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Abstract. Video interpolation increases the temporal resolution of a
video sequence by synthesizing intermediate frames between two consec-
utive frames. We propose a novel deep-learning-based video interpola-
tion algorithm based on bilateral motion estimation. First, we develop
the bilateral motion network with the bilateral cost volume to estimate
bilateral motions accurately. Then, we approximate bi-directional mo-
tions to predict a different kind of bilateral motions. We then warp the
two input frames using the estimated bilateral motions. Next, we develop
the dynamic filter generation network to yield dynamic blending filters.
Finally, we combine the warped frames using the dynamic blending fil-
ters to generate intermediate frames. Experimental results show that the
proposed algorithm outperforms the state-of-the-art video interpolation
algorithms on several benchmark datasets. The source codes and pre-
trained models are available at https://github.com/JunHeum/BMBC.
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1 Introduction

A low temporal resolution causes aliasing, yields abrupt motion artifacts, and
degrades the video quality. In other words, the temporal resolution is an impor-
tant factor affecting video quality. To enhance temporal resolutions, many video
interpolation algorithms [2–4, 12, 14, 16–18, 20–22] have been proposed, which
synthesize intermediate frames between two actual frames. These algorithms are
widely used in applications, including visual quality enhancement [32], video
compression [7], slow-motion video generation [14], and view synthesis [6]. How-
ever, video interpolation is challenging due to diverse factors, such as large and
nonlinear motions, occlusions, and variations in lighting conditions. Especially,
to generate a high-quality intermediate frame, it is important to estimate mo-
tions or optical flow vectors accurately.

Recently, with the advance of deep-learning-based optical flow methods [5,10,
25, 30], flow-based video interpolation algorithms [2, 3, 14] have been developed,
yielding reliable interpolation results. Niklaus et al. [20] generated intermedi-
ate frames based on the forward warping. However, the forward warping may
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cause interpolation artifacts because of the hole and overlapped pixel problems.
To overcome this, other approaches leverage the backward warping. To use the
backward warping, intermediate motions should be obtained. Various video in-
terpolation algorithms [2–4,14,16,20,32] based on the bilateral motion estimation
approximate these intermediate motions from optical flows between two input
frames. However, this approximation may degrade video interpolation results.

In this work, we propose a novel video interpolation network, which con-
sists of the bilateral motion network and the dynamic filter generation network.
First, we predict six bilateral motions: two from the bilateral motion network
and the other four through optical flow approximation. In the bilateral motion
network, we develop the bilateral cost volume to facilitate the matching process.
Second, we extract context maps to exploit rich contextual information. We then
warp the two input frames and the corresponding context maps using the six
bilateral motions, resulting in six pairs of warped frame and context map. Next,
these pairs are used to generate dynamic blending filters. Finally, the six warped
frames are superposed by the blending filters to generate an intermediate frame.
Experimental results demonstrate that the proposed algorithm outperforms the
state-of-the-art video interpolation algorithms [2, 3, 18, 22, 32] meaningfully on
various benchmark datasets.

This work has the following major contributions:

– We develop a novel deep-learning-based video interpolation algorithm based
on the bilateral motion estimation.

– We propose the bilateral motion network with the bilateral cost volume to
estimate intermediate motions accurately.

– The proposed algorithm performs better than the state-of-the-art algorithms
on various benchmark datasets.

2 Related Work

2.1 Deep-learning-based video interpolation

The objective of video interpolation is to enhance a low temporal resolution
by synthesizing intermediate frames between two actual frames. With the great
success of CNNs in various image processing and computer vision tasks, many
deep-learning-based video interpolation techniques have been developed. Long
et al. [18] developed a CNN, which takes a pair of frames as input and then
directly generates an intermediate frame. However, their algorithm yields severe
blurring since it does not use a motion model. In [19], PhaseNet was proposed
using the phase-based motion representation. Although it yields robust results
to lightning changes or motion blur, it may fail to faithfully reconstruct detailed
texture. In [21,22], Niklaus et al. proposed kernel-based methods that estimate an
adaptive convolutional kernel for each pixel. The kernel-based methods produce
reasonable results, but they cannot handle motions larger than a kernel’s size.

To exploit motion information explicitly, flow-based algorithms have been
developed. Niklaus and Liu [20] generated an intermediate frame from two con-
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secutive frames using the forward warping. However, the forward warping suf-
fers from holes and overlapped pixels. Therefore, most flow-based algorithms are
based on backward warping. In order to use backward warping, intermediate
motions (i.e. motion vectors of intermediate frames) should be estimated. Jiang
et al. [14] estimated optical flows and performed bilateral motion approximation
to predict intermediate motions from the optical flows. Bao et al. [3] approxi-
mated intermediate motions based on the flow projection. However, large errors
may occur when two flows are projected onto the same pixel. In [2], Bao et
al. proposed an advanced projection method using the depth information. How-
ever, the resultant intermediate motions are sensitive to the depth estimation
performance. To summarize, although the backward warping yields reasonable
video interpolation results, its performance degrades severely when intermedi-
ate motions are unreliable or erroneous. To solve this problem, we propose the
bilateral motion network to estimate intermediate motions directly.

2.2 Cost volume

A cost volume records similarity scores between two data. For example, in pixel-
wise matching between two images, the similarity is computed between each
pixel pair: one in a reference image and the other in a target image. Then, for
each reference pixel, the target pixel with the highest similarity score becomes
the matched pixel. The cost volume facilitates this matching process. Thus, the
optical flow estimation techniques in [5,10,30,31] are implemented using cost vol-
umes. In [5,10,31], a cost volume is computed using various features of two video
frames, and optical flow is estimated using the similarity information in the cost
volume through a CNN. Sun et al. [30] proposed a partial cost volume to signif-
icantly reduce the memory requirement while improving the motion estimation
accuracy based on a reduced search region. In this work, we develop a novel cost
volume, called bilateral cost volume, which is different from the conventional
volumes in that its reference is an intermediate frame to be interpolated, instead
of one of the two input frames.

3 Proposed Algorithm

Fig. 1 is an overview of the proposed algorithm that takes successive frames I0
and I1 as input and synthesizes an intermediate frame It at t ∈ (0, 1) as out-
put. First, we estimate two ‘bilateral’ motions Vt→0 and V0→t between the input
frames. Second, we estimate ‘bi-directional’ motions V0→1 and V1→0 between I0
and I1 and then use these motions to approximate four further bilateral mo-
tions. Third, the pixel-wise context maps C0 and C1 are extracted from I0 and
I1. Then, the input frames and corresponding context maps are warped using
the six bilateral motions. Note that, since the warped frames become multiple
candidates of the intermediate frame, we refer to each warped frame as an in-
termediate candidate. The dynamic filter network then takes the input frames,
and the intermediate candidates with the corresponding warped context maps
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Fig. 1. An overview of the proposed video interpolation algorithm.

to generate the dynamic filters for aggregating the intermediate candidates. Fi-
nally, the intermediate frame It is synthesized by applying the blending filters
to the intermediate candidates.

3.1 Bilateral motion estimation

Given the two input frames I0 and I1, the goal is to predict the intermediate
frame It using motion information. However, it is impossible to directly estimate
the intermediate motion between the intermediate frame It and one of the input
frames I0 or I1 because there is no image information of It. To address this issue,
we assume linear motion between successive frames. Specifically, we attempt to
estimate the backward and forward motion vectors Vt→0(x) and Vt→1(x) at x,
respectively, where x is a pixel location in It. Based on the linear assumption,
we have Vt→0(x) = − t

1−t × Vt→1(x).
We develop a CNN to estimate bilateral motions Vt→0 and Vt→1 using I0 and

I1. To this end, we adopt an optical flow network, PWC-Net [30], and extend
it for the bilateral motion estimation. Fig. 2 shows the key components of the
modified PWC-Net. Let us describe each component subsequently.

Warping layer: The original PWC-Net uses the previous frame I0 as a reference
and the following frame I1 as a target. On the other hand, the bilateral motion
estimation uses the intermediate frame It as a reference, and the input frames
I0 and I1 as the target. Thus, whereas the original PWC-Net warps the feature
cl1 of I1 toward the feature cl0 of I0, we warp both features cl0 and cl1 toward
the intermediate frame, leading to cl0→t and cl1→t, respectively. We employ the
spatial transformer networks [11] to achieve the warping. Specifically, a target
feature map ctgt is warped into a reference feature map cref using a motion vector
field by

cwref(x) = ctgt
(
x + Vref→tgt(x)

)
(1)

where Vref→tgt is the motion vector field from the reference to the target.
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Fig. 3. Illustration of the bilateral cost volume layer for a specific time t.

Bilateral cost volume layer: A cost volume has been used to store the match-
ing costs associating with a pixel in a reference frame with its corresponding
pixels in a single target frame [5, 9, 30, 31]. However, in the bilateral motion es-
timation, because the reference frame does not exist and should be predicted
from two target frames, the conventional cost volume cannot be used. Thus, we
develop a new cost volume for the bilateral motion estimation, which we refer
to as the bilateral cost volume.

Fig. 3 illustrates the proposed bilateral cost volume generation that takes
the features cl0 and cl1 of the two input frames and the up-sampled bilateral

motion fields Ṽ l
t→0 and Ṽ l

t→1 estimated at the (l − 1)th level. Let x denote a
pixel location in the intermediate frame I lt. Then, we define the matching cost
as the bilateral correlation between features cl0 and cl1, indexed by the bilateral
motion vector that passes through x, given by

BCl
t(x,d) = cl0(x + Ṽ l

t→0(x)− 2t× d)T cl1(x + Ṽ l
t→1(x) + 2(1− t)× d) (2)

where d denotes the displacement vector within the search window D = [−d, d]×
[−d, d]. Note that we compute only |D| = D2 bilateral correlations to construct
a partial cost volume, where D = 2d + 1. In the L-level pyramid architecture,
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Comparison of interpolation results obtained by the bilinear motion estimation
and the motion approximation: (a) ground-truth intermediate frame; (b), (c) enlarged
parts for the green and yellow squares in (a); (d), (e) interpolation results using the
bilateral motion estimation; (f), (g) those using the motion approximation. The red
squares in (d) and (g) contain visual artifacts caused by motion inaccuracies.

a one-pixel motion at the coarsest level corresponds to 2L−1 pixels at the finest
resolution. Thus, the search range D of the bilateral cost volume can be set to
a small value to reduce the memory usage. The dimension of the bilateral cost
volume at the lth level is D2 × H l ×W l, where H l and W l denote the height
and width of the lth level features, respectively. Also, the up-sampled bilateral
motions Ṽ l

t→0 and Ṽ l
t→1 are set to zero at the coarsest level.

Most conventional video interpolation algorithms generate a single interme-
diate frame at the middle of two input frames, i.e. t = 0.5. Thus, they cannot
yield output videos with arbitrary frame rates. A few recent algorithms [2, 14]
attempt to interpolate intermediate frames at arbitrary time instances t ∈ (0, 1).
However, because their approaches are based on the approximation, as the time
instance gets far from either of the input frames, the quality of the interpolated
frame gets worse. On the other hand, the proposed algorithm takes into account
the time instance t ∈ [0, 1] during the computation of the bilateral cost volume
in (2). Also, after we train the bilateral motion network with the bilateral cost
volume, we can use the shared weights to estimate the bilateral motions at an
arbitrary t ∈ [0, 1]. In the extreme cases t = 0 or t = 1, the bilateral cost vol-
ume becomes identical to the conventional cost volume in [5,10,24,30,31], which
is used to estimate the bi-directional motions V0→1 and V1→0 between input
frames.

3.2 Motion approximation

Although the proposed bilateral motion network effectively estimates motion
fields Vt→0 and Vt→1 from the intermediate frame at t to the previous and fol-
lowing frames, it may fail to find accurate motions, especially at occluded regions.
For example, Fig. 4(d) and (e) show that the interpolated regions, reconstructed
by the bilateral motion estimation, contain visual artifacts. To address this issue
and improve the quality of an interpolated frame, in addition to the bilateral
motion estimation, we develop an approximation scheme to predict a different
kind of bilateral motions Vt→0 and Vt→1 using the bi-directional motions V0→1

and V1→0 between the two input frames.
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Fig. 5. Motion approximation: bi-directional motions in (a) are used to approximate
forward bilateral motions in (b) and backward bilateral motions in (c).

Fig. 5 illustrates this motion approximation, in which each column represents
a frame at a time instance and a dot corresponds to a pixel in the frame. In
particular, in Fig. 5(a), an occluded pixel in I0 is depicted by a green dot. To
complement the inaccuracy of the bilateral motion at pixel x in It, we use two
bi-directional motions V0→1(x) and V1→0(x), which are depicted by green and

red lines, respectively. We approximate two forward bilateral motions V fw
t→1 and

V fw
t→0 in Fig. 5(b) using V0→1. Specifically, for pixel x in It, depicted by an orange

dot, we approximate a motion vector V fw
t→1(x) by scaling V0→1(x) with a factor

(1−t), assuming that the motion vector field is locally smooth. Since the bilateral
motion estimation is based on the assumption that a motion trajectory between
consecutive frames is linear, two approximate motions V fw

t→1(x) and V fw
t→0(x)

should be symmetric with respect to x in It. Thus, we obtain an additional
approximate vector V fw

t→0(x) by reversing the direction of the vector V fw
t→1(x). In

other words, we approximate the forward bilateral motions by

V fw
t→1(x) = (1− t)× V0→1(x), (3)

V fw
t→0(x) = (−t)× V0→1(x). (4)

Similarly, we approximate the backward bilateral motions by

V bw
t→0(x) = t× V1→0(x), (5)

V bw
t→1(x) = −(1− t)× V1→0(x), (6)

as illustrated in Fig. 5(c). Note that Jiang et al. [14] also used these equations
(3)∼(6), but derived only two motion candidates: Vt→1(x) by combining (3) and
(6) and Vt→0(x) by combining (4) and (5). Thus, if an approximated motion in
(3)∼(6) is unreliable, the combined one is also degraded. In contrast, we use all
four candidates in (3)∼(6) directly to choose reliable motions in Section 3.3.

Fig. 4 shows that, whereas the bilateral motion estimation provides visual
artifacts in (d), the motion approximation provides results without noticeable
artifacts in (f). On the other hand, the bilateral motion estimation is more
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Fig. 6. Frame synthesis using dynamic local blending filters.

effective than the motion approximation in the cases of (e) and (g). Thus, the
two schemes are complementary to each other.

3.3 Frame synthesis

We interpolate an intermediate frame by combining the six intermediate candi-
dates, which are warped by the warping layers in Fig. 1. If we consider only color
information, rich contextual information in the input frames may be lost dur-
ing the synthesis [16,20,27], degrading the interpolation performance. Hence, as
in [2,3,20], we further exploit contextual information in the input frames, called
context maps. Specifically, we extract the output of the conv1 layer of ResNet-
18 [8] as a context map, which is done by the context extractor in Fig. 1.

By warping the two input frames and the corresponding context maps, we
obtain six pairs of a warped frame and its context map: two pairs are recon-
structed using the bilateral motion estimation, and four pairs using the motion
approximation. Fig. 1 shows these six pairs. Since these six warped pairs have
different characteristics, they are used as complementary candidates of the inter-
mediate frame. Recent video interpolation algorithms employ synthesis neural
networks, which take warped frames as input and yield final interpolation results
or residuals to refine pixel-wise blended results [2,3,20]. However, these synthesis
networks may cause artifacts if motions are inaccurately estimated. To alleviate
these artifacts, instead, we develop a dynamic filter network [13] that takes the
aforementioned six pairs of candidates as input and outputs local blending fil-
ters, which are then used to process the warped frames to yield the intermediate
frame. These local blending filters compensate for motion inaccuracies, by con-
sidering spatiotemporal neighboring pixels in the stack of warped frames. The
frame synthesis layer performs this synthesis in Fig. 1.

Dynamic local blending filters: Fig. 6 shows the proposed synthesis network
using dynamic local blending filters. The coefficients of the filters are learned
from the images and contextual information through a dynamic blending filter
network [13]. We employ the residual dense network [34] as the backbone for the
filter generation. In Fig. 6, the generation network takes the input frames I0 and
I1 and the intermediate candidates {I1:6t } with the corresponding context maps
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{C1:6
t } as input. Then, for each pixel x = (x, y), we generate six blending filters

to fuse the six intermediate candidates, given by

F x,y
t ∈ R5×5×6. (7)

For each x, the sum of all coefficients in the six filters are normalized to 1.
Then, the intermediate frame is synthesized via the dynamic local convolu-

tion. More specifically, the intermediate frame is obtained by filtering the inter-
mediate candidates, given by

It(x, y) =

6∑
c=1

2∑
i=−2

2∑
j=−2

F x,y
t (i, j, c)Ict (x+ i, y + j). (8)

3.4 Training

The proposed algorithm includes two neural networks: the bilateral motion net-
work and the dynamic filter generation network. We found that separate training
of these two networks is more efficient than the end-to-end training in training
time and memory space. Thus, we first train the bilateral motion network. Then,
after fixing it, we train the dynamic filter generation network.

Bilateral motion network: To train the proposed bilateral motion network,
we define the bilateral loss Lb as

Lb = Lp + Ls (9)

where Lp and Ls are the photometric loss [26,33] and the smoothness loss [17].
For the photometric loss, we compute the sum of differences between a

ground-truth frame I lt and two warped frames I l0→t and I l1→t using the bilateral
motion fields V l

t→0 and V l
t→1, respectively, at all pyramid levels,

Lp =

L∑
l=1

αl

[∑
x

ρ(I l0→t(x)− I lt(x)) + ρ(I l1→t(x)− I lt(x))

]
(10)

where ρ(x) =
√
x2 + ε2 is the Charbonnier function [23]. The parameters αl and

ε are set to 0.01 × 2l and 10−6, respectively. Also, we compute the smoothness
loss to constrain neighboring pixels to have similar motions, given by

Ls = ‖∇Vt→0‖1 + ‖∇Vt→1‖1. (11)

We use the Adam optimizer [15] with a learning rate of η = 10−4 and shrink
it via η ← 0.5η at every 0.5M iterations. We use a batch size of 4 for 2.5M
iterations and augment the training dataset by randomly cropping 256 × 256
patches with random flipping and rotations.
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Dynamic filter generation network: We define the dynamic filter loss Ld as
the Charbonnier loss between It and its synthesized version Ît, given by

Ld =
∑
x

ρ(Ît(x)− It(x)). (12)

Similarly to the bilateral motion network, we use the Adam optimizer with
η = 10−4 and shrink it via η ← 0.5η at 0.5M, 0.75M, and 1M iterations. We
use a batch size of 4 for 1.25M iterations. Also, we use the same augmentation
technique as that for the bilateral motion network.

Datasets: We use the Vimeo90K dataset [32] to train the proposed networks.
The training set in Vimeo90K is composed of 51,312 triplets with a resolution of
448× 256. We train the bilateral motion network with t = 0.5 at the first 1M it-
erations and then with t ∈ {0, 0.5, 1} for fine-tuning. Next, we train the dynamic
filter generation network with t = 0.5. However, notice that both networks are
capable of handling any t ∈ (0, 1) using the bilateral cost volume in (2).

4 Experimental Results

We evaluate the performances of the proposed video interpolation algorithm
on the Middlebury [1], Vimeo90K [32], UCF101 [28], and Adobe240-fps [29]
datasets. We compare the proposed algorithm with state-of-the-art algorithms.
Then, we conduct ablation studies to analyze the contributions of the proposed
bilateral motion network and dynamic filter generation network.

4.1 Datasets

Middlebury: The Middlebury benchmark [1], the most commonly used bench-
mark for video interpolation, provides two sets: Other and Evaluation. ‘Other’
contains the ground-truth for fine-tuning, while ‘Evaluation’ provides two frames
selected from each of 8 sequences for evaluation.

Vimeo90K: The test set in Vimeo90K [32] contains 3,782 triplets of spatial
resolution 256× 448. It is not used to train the model.

UCF101: The UCF101 dataset [28] contains human action videos of resolution
256× 256. Liu et al. [17] constructed the test set by selecting 379 triplets.

Adobe240-fps: Adobe240-fps [29] consists of high frame-rate videos. To assess
the interpolation performance, we selected a test set of 254 sequences, each of
which consists of nine frames.

4.2 Comparison with the state-of-the-arts

We assess the interpolation performances of the proposed algorithm in compari-
son with the conventional video interpolation algorithms: MIND [18], DVF [17],



BMBC: Bilateral Motion Estimation . . . for Video Interpolation 11

Table 1. Quantitative comparisons on the Middlebury Evaluation set. For each metric,
the numbers in red and blue denote the best and the second best results, respectively.

[22] [32] [14] [20] [3] [2] Ours

Mequon 2.52 2.54 2.51 2.24 2.47 2.38 2.30
Schefflera 3.56 3.70 3.66 2.96 3.49 3.28 3.07
Urban 4.17 3.43 2.91 4.32 4.63 3.32 3.17
Teddy 5.41 5.05 5.05 4.21 4.94 4.65 4.24
Backyard 10.2 9.84 9.56 9.59 8.91 7.88 7.79
Basketball 5.47 5.34 5.37 5.22 4.70 4.73 4.08
Dumptruck 6.88 6.88 6.69 7.02 6.46 6.36 5.63
Evergreen 6.63 7.14 6.73 6.66 6.35 6.26 5.55

Average 5.61 5.49 5.31 5.28 5.24 4.86 4.48

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7. Visual comparison on the Middlebury Evaluation set. (a) Input, (b) SepConv-
L1 [22], (c) ToFlow [32], (d) SuperSlomo [14], (e) CtxSyn [20], (f) MEMC-Net* [3],
(g) DAIN [2], and (h) BMBC (Ours).

SpyNet [25], SepConv [22], CtxSyn [20], ToFlow [32], SuperSloMo [14], MEMC-
Net [3], CyclicGen [16], and DAIN [2]. For SpyNet, we generated intermediate
frames using the Baker et al.’s algorithm [1].

Table 1 shows the comparisons on the Middlebury Evaluation set [1], which
are also available on the Middlebury website. We compare the average interpo-
lation error (IE). A lower IE indicates better performance. The proposed algo-
rithm outperforms all the state-of-the-art algorithms in terms of average IE score.
Fig. 7 visually compares interpolation results. SepConv-L1 [22], ToFlow [32] Su-
perSlomo [14], CtxSyn [20], MEMC-Net [3], and DAIN [2] yield blurring artifacts
around the balls, losing texture details. On the contrary, the proposed algorithm
reconstructs the clear shapes of the balls, preserving the details faithfully.

In Table 2, we provide quantitative comparisons on the UCF101 [28] and
Vimeo90K [32] datasets. We compute the average PSNR and SSIM scores. The
proposed algorithm outperforms the conventional algorithms by significant mar-
gins. Especially, the proposed algorithm provides 0.3 dB higher PSNR than
DAIN [2] on Vimeo90K. Fig. 8 compares interpolation results qualitatively. Be-
cause the cable moves rapidly and the background branches make the motion
estimation difficult, all the conventional algorithms fail to reconstruct the cable
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Table 2. Quantitative comparisons on the UCF101 and Vimeo90K datasets.

Runtime
(seconds)

#Parameters
(million)

UCF101 [17] Vimeo90K [32]

PSNR SSIM PSNR SSIM

SpyNet [25] 0.11 1.20 33.67 0.9633 31.95 0.9601
MIND [18] 0.01 7.60 33.93 0.9661 33.50 0.9429
DVF [17] 0.47 1.60 34.12 0.9631 31.54 0.9462
ToFlow [32] 0.43 1.07 34.58 0.9667 33.73 0.9682
SepConv-Lf [22] 0.20 21.6 34.69 0.9655 33.45 0.9674
SepConv-L1 [22] 0.20 21.6 34.78 0.9669 33.79 0.9702
MEMC-Net [3] 0.12 70.3 34.96 0.9682 34.29 0.9739
CyclicGen [16] 0.09 3.04 35.11 0.9684 32.09 0.9490
CyclicGen large [16] - 19.8 34.69 0.9658 31.46 0.9395
DAIN [2] 0.13 24.0 34.99 0.9683 34.71 0.9756
BMBC (Ours) 0.77 11.0 35.15 0.9689 35.01 0.9764

(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Visual comparison on the Viemo90K test set. (a) Ground-truth, (b)
ToFlow [32], (c) SepConv-Lf [22], (d) CyclicGen [16], (e) MEMC-Net* [3], (f) DAIN [2],
and (g) BMBC (Ours).

properly. In contrast, the proposed algorithm faithfully interpolates the inter-
mediate frame, providing fine details.

The proposed algorithm can interpolate an intermediate frame at any time
instance t ∈ (0, 1). To demonstrate this capability, we assess the ×2, ×4, and
×8 frame interpolation performance on the Adobe240-fps dataset [29]. Because
the conventional algorithms in Table 3, except for DAIN [2], can generate only
intermediate frames at t = 0.5, we recursively apply those algorithms to interpo-
late intermediate frames at other t’s. Table 3 shows that the proposed algorithm
outperforms all the state-of-the-art algorithms. As the frame rate increases, the
performance gain of the proposed algorithm against conventional algorithms gets
larger.
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Table 3. Quantitative comparisons on the Adobe240-fps dataset for ×2, ×4, and ×8
frame interpolation.

×2 ×4 ×8

PSNR SSIM PSNR SSIM PSNR SSIM

ToFlow [32] 28.51 0.8731 29.20 0.8807 28.93 0.8812
SepConv-Lf [22] 29.14 0.8784 29.75 0.8907 30.07 0.8956
SepConv-L1 [22] 29.31 0.8815 29.91 0.8935 30.23 0.8985
CyclicGen [16] 29.39 0.8787 29.72 0.8889 30.18 0.8972
CyclicGen large [16] 28.90 0.8682 29.70 0.8866 30.24 0.8955
DAIN [2] 29.35 0.8820 29.73 0.8925 30.03 0.8983
BMBC (Ours) 29.49 0.8832 30.18 0.8964 30.60 0.9029

Table 4. PSNR comparison of combination of the intermediate candidates.

Intermediate candidates
UCF101 [28] Vimeo90K [32]

PSNR PSNR

Appx4 34.99 34.72
BM 35.12 34.93
BM+Appx2 35.14 34.95
BM+Appx4 35.15 35.01

4.3 Model analysis

We conduct ablation studies to analyze the contributions of the three key com-
ponents in the proposed algorithm: bilateral cost volume, intermediate motion
approximation, and dynamic filter generation network. By comparing various
combinations of intermediate candidates, we analyze the efficacy of the bilateral
cost volume and the intermediate motion approximation jointly.

Intermediate candidates: To analyze the effectiveness of the bilateral motion
estimation and the intermediate motion approximation, we train the proposed
networks to synthesize intermediate frames using the following combinations:

– Appx4: Four intermediate candidates, obtained using approximated bilateral
motions in (3)∼(6), are combined.

– BM: Two intermediate candidates, obtained using bilateral motions, are
combined.

– BM+Appx2: In addition to BM, two more candidates obtained using ap-
proximated bilateral motions V fw

t→0 in (4) and V bw
t→1 in (6) are used.

– BM+Appx4: Six intermediate candidates are used as well (proposed model).

Table 4 compares these models quantitatively. First, Appx4 shows the worst
performance, while it is still comparable to the state-of-the-art algorithms. Sec-
ond, BM provides better performance than Appx4 as well as the state-of-the-art
algorithms, which confirms the superiority of the proposed BM to the approxi-
mation. Third, we can achieve even higher interpolation performance with more
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Table 5. Analysis of the dynamic filter generation network. In all settings, the six
warped frames are input to the network.

Kernel size
Input to filter generation network UCF101 [28] Vimeo90K [32]

Input frames Context maps PSNR PSNR

5× 5 34.98 34.81
3× 3 X 35.09 34.90
5× 5 X 35.08 34.96
7× 7 X 35.02 34.98
5× 5 X X 35.15 35.01

intermediate candidates obtained through the motion approximation.

Dynamic blending filters: We analyze the optimal kernel size and the input
to the dynamic filter generation network. Table 5 compares the PSNR perfor-
mances of different settings. First, the kernel size has insignificant impacts, al-
though the computational complexity is proportional to the kernel size. Next,
when additional information (input frames and context maps) is fed into the
dynamic filter generation network, the interpolation performance is improved.
More specifically, using input frames improves PSNRs by 0.10 and 0.15 dB on the
UCF101 and Vimeo90K datasets. Also, using context maps further improves the
performances by 0.07 and 0.05dB. This is because the input frames and context
maps help restore geometric structure and exploit rich contextual information.

5 Conclusions

We developed a deep-learning-based video interpolation algorithm based on the
bilateral motion estimation, which consists of the bilateral motion network and
the dynamic filter generation network. In the bilateral motion network, we de-
veloped the bilateral cost volume to estimate accurate bilateral motions. In the
dynamic filter generation network, we warped the two input frames using the
estimated bilateral motions and fed them to learn filter coefficients. Finally, we
synthesized the intermediate frame by superposing the warped frames with the
generated blending filters. Experimental results showed that the proposed al-
gorithm outperforms the state-of-the-art video interpolation algorithms on four
benchmark datasets.
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