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Abstract. The focus of recent meta-learning research has been on the
development of learning algorithms that can quickly adapt to test time
tasks with limited data and low computational cost. Few-shot learning
is widely used as one of the standard benchmarks in meta-learning. In
this work, we show that a simple baseline: learning a supervised or self-
supervised representation on the meta-training set, followed by training
a linear classifier on top of this representation, outperforms state-of-
the-art few-shot learning methods. An additional boost can be achieved
through the use of self-distillation. This demonstrates that using a good
learned embedding model can be more effective than sophisticated meta-
learning algorithms. We believe that our findings motivate a rethinking
of few-shot image classification benchmarks and the associated role of
meta-learning algorithms. Code: http://github.com/WangYueFt/rfs/.

1 Introduction

Few-shot learning measures a model’s ability to quickly adapt to new environ-
ments and tasks. This is a challenging problem because only limited data is
available to adapt the model. Recently, significant advances [54, 51, 49, 11, 43,
45, 52, 33, 41, 58, 26, 28] have been made to tackle this problem using the ideas
of meta-learning or “learning to learn”.

Meta-learning defines a family of tasks, divided into disjoint meta-training
and meta-testing sets. Each task consists of limited training data, which requires
fast adaptability [42] of the learner (e.g., the deep network that is fine-tuned).
During meta-training/testing, the learner is trained and evaluated on a task
sampled from the task distribution. The performance of the learner is evaluated
by the average test accuracy across many meta-testing tasks. Methods to tackle
this problem can be cast into two main categories: optimization-based methods
and metric-based methods. Optimization-based methods focus on designing al-
gorithms that can quickly adapt to each task; while metric-based methods aim to
find good metrics (usually kernel functions) to side-step the need for inner-loop
optimization for each task.
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Meta-learning is evaluated on a number of domains such as few-shot clas-
sification and meta-reinforcement learning. Focusing on few-shot classification
tasks, a question that has been raised in recent work is whether it is the meta-
learning algorithm or the learned representation that is responsible for the fast
adaption to test time tasks. [37] suggested that feature reuse is main factor
for fast adaptation. Recently, [9] proposed transductive fine-tuning as a strong
baseline for few-shot classification; and even in a regular, inductive, few-shot
setup, they showed that fine-tuning is only slightly worse than state-of-the-art
algorithms. In this setting, they fine-tuned the network on the meta-testing set
and used information from the testing data. Besides, [5] shows an improved
fine-tuning model performs slightly worse than meta-learning algorithms.

In this paper, we propose an extremely simple baseline that suggests that
good learned representations are more powerful for few-shot classification tasks
than the current crop of complicated meta-learning algorithms. Our baseline con-
sists of a linear model learned on top of a pre-trained embedding. Surprisingly,
we find this outperforms all other meta-learning algorithms on few-shot classifi-
cation tasks, often by large margins. The differences between our approach and
that of [9] are: we do not utilize information from testing data (since we believe
that inductive learning is more generally applicable to few-shot learning); and
we use a fixed neural network for feature extraction, rather than fine-tuning it
on the meta-testing set. The concurrent works [6, 21] are inline with ours.

Our model learns representations by training a neural network on the entire
meta-training set: we merge all meta-training data into a single task and a neu-
ral network is asked to perform either ordinary classification or self-supervised
learning, on this combined dataset. The classification task is equivalent to the
pre-training phase of TADAM [33] and LEO [41]. After training, we keep the
pre-trained network up to the penultimate layer and use it as a feature extrac-
tor. During meta-testing, for each task, we fit a linear classifier on the features
extracted by the pre-trained network. In contrast to [9] and [37], we do not
fine-tune the neural network. Furthermore, we show that self-distillation on this
baseline provides an additional boost.

Contributions. Our key contributions are:

– A surprisingly simple baseline for few-shot learning, which achieves the state-
of-the-art. This baseline suggests that many recent meta-learning algorithms
are no better than simply learning a good representation through a proxy
task, e.g., image classification.

– Building upon the simple baseline, we use self-distillation to further improve
performance. Our combined method achieves an average of 3% improvement
over the previous state-of-the-art on widely used benchmarks. On the new
benchmark Meta-Dataset [50], our method outperforms previous best results
by more than 7% on average.

– Beyond supervised training, we show that representations learned with state-
of-the-art self-supervised methods achieve similar performance as fully su-
pervised methods.
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2 Related works

Metric-based meta-learning. The core idea in metric-based meta-learning is re-
lated to nearest neighbor algorithms and kernel density estimation. Metric-based
methods embed input data into fixed dimensional vectors and use them to de-
sign proper kernel functions. The predicted label of a query is the weighted
sum of labels over support samples. Metric-based meta-learning aims to learn
a task-dependent metric. [23] used Siamese network to encode image pairs and
predict confidence scores for each pair. Matching Networks [51] employed two
networks for query samples and support samples respectively and used an LSTM
with read-attention to encode a full context embedding of support samples. Pro-
totypical Networks [43] learned to encode query samples and support samples
into a shared embedding space; the metric used to classify query samples is the
distance to prototype representations of each class. Instead of using distances
of embeddings, Relation Networks [45] leveraged relational module to represent
an appropriate metric. TADAM [33] proposed metric scaling and metric task
conditioning to boost the performance of Prototypical Networks.

Optimization-based meta-learning. Deep learning models are neither designed
to train with very few examples nor to converge very fast. To fix that, optimization-
based methods intend to learn with a few examples. Meta-learner [38] exploited
an LSTM to satisfy two main desiderata of few-shot learning: quick acquisi-
tion of task-dependent knowledge and slow extraction of transferable knowledge.
MAML [11] proposed a general optimization algorithm; it aims to find a set of
model parameters, such that a small number of gradient steps with a small
amount of training data from a new task will produce large improvements on
that task. In that paper, first-order MAML was also proposed, which ignored
the second-order derivatives of MAML. It achieved comparable results to com-
plete MAML with orders of magnitude speedup. To further simplify MAML,
Reptile [32] removed re-initialization for each task, making it a more natural
choice in certain settings. LEO [41] proposed that it is beneficial to decouple
the optimization-based meta-learning algorithms from high-dimensional model
parameters. In particular, it learned a stochastic latent space from which the
high-dimensional parameters can be generated. MetaOptNet [26] replaced the
linear predictor with an SVM in the MAML framework; it incorporated a differ-
entiable quadratic programming (QP) solver to allow end-to-end learning. For a
complete list of recent works on meta-learning, we refer readers to [55].

Towards understanding MAML. To understand why MAML works in the first
place, many efforts have been made either through an optimization perspective
or a generalization perspective. Reptile [32] showed a variant of MAML works
even without re-initialization for each task, because it tends to converge towards
a solution that is close to each task’s manifold of optimal solutions. In [37], the
authors analyzed whether the effectiveness of MAML is due to rapid learning of
each task or reusing the high quality features. It concluded that feature reuse is
the dominant component in MAML’s efficacy, which is reaffirmed by experiments
conducted in this paper.
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Meta-learning datasets. Over the past several years, many datasets have been
proposed to test meta-learning or few-shot learning algorithms. Omniglot [24]
was one of the earliest few-shot learning datasets; it contains thousands of hand-
written characters from the world’s alphabets, intended for one-shot ”visual
Turing test”. In [25], the authors reported the 3-year progress for the Omniglot
challenge, concluding that human-level one-shot learnability is still hard for cur-
rent meta-learning algorithms. [51] introduced mini-ImageNet, which is a subset
of ImageNet [8]. In [40], a large portion of ImageNet was used for few-shot
learning tests. Meta-dataset [50] summarized recent datasets and tested several
representative methods in a uniform fashion.

Knowledge distillation. The idea of knowledge distillation (KD) dates back to
[4]. The original idea was to compress the knowledge contained in an ensemble of
models into a single smaller model. In [19], the authors generalized this idea and
brought it into the deep learning framework. In KD, knowledge is transferred
from the teacher model to the student model by minimizing a loss in which the
target is the distribution of class probabilities induced by the teacher model. It
was shown that KD has several benefits for optimization and knowledge transfer
between tasks [59, 13, 14]. BAN [12] introduced sequential distillation, which also
improved the performance of teacher models. In natural language processing
(NLP), BAM [7] used BAN to distill from single-task models to a multi-task
model, helping the multi-task model surpass its single-task teachers. Another two
related works are [30] which provides theoretical analysis of self-distillation and
CRD [47] which shows distillation improves the transferability across datasets.

3 Method

We establish preliminaries about the meta-learning problem and related algo-
rithms in §3.1; then we present our baseline in §3.2; finally, we introduce how
knowledge distillation helps few-shot learning in §3.3. For ease of comparison to
previous work, we use the same notation as [26].

3.1 Problem formulation

The collection of meta-training tasks is defined as T = {(Dtraini ,Dtesti )}Ii=1,
termed as meta-training set. The tuple (Dtraini ,Dtesti ) describes a training and
a testing dataset of a task, where each dataset contains a small number of ex-
amples. Training examples Dtrain = {(xt, yt)}Tt=1 and testing examples Dtest =

{(xq, yq)}Qq=1 are sampled from the same distribution.

A base learner A, which is given by y∗ = fθ(x∗) (∗ denotes t or q), is trained
on Dtrain and used as a predictor on Dtest. Due to the high dimensionality of
x∗, the base learner A suffers high variance. So training examples and testing
examples are mapped into a feature space by an embedding model Φ∗ = fφ(x∗).
Assume the embedding model is fixed during training the base learner on each
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Fig. 1. In meta-training, we train on an image classification task on the merged meta-
training data to learn an embedding model. This model is then re-used at meta-testing
time to extract embedding for a simple linear classifier.

task, then the objective of the base learner is

θ = A(Dtrain;φ)

= arg min
θ
Lbase(Dtrain; θ, φ) +R(θ),

(1)

where L is the loss function and R is the regularization term.
The objective of the meta-learning algorithms is to learn a good embedding

model, so that the average test error of the base learner on a distribution of
tasks is minimized. Formally,

φ = arg min
φ

ET [Lmeta(Dtest; θ, φ)], (2)

where θ = A(Dtrain;φ).
Once meta-training is finished, the performance of the model is evaluated

on a set of held-out tasks S = {(Dtrainj ,Dtestj )}Jj=1, called meta-testing set. The
evaluation is done over the distribution of the test tasks:

ES [Lmeta(Dtest; θ, φ),where θ = A(Dtrain;φ)]. (3)

3.2 Learning embedding model through classification

As we show in §3.1, the goal of meta-training is to learn a transferrable em-
bedding model fφ, which generalizes to any new task. Rather than designing
new meta-learning algorithms to learn the embedding model, we propose that a
model pre-trained on a classification task can generate powerful embeddings for
the downstream base learner. To that end, we merge tasks from meta-training
set into a single task, which is given by

Dnew = {(xi, yi)}Kk=1

= ∪{Dtrain1 , . . . ,Dtraini , . . . ,DtrainI },
(4)

where Dtraini is the task from T . The embedding model is then

φ = arg min
φ

Lce(Dnew;φ), (5)
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Fig. 2. We show a meta-testing case for 5-way 1-shot task: 5 support images and 1
query image are transformed into embeddings using the fixed neural network; a linear
model (logistic regression (LR) in this case) is trained on 5 support embeddings; the
query image is tested using the linear model.

and Lce denotes the cross-entropy loss between predictions and ground-truth
labels. We visualize the task in Figure 1.

As shown in Figure 2, for a task (Dtrainj ,Dtestj ) sampled from meta-testing

distribution, we train a base learner on Dtrainj . The base learner is instantiated
as multivariate logistic regression. Its parameters θ = {W , b} include a weight
term W and a bias term b, given by

θ = arg min
{W ,b}

T∑
t=1

Lcet (W fφ(xt) + b, yt) +R(W , b). (6)

We also evaluate other base learners such as nearest neighbor classifier with L-2
distance and/or cosine distance in §4.8.

In our method, the crucial difference between meta-training and meta-testing
is the embedding model parameterized by φ is carried over from meta-training to
meta-testing and kept unchanged when evaluated on tasks sampled from meta-
testing set. The base learner is re-initialized for every task and trained on Dtrain
of meta-testing task. Our method is the same with the pre-training phase of
methods used in [41, 33]. Unlike other methods [9, 37], we do not fine-tune the
embedding model fφ during the meta-testing stage.

3.3 Sequential self-distillation

Knowledge distillation [19] is an approach to transfer knowledge embedded in an
ensemble of models to a single model, or from a larger teacher model to a smaller
student model. Instead of using the embedding model directly for meta-testing,
we distill the knowledge from the embedding model into a new model with an
identical architecture, training on the same merged meta-training set. The new
embedding model parameterized by φ′ is trained to minimize a weighted sum of
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Fig. 3. Sequential self-distillation: a vanilla model, termed as Generation 0, is trained
with standard cross-entropy loss; then, the k-th generation is learned with knowledge
distilled from the (k-1)-th generation.

the cross-entropy loss between the predictions and ground-truth labels and the
Kullback–Leibler divergence (KL) between predictions and soft targets:

φ′ = arg min
φ′

(αLce(Dnew;φ′)+

βKL(f(Dnew;φ′), f(Dnew;φ))),
(7)

where usually β = 1− α.
We exploit the Born-again [12] strategy to apply KD sequentially to generate

multiple generations, which is shown in Figure 3. At each step, the embedding
model of k-th generation is trained with knowledge transferred from the embed-
ding model of (k-1)-th generation:

φk = arg min
φ

(αLce(Dnew;φ)+

βKL(f(Dnew;φ), f(Dnew;φk−1))).
(8)

We repeat the operation K times, we use φK as the embedding model to extract
features for meta-testing. We analyze the sequential self-distillation in §4.7.

4 Experiments

We conduct experiments on five widely used few-shot image recognition bench-
marks: miniImageNet [51], tieredImageNet [40], CIFAR-FS [3], and FC100 [33],
and Meta-Dataset [50].

4.1 Setup

Architecture. Following previous works [29, 33, 26, 39, 9], we use a ResNet12
as our backbone: the network consists of 4 residual blocks, where each has 3
convolutional layers with 3×3 kernel; a 2×2 max-pooling layer is applied after
each of the first 3 blocks; and a global average-pooling layer is on top of the
fourth block to generate the feature embedding. Similar to [26], we use Drop-
block as a regularizer and change the number of filters from (64,128,256,512) to
(64,160,320,640). As a result, our ResNet12 is identical to that used in [39, 26].

Optimization setup. We use SGD optimizer with a momentum of 0.9 and
a weight decay of 5e−4. Each batch consists of 64 samples. The learning rate is
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miniImageNet 5-way tieredImageNet 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

MAML [11] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75
Matching Networks [51] 64-64-64-64 43.56 ± 0.84 55.31 ± 0.73 - -
IMP [2] 64-64-64-64 49.2 ± 0.7 64.7 ± 0.7 - -

Prototypical Networks† [43] 64-64-64-64 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74
TAML [22] 64-64-64-64 51.77 ± 1.86 66.05 ± 0.85 - -
SAML [16] 64-64-64-64 52.22 ± n/a 66.49 ± n/a - -
GCR [27] 64-64-64-64 53.21 ± 0.80 72.34 ± 0.64 - -
KTN(Visual) [34] 64-64-64-64 54.61 ± 0.80 71.21 ± 0.66 - -
PARN[57] 64-64-64-64 55.22 ± 0.84 71.55 ± 0.66 - -
Dynamic Few-shot [15] 64-64-128-128 56.20 ± 0.86 73.00 ± 0.64 - -
Relation Networks [45] 64-96-128-256 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78
R2D2 [3] 96-192-384-512 51.2 ± 0.6 68.8 ± 0.1 - -
SNAIL [29] ResNet-12 55.71 ± 0.99 68.88 ± 0.92 - -
AdaResNet [31] ResNet-12 56.88 ± 0.62 71.94 ± 0.57 - -
TADAM [33] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -
Shot-Free [39] ResNet-12 59.04 ± n/a 77.64 ± n/a 63.52 ± n/a 82.59 ± n/a
TEWAM [35] ResNet-12 60.07 ± n/a 75.90 ± n/a - -
MTL [44] ResNet-12 61.20 ± 1.80 75.50 ± 0.80 - -
Variational FSL [60] ResNet-12 61.23 ± 0.26 77.69 ± 0.17 - -
MetaOptNet [26] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
Diversity w/ Cooperation [10] ResNet-18 59.48 ± 0.65 75.62 ± 0.48 - -
Fine-tuning [9] WRN-28-10 57.73 ± 0.62 78.17 ± 0.49 66.58 ± 0.70 85.55 ± 0.48

LEO-trainval† [41] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

Ours-simple ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
Ours-distill ResNet-12 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49

Table 1. Comparison to prior work on miniImageNet and tieredImageNet.
Average few-shot classification accuracies (%) with 95% confidence intervals on mini-
ImageNet and tieredImageNet meta-test splits. Results reported with input image size
of 84x84. a-b-c-d denotes a 4-layer convolutional network with a, b, c, and d filters in
each layer. † results obtained by training on the union of training and validation sets.

initialized as 0.05 and decayed with a factor of 0.1 by three times for all datasets,
except for miniImageNet where we only decay twice as the third decay has no
effect. We train 100 epochs for miniImageNet, 60 epochs for tieredImageNet,
and 90 epochs for both CIFAR-FS and FC100. During distillation, we use the
same learning schedule and set α = β = 0.5.

Data augmentation. When training the embedding network on trans-
formed meta-training set, we adopt random crop, color jittering, and random
horizontal flip as in [26]. For meta-testing stage, we train an N -way logistic
regression base classifier. We use the implementations in scikit-learn [1].

4.2 Results on ImageNet derivatives

The miniImageNet dataset [51] is a standard benchmark for few-shot learning
algorithms for recent works. It consists of 100 classes randomly sampled from
the ImageNet; each class contains 600 downsampled images of size 84x84. We
follow the widely-used splitting protocol proposed in [38], which uses 64 classes
for meta-training, 16 classes for meta-validation, and 20 classes for meta-testing.
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CIFAR-FS 5-way FC100 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

MAML [11] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks [43] 64-64-64-64 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6
Relation Networks [45] 64-96-128-256 55.0 ± 1.0 69.3 ± 0.8 - -
R2D2 [3] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1 - -
TADAM [33] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
Shot-Free [39] ResNet-12 69.2 ± n/a 84.7 ± n/a - -
TEWAM [35] ResNet-12 70.4 ± n/a 81.3 ± n/a - -
Prototypical Networks [43] ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
MetaOptNet [26] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

Ours-simple ResNet-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6
Ours-distill ResNet-12 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6

Table 2. Comparison to prior work on CIFAR-FS and FC100. Average few-shot
classification accuracies (%) with 95% confidence intervals on CIFAR-FS and FC100.
a-b-c-d denotes a 4-layer convolutional network with a, b, c, and d filters in each layer.

The tieredImageNet dataset [40] is another subset of ImageNet but has more
classes (608 classes). These classes are first grouped into 34 higher-level cat-
egories, which are further divided into 20 training categories (351 classes), 6
validation categories (97 classes), and 8 testing categories (160 classes). Such
construction ensures the training set is distinctive enough from the testing set
and makes the problem more challenging.

Results. During meta-testing, we evaluate our method with 3 runs, where
in each run the accuracy is the mean accuracy of 1000 randomly sampled tasks.
We report the median of 3 runs in Table 1. Our simple baseline with ResNet-12
is already comparable with the state-of-the-art MetaOptNet [26] on miniIma-
geNet, and outperforms all previous works by at least 3% on tieredImageNet.
The network trained with distillation further improves by 2-3%.

We notice that previous works [36, 41, 33, 44] have also leveraged the stan-
dard cross-entropy pre-training on the meta-training set. In [33, 41], a wide
ResNet (WRN-28-10) is trained to classify all classes in the meta-training set
(or combined meta-training and meta-validation set), and then frozen during the
meta-training stage. [9] also conducts pre-training but the model is fine-tuned
using the support images in meta-testing set, achieving 57.73± 0.62. We adopt
the same architecture and gets 61.1±0.86. So fine-tuning on small set of samples
makes the performance worse. Another work [33] adopts a multi-task setting by
jointly training on the standard classification task and few-shot classification
(5-way) task. In another work [44], the ResNet-12 is pre-trained before mining
hard tasks for the meta-training stage.

4.3 Results on CIFAR derivatives

The CIFAR-FS dataset [3] is a derivative of the original CIFAR-100 dataset by
randomly splitting 100 classes into 64, 16 and 20 classes for training, validation,
and testing, respectively. The FC100 dataset [33] is also derived from CIFAR-
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Trained on ILSVRC train split

Dataset Best from [50]
LR SVM LR-distill SVM-distill

(ours) (ours) (ours) (ours)

ILSVRC 50.50 60.14 56.48 61.48 58.33
Omniglot 63.37 64.92 65.90 64.31 66.77
Aircraft 68.69 63.12 61.43 62.32 64.23
Birds 68.66 77.69 74.61 79.47 76.63
Textures 69.05 78.59 74.25 79.28 76.66
Quick Draw 51.52 62.48 59.34 60.83 59.02
Fungi 39.96 47.12 41.76 48.53 44.51
VGG Flower 87.15 91.60 90.32 91.00 89.66
Traffic Signs 66.79 77.51 78.94 76.33 78.64
MSCOCO 43.74 57.00 50.81 59.28 54.10

Mean Accuracy 60.94 68.02 65.38 68.28 66.86

Table 3. Results on Meta-Dataset. Average accuracy (%) is reported with variable
number of ways and shots, following the setup in [50]. We compare four variants of out
method (LR, SVM, LR-distill, and SVM-distill) to the best accuracy over 7 methods
in [50]. In each episode, 1000 tasks are sampled for evaluation.

100 dataset in a similar way to tieredImagNnet. This results in 60 classes for
training, 20 classes for validation, and 20 classes for testing.
Results. Similar to previous experiments, we evaluate our method with 3 runs,
where in each run the accuracy is the mean accuracy of 3000 randomly sampled
tasks. Table 2 summarizes the results, which shows that our simple baseline is
comparable to Prototypical Networks [43] and MetaOptNet [26] on CIFAR-FS
dataset, and outperforms both of them on FC100 dataset. Our distillation version
achieves the new state-of-the-art on both datasets. This verifies our hypothesis
that a good embedding plays an important role in few-shot recognition.

4.4 Results on Meta-Dataset

Meta-Dataset [50] is a new benchmark for evaluating few-shot methods in large-
scale settings. Compared to miniImageNet and tieredImageNet, Meta-Dataset
provides more diverse and realistic samples.

Setup. The ILSVRC (ImageNet) subset consists of 712 classes for training,
158 classes for validation, and 130 classes for testing. We follow the setting in
Meta-Dateset [50] where the embedding model is trained solely on the ILSVRC
training split. We use ResNet-18 [18] as the backbone network. The input size
is 128×128. In the pre-training stage, we use SGD optimizer with a momentum
of 0.9. The learning rate is initially 0.1 and decayed by a factor of 10 for every
30 epochs. We train the model for 90 epochs in total. The batch size is 256. We
use standard data augmentation, including randomly resized crop and horizontal
flip. In the distillation stage, we set α = 0.5 and β = 1.0. We perform distillation
twice and use the model from the second generation for meta-testing. We do not
use test-time augmentation in meta-testing. In addition to logistic regression
(LR), we also provide results of linear SVM for completeness.
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miniImageNet 5-way

model backbone 1-shot 5-shot

Supervised ResNet50 57.56 ± 0.79 73.81 ± 0.63
MoCo [17] ResNet50 54.19 ± 0.93 73.04 ± 0.61
CMC [46] ResNet50∗ 56.10 ± 0.89 73.87 ± 0.65

Table 4. Comparsions of embeddings from supervised pre-training and self-supervised
pre-training (Moco and CMC). ∗ the encoder of each view is 0.5× width of a normal
ResNet-50.

miniImageNet tieredImageNet CIFAR-FS FC100
NN LR L-2 Aug Distill 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

X 56.29 69.96 64.80 78.75 64.36 78.00 38.40 49.12
X 58.74 78.31 67.62 84.77 66.92 84.78 40.36 57.23
X X 61.56 79.27 69.53 85.08 71.24 85.63 42.77 58.86
X X X 62.02 79.64 69.74 85.23 71.45 85.95 42.59 59.13
X X X X 64.82 82.14 71.52 86.03 73.89 86.93 44.57 60.91

Table 5. Ablation study on four benchmarks with ResNet-12 as backbone
network. “NN” and “LR” stand for nearest neighbour classifier and logistic regression.
“L-2” means feature normalization after which feature embeddings are on the unit
sphere. “Aug” indicates that each support image is augmented into 5 samples to train
the classifier. “Distill” represents the use of knowledge distillation.

We select the best results from [50] for comparison – for each testing subset,
we pick the best accuracy over 7 methods and 3 different architectures including
4-layer ConvNet, Wide ResNet, and ResNet-18. As shown in Table 3, our simple
baselines clearly outperform the best results from [50] on 9 out of 10 testing
datasets, often by a large margin. Our baseline method using LR outperforms
previous best results by more than 7% on average. Also, self-distillation improves
max(LR, SVM) in 7 out of the 10 testing subsets. Moreover, we notice empirically
that logistic regression (LR) performs better than linear SVM.

4.5 Embeddings from self-supervised representation learning

Using unsupervised learning [56, 46, 17, 48] to improve the generalization of the
meta-learning algorithms [53] removes the needs of data annotation. In addition
to using embeddings from supervised pre-training, we also train a linear classifier
on embeddings from self-supervised representation learning. Following MoCo [17]
and CMC [46] (both are inspired by InstDis [56]), we train a ResNet50 [18]
(without using labels) on the merged meta-training set to learn an embedding
model. We compare unsupervised ResNet50 to a supervised ResNet50. From
Table 4, we observe that using embeddings from self-supervised ResNet50 is
only slightly worse than using embeddings from supervised ResNet50 (in 5-shot
setting, the results are comparable). This observation shows the potential of
self-supervised learning in the scenario of few-shot learning.
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Fig. 4. Evaluation on different generations of distilled networks. The 0-th gen-
eration (or root generation) indicates the vanilla network trained with only standard
cross-entropy loss. The k-th generation is trained by combining the standard classifica-
tion loss and the knowledge distillation (KD) loss using the (k-1)-th generation as the
teacher model. Logistic regression (LR) and nearest neighbours (NN) are evaluated.

4.6 Ablation experiments

In this section, we conduct ablation studies to analyze how each component
affects the few-shot recognition performance. We study the following five com-
ponents of our method: (a) we chose logistic regression as our base learner, and
compare it to a nearest neighbour classifier with euclidean distance; (b) we find
that normalizing the feature vectors onto the unit sphere, e.g., L-2 normaliza-
tion, could improve the classification of the downstream base classifier; (c) during
meta-testing, we create 5 augmented samples from each support image to allevi-
ate the data insufficiency problem, and using these augmented samples to train
the linear classifier; (d) we distill the embedding network on the training set by
following the sequential distillation [12] strategy.

Table 5 shows the results of our ablation studies on miniImageNet, tiered-
ImageNet, CIFAR-FS, and FC100. In general, logistic regression significantly
outperforms the nearest neighbour classifier, especially for the 5-shot case; L-2
normalization consistently improves the 1-shot accuracy by 2% on all datasets;
augmenting the support images leads to marginal improvement; even with all
these techniques, distillation can still provide 2% extra gain.

4.7 Effects of distillation

We use sequential self-distillation to get an embedding model, similar to the one
in Born-again networks [12]. We investigate the effect of this strategy on the
performance of downstream few-shot classification.

In addition to logistic regression and nearest-neighbour classifiers, we also
look into a cosine similarity classifier, which is equivalent to the nearest-neighbour
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miniImageNet 5-way tieredImageNet 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

Ours 64-64-64-64 55.25 ± 0.58 71.56 ± 0.52 56.18 ± 0.70 72.99 ± 0.55
Ours-distill 64-64-64-64 55.88 ± 0.59 71.65 ± 0.51 56.76 ± 0.68 73.21 ± 0.54
Ours-trainval 64-64-64-64 56.32 ± 0.58 72.46 ± 0.52 56.53 ± 0.68 73.15 ± 0.58
Ours-distill-trainval 64-64-64-64 56.64 ± 0.58 72.85 ± 0.50 57.35 ± 0.70 73.98 ± 0.56

Ours ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
Ours-distill ResNet-12 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
Ours-trainval ResNet-12 63.59 ± 0.61 80.86 ± 0.47 71.12 ± 0.68 85.94 ± 0.46
Ours-distill-trainval ResNet-12 66.58 ± 0.65 83.22 ± 0.39 72.98 ± 0.71 87.46 ± 0.44

Ours SEResNet-12 62.29 ± 0.60 79.94 ± 0.46 70.31 ± 0.70 85.22 ± 0.50
Ours-distill SEResNet-12 65.96 ± 0.63 82.05 ± 0.46 71.72 ± 0.69 86.54 ± 0.49
Ours-trainval SEResNet-12 64.07 ± 0.61 80.92 ± 0.43 71.76 ± 0.66 86.27 ± 0.45
Ours-distill-trainval SEResNet-12 67.73 ± 0.63 83.35 ± 0.41 72.55 ± 0.69 86.72 ± 0.49

Table 6. Comparisons of different backbones on miniImageNet and tieredImageNet.

CIFAR-FS 5-way FC100 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

Ours 64-64-64-64 62.7 ± 0.8 78.7 ± 0.5 39.6 ± 0.6 53.5 ± 0.5
Ours-distill 64-64-64-64 63.8 ± 0.8 79.5 ± 0.5 40.3 ± 0.6 54.1 ± 0.5
Ours-trainval 64-64-64-64 63.5 ± 0.8 79.8 ± 0.5 43.2 ± 0.6 58.5 ± 0.5
Ours-distill-trainval 64-64-64-64 64.9 ± 0.8 80.3 ± 0.5 44.6 ± 0.6 59.2 ± 0.5

Ours ResNet-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6
Ours-distill ResNet-12 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6
Ours-trainval ResNet-12 73.1 ± 0.8 86.7 ± 0.5 49.5 ± 0.7 66.4 ± 0.6
Ours-distill-trainval ResNet-12 75.4 ± 0.8 88.2 ± 0.5 51.6 ± 0.7 68.4 ± 0.6

Ours SEResNet-12 72.0 ± 0.8 86.0 ± 0.6 43.4 ± 0.6 59.1 ± 0.6
Ours-distill SEResNet-12 74.2 ± 0.8 87.2 ± 0.5 44.9 ± 0.6 61.4 ± 0.6
Ours-trainval SEResNet-12 73.3 ± 0.8 86.8 ± 0.5 49.9 ± 0.7 66.8 ± 0.6
Ours-distill-trainval SEResNet-12 75.6 ± 0.8 88.2 ± 0.5 52.0 ± 0.7 68.8 ± 0.6

Table 7. Comparisons of different backbones on CIFAR-FS and FC100.

classifier but with normalized features (noted as “NN+Norm.”). The plots of 1-
shot and 5-shot results on miniImageNet and CIFAR-FS are shown in Figure 4.
The 0-th generation (or root generation) refers to the vanilla model trained with
only standard cross-entropy loss, and the (k-1)-th generation is distilled into k-
th generation. In general, few-shot recognition performance keeps getting better
in the first two or three generations. After certain number of generations, the
accuracy starts decreasing for logistic regression and nearest neighbour. Normal-
izing the features can significantly alleviate this problem. In Table 1, Table 2,
and Table 5, we evalute the model of the second generation on miniImageNet,
CIFAR-FS and FC100 datasets; we use the first generation on tieredImageNet.
Model selection is done on the validation set.

4.8 Choice of base classifier

One might argue in the 1-shot case, that a linear classifier should behavior simi-
larly to a nearest-neighbour classifier. However in Table 5 and Figure 4, we find
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that logistic regression is clearly better than nearest-neighbour. We argue that
this is casued by the scale of the features. After we normalize the features by
the L-2 norm, logistic regression (“LR+Norm”) performs similarly to the near-
est neighbour classifier (“NN+Norm.”), as shown in the first row of Figure 4.
However, when increasing the size of the support set to 5, logistic regression is
significantly better than nearest-neighbour even after feature normalization

4.9 Comparsions of different network backbones.

To further verify our assumption that the key success of few-shot learning algo-
rithms is due to the quality of embeddings, we compare three alternatives in Ta-
ble 6 and Table 7: a ConvNet with four four convolutional layers (64, 64, 64, 64);
a ResNet12 as in Table 1; a ResNet12 with sequeeze-and-excitation [20] modules.
For each model, we have four settings: training on meta-training set; training and
distilling on meta-training set; training on meta-training set and meta-validation
set; training and distilling on meta-training set and meta-validation set. The re-
sults consistently improve with more data and better networks. This is inline
with our hypothesis: embeddings are the most critical factor to the performance
of few-shot learning/meta learning algorithms; better embeddings will lead to
better few-shot testing performance (even with a simple linear classier). In addi-
tion, our ConvNet model also outperforms other few-shot learning and/or meta
learning models using the same network. This verifies that in both small model
regime (ConvNet) and large model regime (ResNet), few-shot learning and meta
learning algorithms are no better than learning a good embedding model.

4.10 Multi-task vs multi-way classification?

We are interested in understanding whether the efficacy of our simple baseline
is due to multi-task or multi-way classification. We compare to training an em-
bedding model through multi-task learning: a model with shared embedding
network and different classification heads is constructed, where each head is
only classifying the corresponding category; then we use the embedding model
to extract features as we do with our baseline model. This achieves 58.53± 0.8
on mini-ImageNet 5-way 1-shot case, compared to our baseline model which is
62.02± 0.63. So we argue that the speciality of our setting, where the few-shot
classification tasks are mutually exclusive and can be merged together into a
single multi-way classification task, makes the simple model effective.
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