a UGCN. The
networks take as input a 2D pose sequence with 96 frames. We perform horizontal
flip augmentation at the time of training and testing. Considering the various
value ranges of different motion encoding in Section [3.I] we normalize the inner-
product and cross product encoding by the temporal-wise mean value before
computing motion loss. Based on this normalization, we can set A = 1 to balance
the reconstruction loss and our motion loss conveniently. We optimize the model
using Adam for 110 epochs with the batch size of 256 and the initial learning
rate of 1072. We decay the learning rate by 0.1 after 80, 90 and 100 epochs. To
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avoid the overfitting, we set the weight decay factor to 10~° for parameters of
convolution layers.

In the inference stage, we apply the sliding window algorithm with the step
length of 5 to estimate a variable-length pose sequence with fixed input length,
and average all results on different time positions.

4 Experiments

We evaluate models on two large-scale datasets for 3D pose estimation: Hu-
man3.6M and MPI-INF-3DHP. In particular, we first perform detailed ablation
studies on the Human3.6M dataset to examine the effectiveness of the proposed
components. To exclude the interference of 2D pose estimator, all experiments
in this ablation study take 2D ground truth as input. Then, we compare the
estimated results of UGCN with other state-of-the-art methods on two datasets.
All experiments are conducted on PyTorch tools with one single TITANX GPU.

4.1 Dataset

Human3.6M: Human3.6M [10] is a large-scale indoor dataset for 3D human
pose estimation. This widely used dataset consists of 3.6 million images which
are captured from 4 different cameras. There are 11 different subjects and 15
different actions in this dataset, such as “Sitting”, “Walking”, and “Phoning”.
The 3D ground truth and all parameters of the calibrated camera systems are
provided in this dataset. However, we do not exploit the camera parameters in
the proposed approach. Following the recent works, we utilize (S1, S5, S6, S7, S8)
for training and (S9, S11) for testing. The video from all views and all actions are
trained by a single model. For this dataset, we conduct ablation studies based on
the ground truth of 2D skeleton. Besides that, we also report the results of our
approach taking as input predicted 2D poses. from widely used pose estimators.

Table 1. Performance of our UGCN model supervised by motion loss with different
basic operators and time intervals. The empty set @ denotes that the motion loss is
not utilized. The best MPJPE is achieved by the cross product operator with interval
of 12.

Interval set T | & {2} {4} {8} {12} {16} {24} {36} {48}

Subtraction 32.0 31.4 30.8 29.7 28.9 293 30.6 31.8 32.8
Inner Product | 32.0 31.8 31.7 31.0 30.2 29.8 31.2 32.6 33.7
Cross Product | 32.0 31.2 30.4 28.2 27.1 28.3 30.2 31.6 32.7

MPI-INF-3DHP: MPI-INF-3DHP [19] is a recently released 3D human pose
estimation dataset. And this dataset is captured in both indoor environment
and in-the-wild outdoor environment. Similar to Human3.6M, this dataset also
provides videos from different cameras, subjects, and actions.
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Table 2. We select the 4 best time intervals according to the Table and add them
to the interval set one by one. More keypoint pairs with different intervals involve the
calculation of motion encoding. The MPJPE is improved in this process.

Operator | 7=8 7=12 7=16 7 =24 | # Time Scales | MPJPE(mm)
Cross Product v 1 27.1
Cross Product v 2 26.3
Cross Product v v v 3 25.7
Cross Product v v v 4 25.6

4.2 Evaluation Metric

For both Human3.6M and MPI-INF-3DHP dataset, we report the mean per joint
position error(MPJPE) [15I272] as the evaluation metric. In general, there are
two protocols, Protocol-1 and Protocol-2, used in the previous works to evaluate
3D pose estimation. Metric Protocol-1 first aligns the root joint(central hip) and
then calculates the average Euclidean distance of the estimated joints. While in
the Protocol-2, the estimated results are further aligned to the ground truth via
a rigid transformation before computing distance.

In MPI-INF-3DHP, we evaluate models under two additional metrics. The
first one is the area under the curve (AUC) [40] on the percentage of correct key-
points(PCK) score for different error thresholds. Besides, PCK with the thresh-
old of 150mm is also reported.

4.3 Ablation Study

In this section, we demonstrate the effectiveness of the proposed UGCN and
our motion loss on the Human3.6M dataset. Experiments in this section directly
take 2D ground-truth as input to eliminate the interference of 2D pose estimator.

Effect of motion loss. We start our ablation study from observing the impact
of the temporal interval 7 in the single scale motion loss. In other words, the
interval set for motion loss has only one element. The value of this element
controls the temporal scale of motion loss. We conduct experiments on three
binary operators proposed in Section i.e. subtraction, inner-product and
cross-product.

As shown in Table [I} the cross-product achieves the lowest MPJPE error
with almost all temporal intervals. Besides, the MPJPE error decrease first and
then increase, and reduce the error by 4.9mm (from 32.0 to 27.1) with the time
interval of 12 and the cross-product encoding. There are two observations. First,
compared to the result without motion term (denoted as @), even the temporal
interval is large (24 frames), the performance gain is still positives. It implies that
motion prior is not momentary. And the model might need long-term perception
for better capturing the motion information. Second, motion loss boosts the
performance with temporal interval 7 in a large variation range (2~36 frames),
which means the time scale of motion priors is also various.
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Thus, it is reasonable to adopt motion loss with multiple time intervals. We
select four best 7 as candidates and adopt the most effective binary operator in
Table. |1} cross-product. The experimental results have been depicted in Table.
Under the supervision of multiscale motion loss, our model decrease the MPJPE
by 1.5mm (27.1 — 25.6).

Table 3. We remove all downsampling and upsampling operations from the standard
UGCN, and add them back pair by pair. The MPJPE performance of our system
increases remarkably in this process. With motion loss, the achieved gain is even large.

# Downsample & Upsample ‘ 0 1 2 4 ‘ A
UGCN w/o Motion Loss 38.6 37.2 36.9 32.0|6.6
UGCN + Motion Loss (T = {12}) | 36.9 34.8 33.7 27.1|9.8
A | 1.7 2.4 32 49| -

Table 4. We explore the importance of each individual component by removing them
from standard setting. The increased MPJPE error for each module is listed below.

Backbone MPJPE(mm) A
UGCN 32.0 -
UGCN w/o Spatial Graph 39.2 7.2
UGCN w/o Merging Stage 32.5 0.5
UGCN + Motion Loss 25.6 -
UGCN + Motion Loss w/o Merging Stage 28.4 2.8

Table 5. The MPJPE performance of our system with different supervision. Com-
bining motion loss functions with different basic operators does not bring obvious
improvement.

Loss Function Interval set T MPJPE(mm) A
- %) 32.0 -

Derivative loss [30] {1} 31.6 0.4
Cross product {12} 27.1 4.9
Subtraction+4 Cross product {12} 27.1 4.9
Subtraction + Inner 4+ Cross product {12} 27.1 4.9

Design choices in UGCN. We first examine the impact of the U-shaped
architecture. We remove all downsampling and upsampling operations from the
standard UGCN, and add them back pair by pair. The experimental results
have been depicted in Table. [3] It can be seen that U-shaped structure brings
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significant improvement (6.6mm) to UGCN. This structure even leads to a larger
performance gain (9.8mm) with the supervision of motion loss. And the gap
caused by motion loss is growing with the increasing number of downsampling
and upsampling. These results validate our assumption: the motion loss requires
long-term perception.

We also explore other design choices in the UGCN. As shown in Table.[d] the
spatial configuration bring 7.2mm improvement. Removing the merging stage
only slightly enlarge the error. However, when the model is supervised by motion
loss, the performance drop is more remarkable (0.5mm vs. 2.8mm). That is to
say, multiscale temporal information is important to the learning of motion prior.

Design choices in motion loss. The formula of offset encoding is similar
to the Derivative Loss [30] which regularizes the joint offset between adjacent
frames. This loss is under the the hypothesis that the motion is smooth between
the neighborhood frames. We extend it to our motion loss formulation. Since only
short-term relation is considered, the improvement achieved by Derivative Loss
is minor. Then we compare the results of our method supervised by the motion
loss with different combination of the proposed binary operators. The results
have been shown in Table. [5] The combination of these three representations is
not able to bring any improvement. Therefore, we adopt cross-product as the
pairwise motion encoder in the following experiments.

ISE=w
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| ¥ 4 4
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Fig. 5. Visulation results of our full system on Human3.6M and MPI-INF-3DHP.
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Table 6. Results showing the errors action-wise on Human3.6M under Protocol-1 and
Protocol-2. (CPN) and (HRNET) respectively indicates the model trained on 2D poses
estimated by CPN [3], and HR-Net [3I].  means the methods adopt the same refine
module as [2].

Protocol 1 ‘Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT.‘Avc,
Zhou 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 [64.9
Martinez [17] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 [62.9
Sun 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 |59.1
Fang [7] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 |60.4
Pavlakos [25] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 658 7l.1 56.6 52.9 60.9 44.7 47.8 [56.2
Lee [13] 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 684 47.5 456 |55.8
Hossain [30] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 |[58.3
Lee [13](F=3) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 |[52.8
Dabral [5] 44.8 50.4 44.7 49.0 52.9 61.4 43.5 45.5 63.1 87.3 51.7 48.5 52.2 37.6 41.9 [52.1
Pavllo [27] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 [46.8
Cai [2]1 44.6 47.4 45.6 48.8 50.8 9.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 |[48.8
Lin 42.5 44.8 42.6 44.2 48.5 7.1 42.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 |46.6
UGCN(CPN) 41.3 43.9 44.0 42.2 48.0 57.1 42.2 43.2 57.3 61.3 47.0 43.5 47.0 32.6 31.8 |45.6
UGCN(CPN)f |40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 |44.5
UGCN(HR-Net)|38.2 41.0 45.9 39.7 41.4 51.4 41.6 41.4 52.0 57.4 41.8 44.4 41.6 33.1 30.0 |42.6
Protocol 2 ‘Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT.‘Ave.
Martinez [17] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 |47.7
Sun [32] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 |48.3
Fang [7] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 |45.7
Lee [13] 38.0 39.3 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 56.4 33.9 38.5 [46.2
Pavlakos 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 |41.8
Hossain [30] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 [44.1
Pavllo [27] 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 |[36.5
Dabral 28.0 30.7 39.1 34.4 37.1 44.8 28.9 31.2 39.3 60.6 39.3 31.1 37.8 25.3 28.4 [36.3
Cai [2]1 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 [39.0
Lin [15] 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 |[36.8
UGCN(CPN) 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 [35.5
UGCN(CPN)t [31.8 34.3 35.4 33.5 35.4 41.7 31.1 31.6 44.4 49.0 36.4 32.2 350 24.9 23.0 |34.5
UGCN(HR-Net)|28.4 32.5 34.4 32.3 32.5 40.9 30.4 29.3 42.6 45.2 33.0 32.0 33.2 24.2 22.9 |32.7

Table 7. Results show the velocity error of our methods and other state-of-the-arts
on Human3.6M. Our result without motion loss is denoted as (*).

MPJVE ‘Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit SitD. Somke Wait WalkD. Walk WalkT.‘Ave.
Pavllo [27] 3.0 3.1 2.2 3.4 2.3 2.7 2.7 3.1 2.1 29 2.3 2.4 3.7 3.1 2.8 2.8
Lin 2.7 2.8 2.1 3.1 2.0 2.5 2.5 2.9 1.8 26 2.1 2.3 3.7 2.7 3.1 2.7
UGCN(CPN)*| 3.5 3.6 3.0 3.9 3.0 3.4 3.2 3.6 2.9 3.7 3.0 3.1 4.2 3.4 3.7 3.4
UGCN(CPN) |2.3 2.5 2.0 2.7 2.0 2.3 2.2 2.5 1.8 2.7 1.9 2.0 3.1 2.2 2.5 2.3
UGCN(GT) 1.2 1.3 1.1 1.4 1.1 1.4 1.2 1.4 1.0 1.3 1.0 1.1 1.7 1.3 1.4 1.4

4.4 Comparison with state-of-the-art

Results on Human3.6M In this section, we compare the proposed approach
to several state-of-the-art algorithms in monocular 3D pose estimation from an
agnostic camera on Human3.6M dataset. We trained our model on 2D poses
predicted by cascaded pyramid network (CPN) [3]. It is the most typical 2D
estimator used in previous works. The results on two protocols are shown in
the Table [f] As shown in the table, our method achieves promising results on
Human3.6 under two metrics(45.6 MPJPE on Protocol 1 and 35.5 P-MPJPE on
Protocol 2) which surpass all other baselines. We also examine the result on a
more powerful 2D pose estimator HR-Net [31]. It further brings roughly 3mm
MPJPE improvement.Besides, we also compare our method with others based
on ground-truth 2D pose. Details are illustrated in the supplementary materials.
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Table 8. Comparison with previous work on the MPI-INF-3DHP dataset. The bold-
faced numbers represent the best, while underlined numbers represent the second best.

Method ‘ PCKI1] AUCI1] MPJPE(mm)[]]
Mehta [20] 75.7 39.3 -
Mehta(ResNet=50) [21] 77.8 41.0 -
Mehta(ResNet=101) [2T] 79.4 41.6 -
Lin(F=25) [15] 83.6 51.4 79.8
Lin(F=50) [I5] 82.4 49.6 81.9
UGCN w/o Motion Loss 84.2 54.2 76.7
UGCN 86.9 62.1 68.1

Following [27], we evaluate the dynamic quality of predicted 3D pose se-
quences by Mean per Joint Velocity Error(MPJVE). This metric measures the
smoothness of predicted pose sequences. As shown in Table [7] with motion loss,
our method significantly reduces the MPJVE by 32% (from 3.4mm to 2.3mm)
and outperforms other baselines.

Results on MPI-INF-3DHP We compare the results of PCK, AUC, and
MPJPE against the other state-of-the-art methods on MPI-INF-3DHP dataset
with the input of ground-truth 2d skeleton sequences. As shown in Table
our approach achieves a significant improvement against other methods. Our
method finally achieves 86.9 PCK, 62.1 AUC and 68.1 MPJPE on this dataset.
The proposed motion loss significantly improves the accuracy and reduces the
error.

Visualization results The qualitative results on Human3.6M and MPI-INF-
3DHP are shown in Figure [5| We choose samples with huge movements and
hard actions to show the effectiveness of our system. More visualization results
comparing with other previous works can be find in the supplementary materials.

5 Conclusion

In this work, we propose a novel objective function, motion loss. It explicitly
involves motion modeling into learning. To better optimize model under the
supervision of motion loss, the 3D pose estimation should have a long-term per-
ception of pose sequences. It motivated us to design a U-shaped model to capture
both short-term and long-term temporal dependencies. On two large datasets,
the proposed UGCN with motion loss achieves state-of-the-art performance. The
motion loss may inspire other skeleton-based tasks such as action forecasting,
action generation and pose tracking.
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