
Hard negative examples are hard, but useful

Hong Xuan1[0000−0002−4951−3363], Abby Stylianou2, Xiaotong Liu1, and Robert Pless1

1 The George Washington University, Washington DC 20052
{xuanhong,liuxiaotong2017,pless}@gwu.edu
2 Saint Louis University, St. Louis MO 63103

abby.stylianou@slu.edu

Abstract. Triplet loss is an extremely common approach to distance metric
learning. Representations of images from the same class are optimized to be
mapped closer together in an embedding space than representations of images
from different classes. Much work on triplet losses focuses on selecting the
most useful triplets of images to consider, with strategies that select dissimilar
examples from the same class or similar examples from different classes. The
consensus of previous research is that optimizing with the hardest negative
examples leads to bad training behavior. That’s a problem – these hardest neg-
atives are literally the cases where the distance metric fails to capture semantic
similarity. In this paper, we characterize the space of triplets and derive why
hard negatives make triplet loss training fail. We offer a simple fix to the loss
function and show that, with this fix, optimizing with hard negative examples
becomes feasible. This leads to more generalizable features, and image retrieval
results that outperform state of the art for datasets with high intra-class vari-
ance. Code is available at: https://github.com/littleredxh/HardNegative.git

Keywords: Hard Negative, Deep Metric Learning, Triplet Loss

1 Introduction

Deep metric learning optimizes an embedding function that maps semantically similar
images to relatively nearby locations and maps semantically dissimilar images to
distant locations. A number of approaches have been proposed for this problem [3,
8, 11, 14–16, 23]. One common way to learn the mapping is to define a loss function
based on triplets of images: an anchor image, a positive image from the same class,
and a negative image from a different class. The loss penalizes cases where the anchor
is mapped closer to the negative image than it is to the positive image.

In practice, the performance of triplet loss is highly dependent on the triplet
selection strategy. A large number of triplets are possible, but for a large part of the
optimization, most triplet candidates already have the anchor much closer to the
positive than the negative, so they are redundant. Triplet mining refers to the process
of finding useful triplets.

Inspiration comes from Neil DeGrasse Tyson, the famous American Astrophysicist
and science educator who says, while encouraging students, “In whatever you choose to



2 H. Xuan et al.

Fig. 1: The triplet diagram plots a triplet as a dot defined by the anchor-positive
similarity Sap on the x-axis and the anchor-negative similarity San on the y-axis. Dots
below the diagonal correspond to triplets that are “correct”, in the sense that the same
class example is closer than the different class example. Triplets above the diagonal of
the diagram are candidates for the hard negative triplets. They are important because
they indicate locations where the semantic mapping is not yet correct. However,
previous works have typically avoided these triplets because of optimization challenges.

do, do it because it is hard, not because it is easy”. Directly mapping this to our case sug-
gests hard negative mining, where triplets include an anchor image where the positive
image from the same class is less similar than the negative image from a different class.

Optimizing for hard negative triplets is consistent with the actual use of the
network in image retrieval (in fact, hard negative triplets are essentially errors in the
trained image mappings), and considering challenging combinations of images has
proven critical in triplet based distance metric learning [3, 5, 7, 14, 19]. But challenges
in optimizing with the hardest negative examples are widely reported in work on
deep metric learning for face recognition, people re-identification and fine-grained
visual recognition tasks. A variety of work shows that optimizing with the hardest
negative examples for deep metric learning leads to bad local minima in the early
phase of the optimization [24, 1, 14, 20, 25, 16, 2].

A standard version of deep metric learning uses triplet loss as the optimization
function to learn the weights of a CNN to map images to a feature vector. Very
commonly, these feature vectors are normalized before computing the similarity
because this makes comparison intuitive and efficient, allowing the similarity between
feature vectors to be computed as a simple dot-product. We consider this network to
project points to the hypersphere (even though that projection only happens during
the similarity computation). We show there are two problems in this implementation.

First, when the gradient of the loss function does not consider the normalization
to a hypersphere during the gradient backward propagation, a large part of the
gradient is lost when points are re-projected back to the sphere, especially in the



Hard negative examples are hard, but useful 3

cases of triplets including nearby points. Second, when optimizing the parameters
(the weights) of the network for images from different classes that are already mapped
to similar feature points, the gradient of the loss function may actually pull these
points together instead of separating them (the opposite of the desired behavior).

We give a systematic derivation showing when and where these challenging triplets
arise and diagram the sets of triplets where standard gradient descent leads to bad
local minima, and do a simple modification to the triplet loss function to avoid bad
optimization outcomes.

Briefly, our main contributions are to:

{ introduce the triplet diagram as a visualization to help systematically characterize
triplet selection strategies,

{ understand optimization failures through analysis of the triplet diagram,
{ propose a simple modification to a standard loss function to fix bad optimization

behavior with hard negative examples, and
{ demonstrate this modification improves current state of the art results on datasets

with high intra-class variance.

2 Background

Triplet loss approaches penalize the relative similarities of three examples – two from
the same class, and a third from a different class. There has been significant effort
in the deep metric learning literature to understand the most effective sampling of
informative triplets during training. Including challenging examples from different
classes (ones that are similar to the anchor image) is an important technique to speed
up the convergence rate, and improve the clustering performance. Currently, many
works are devoted to finding such challenging examples within datasets. Hierarchical
triplet loss (HTL) [3] seeks informative triplets based on a pre-defined hierarchy of
which classes may be similar. There are also stochastic approaches [19] that sample
triplets judged to be informative based on approximate class signatures that can be
efficiently updated during training.

However, in practice, current approaches cannot focus on the hardest negative
examples, as they lead to bad local minima early on in training as reported in [24, 14,
1, 2, 16, 20, 25]. The avoid this, authors have developed alternative approaches, such
as semi-hard triplet mining [14], which focuses on triplets with negative examples
that are almost as close to the anchor as positive examples. Easy positive mining [24]
selects only the closest anchor-positive pairs and ensures that they are closer than
nearby negative examples.

Avoiding triplets with hard negative examples remedies the problem that the
optimization often fails for these triplets. But hard negative examples are important.
The hardest negative examples are literally the cases where the distance metric fails
to capture semantic similarity, and would return nearest neighbors of the incorrect
class. Interesting datasets like CUB [21] and CAR [9] which focus on birds and cars,
respectively, have high intra-class variance – often similar to or even larger than the
inter-class variance. For example, two images of the same species in different lighting
and different viewpoints may look quite different. And two images of different bird



4 H. Xuan et al.

species on similar branches in front of similar backgrounds may look quite similar.
These hard negative examples are the most important examples for the network to
learn discriminative features, and approaches that avoid these examples because of
optimization challenges may never achieve optimal performance.

There has been other attention on ensure that the embedding is more spread
out. A non-parametric approach [22] treats each image as a distinct class of its own,
and trains a classifier to distinguish between individual images in order to spread
feature points across the whole embedding space. In [26], the authors proposed a
spread out regularization to let local feature descriptors fully utilize the expressive
power of the space. The easy positive approach [24] only optimizes examples that are
similar, leading to more spread out features and feature representations that seem
to generalize better to unseen data.

The next section introduces a diagram to systematically organize these triplet
selection approaches, and to explore why the hardest negative examples lead to bad
local minima.

3 Triplet diagram

Triplet loss is trained with triplets of images, (xa;xp;xn), where xa is an anchor
image, xp is a positive image of the same class as the anchor, and xn is a negative
image of a different class. We consider a convolution neural network, f(�), that
embeds the images on a unit hypersphere, (f(xa);f(xp);f(xn)). We use (fa;fp;fn) to
simplify the representation of the normalized feature vectors. When embedded on
a hypersphere, the cosine similarity is a convenient metric to measure the similarity
between anchor-positive pair Sap = fᵀa fp and anchor-negative pair San = fᵀa fn, and
this similarity is bounded in the range [�1;1].

The triplet diagram is an approach to characterizing a given set of triplets. Figure 1
represents each triplet as a 2D dot (Sap;San), describing how similar the positive and
negative examples are to the anchor. This diagram is useful because the location on
the diagram describes important features of the triplet:

{ Hard triplets: Triplets that are not in the correct configuration, where the
anchor-positive similarity is less than the anchor-negative similarity (dots above
the San=Sap diagonal). Dots representing triplets in the wrong configuration
are drawn in red. Triplets that are not hard triplets we call Easy Triplets, and
are drawn in blue.

{ Hard negative mining: A triplet selection strategy that seeks hard triplets, by
selecting for an anchor, the most similar negative example. They are on the top
of the diagram. We circle these red dots with a blue ring and call them hard
negative triplets in the following discussion.

{ Semi-hard negative mining[14]: A triplet selection strategy that selects, for
an anchor, the most similar negative example which is less similar than the
corresponding positive example. In all cases, they are under San=Sap diagonal.
We circle these blue dots with a red dashed ring.

{ Easy positive mining[24]: A triplet selection strategy that selects, for an an-
chor, the most similar positive example. They tend to be on the right side of the



Hard negative examples are hard, but useful 5

diagram because the anchor-positive similarity tends to be close to 1. We circle
these blue dots with a red ring.

{ Easy positive, Hard negative mining[24]: A related triplet selection strategy
that selects, for an anchor, the most similar positive example and most similar
negative example. The pink dot surrounded by a blue dashed circle represents
one such example.

4 Why some triplets are hard to optimize

The triplet diagram offers the ability to understand when the gradient-based opti-
mization of the network parameters is effective and when it fails. The triplets are
used to train a network whose loss function encourages the anchor to be more similar
to its positive example (drawn from the same class) than to its negative example
(drawn from a different class). While there are several possible choices, we consider
NCA [4] as the loss function:

L(Sap;San)=�log exp(Sap)

exp(Sap)+exp(San)
(1)

All of the following derivations can also be done for the margin-based triplet loss
formulation used in [14]. We use the NCA-based of triplet loss because the following
gradient derivation is clear and simple. Analysis of the margin-based loss is similar
and is derived in the Appendix.

The gradient of this NCA-based triplet loss L(Sap;San) can be decomposed into
two parts: a single gradient with respect to feature vectors fa, fp, fn:

�L=(
@L

@Sap

@Sap

@fa
+

@L

@San

@San

@fa
)�fa+

@L

@Sap

@Sap

@fp
�fp+

@L

@San

@San

@fn
�fn (2)

and subsequently being clear that these feature vectors respond to changes in the
model parameters (the CNN network weights), �:

�L=(
@L

@Sap

@Sap

@fa
+

@L

@San

@San

@fa
)
@fa

@�
��+

@L

@Sap

@Sap

@fp

@fp

@�
��+

@L

@San

@San

@fn

@fn

@�
��

(3)
The gradient optimization only affects the feature embedding through variations

in �, but we first highlight problems with hypersphere embedding assuming that the
optimization could directly affect the embedding locations without considering the
gradient effect caused by �. To do this, we derive the loss gradient, ga, gp, gn, with
respect to the feature vectors, fa, fp, fn, and use this gradient to update the feature
locations where the error should decrease:

fp
new =fp��gp =fp�� @L

@fp
=fp+�fa (4)

fn
new =fn��gn =fn�� @L

@fn
=fn��fa (5)

fa
new =fa��ga =fa��@L

@fa
=fa��fn+�fp (6)



6 H. Xuan et al.

where �=� exp(San)
exp(Sap)+exp(San)

and � is the learning rate.

This gradient update has a clear geometric meaning: the positive point fp is encour-
aged to move along the direction of the vector fa; the negative point fn is encouraged
to move along the opposite direction of the vector fa; the anchor point fa is encouraged
to move along the direction of the sum of fp and �fn. All of these are weighted by
the same weighting factor �. Then we can get the new anchor-positive similarity and
anchor-negative similarity (the complete derivation is given in the Appendix):

Snew
ap =(1+�2)Sap+2���Spn��2San (7)

Snew
an =(1+�2)San�2�+�Spn��2Sap (8)

The first problem is these gradients, ga, gp, gn, have components that move
them off the sphere; computing the cosine similarity requires that we compute the
norm of fa

new, fp
new and fn

new (the derivation for these is shown in Appendix).
Given the norm of the updated feature vector, we can calculate the similarity change
after the gradient update:

�Sap =
Snew
ap

‖fanew‖‖fpnew‖�Sap (9)

�San =
Snew
an

‖fanew‖‖fnnew‖�San (10)

Figure 2(left column) shows calculations of the change in the anchor-positive simi-
larity and the change in the anchor-negative similarity. There is an area along the right
side of the �Sap plot (top row, left column) highlighting locations where the anchor
and positive are not strongly pulled together. There is also a region along the top side
of the �San plot (bottom row, left column) highlighting locations where the anchor
and negative can not be strongly separated. This behavior arises because the gradient
is pushing the feature off the hypersphere and therefore, after normalization, the effect
is lost when anchor-positive pairs or anchor-negative pairs are close to each other.

The second problem is that the optimization can only control the feature
vectors based on the network parameters, �. Changes to � are likely to affect nearby
points in similar ways. For example, if there is a hard negative triplet, as defined in
Section 3, where the anchor is very close to a negative example, then changing � to
move the anchor closer to the positive example is likely to pull the negative example
along with it. We call this effect “entanglement” and propose a simple model to
capture its effect on how the gradient update affects the similarities.

We use a scalar, p, and a similarity related factor q=SapSan, to quantify this
entanglement effect. When all three examples in a triplet are nearby to each other,
both Sap and San will be large, and therefore q will increase the entanglement effect;
when either the positive or the negative example is far away from the anchor, one
of Sap and San will be small and q will reduce the entanglement effect.

The total similarity changes with entanglement will be modeled as follows:

�Stotal
ap =�Sap+pq�San (11)

�Stotal
an =�San+pq�Sap (12)



Hard negative examples are hard, but useful 7

Fig. 2: Numerical simulation of how the optimization changes triplets, with 0
entanglement (left), some entanglement (middle) and complete entanglement (right).
The top row shows effects on anchor-positive similarity the bottom row shows effects
on anchor-negative similarity. The scale of the arrows indicates the gradient strength.
The top region of the bottom-middle and bottom-right plots highlight that the hard
negative triplets regions are not well optimized with standard triplet loss.

Figure 2(middle and right column) shows vector fields on the diagram where Sap

and San will move based on the gradient of their loss function. It highlights the region
along right side of the plots where that anchor and positive examples become less
similar (�Stotal

ap <0), and the region along top side of the plots where that anchor

and negative examples become more similar (�Stotal
an >0) for different parameters

of the entanglement.
When the entanglement increases, the problem gets worse; more anchor-negative

pairs are in a region where they are pushed to be more similar, and more anchor-
positive pairs are in a region where they are pushed to be less similar. The anchor-
positive behavior is less problematic because the effect stops while the triplet is still
in a good configuration (with the positive closer to the anchor than the negative),
while the anchor-negative has not limit and pushes the anchor and negative to be
completely similar.

The plots predict the potential movement for triplets on the triplet diagram. We
will verify this prediction in the Section 6.

Local minima caused by hard negative triplets In Figure 2, the top region
indicates that hard negative triplets with very high anchor-negative similarity get
pushed towards (1,1). Because, in that region, San will move upward to 1 and Sap will



8 H. Xuan et al.

move right to 1. The result of the motion is that a network cannot effectively separate
the anchor-negative pairs and instead pushes all features together. This problem was
described in [24, 14, 1, 2, 16, 20, 25] as bad local minima of the optimization.

When will hard triplets appear During triplet loss training, a mini-batch of
images is samples random examples from numerous classes. This means that for every
image in a batch, there are many possible negative examples, but a smaller number
of possible positive examples. In datasets with low intra-class variance and high
inter-class variance, an anchor image is less likely to be more similar to its hardest
negative example than its random positive example, resulting in more easy triplets.

However, in datasets with relatively higher intra-class variance and lower inter-class
variance, an anchor image is more likely to be more similar to its hardest negative
example than its random positive example, and form hard triplets. Even after several
epochs of training, it’s difficult to cluster instances from same class with extremely
high intra-class variance tightly.

5 Modification to triplet loss

Our solution for the challenge with hard negative triplets is to decouple them into
anchor-positive pairs and anchor-negative pairs, and ignore the anchor-positive pairs,
and introduce a contrastive loss that penalizes the anchor-negative similarity. We call
this Selectively Contrastive Triplet loss LSC, and define this as follows:

LSC(Sap;San)=

{
�San if San>Sap

L(Sap;San) others
(13)

In most triplet loss training, anchor-positive pairs from the same class will be
always pulled to be tightly clustered. With our new loss function, the anchor-positive
pairs in triplets will not be updated, resulting in less tight clusters for a class of
instances (we discuss later how this results in more generalizable features that are
less over-fit to the training data). The network can then ‘focus’ on directly pushing
apart the hard negative examples.

We denote triplet loss with a Hard Negative mining strategy (HN), triplet loss
trained with Semi-Hard Negative mining strategy (SHN), and our Selectively Con-
trastive Triplet loss with hard negative mining strategy (SCT) in the following
discussion.

Figure 3 shows four examples of triplets from the CUB200(CUB) [21] and
CAR196(CAR) [9] datasets at the very start of training, and Figure 4 shows four
examples of triplets at the end of training. The CUB dataset consists of various
classes of birds, while the CAR196 dataset consists of different classes of cars. In
both of the example triplet figures, the left column shows a positive example, the
second column shows the anchor image, and then we show the hard negative example
selected with SCT and SHN approach.

At the beginning of training (Figure 3), both the positive and negative examples
appear somewhat random, with little semantic similarity. This is consistent with its




