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Abstract. Temporally localizing activities within untrimmed videos has
been extensively studied in recent years. Despite recent advances, exist-
ing methods for weakly-supervised temporal activity localization struggle
to recognize when an activity is not occurring. To address this issue, we
propose a novel method named A2CL-PT. Two triplets of the feature
space are considered in our approach: one triplet is used to learn dis-
criminative features for each activity class, and the other one is used
to distinguish the features where no activity occurs (i.e. background
features) from activity-related features for each video. To further im-
prove the performance, we build our network using two parallel branches
which operate in an adversarial way: the first branch localizes the most
salient activities of a video and the second one finds other supplementary
activities from non-localized parts of the video. Extensive experiments
performed on THUMOS14 and ActivityNet datasets demonstrate that
our proposed method is effective. Specifically, the average mAP of IoU
thresholds from 0.1 to 0.9 on the THUMOS14 dataset is significantly
improved from 27.9% to 30.0%.

Keywords: A2CL-PT, temporal activity localization, adversarial learn-
ing, weakly-supervised learning, center loss with a pair of triplets

1 Introduction

The main goal of temporal activity localization is to find the start and end
times of activities from untrimmed videos. Many of the previous approaches
are fully supervised: they expect that ground-truth annotations for temporal
boundaries of each activity are accessible during training [22, 20, 26, 32, 2, 11,
14]. However, collecting these frame-level activity annotations is time-consuming
and difficult, leading to annotation noise. Hence, a weakly-supervised version has
taken foot in the community: here, one assumes that only video-level ground-
truth activity labels are available. These video-level activity annotations are
much easier to collect and already exist across many datasets [8, 23, 6, 15, 31],
thus weakly-supervised methods can be applied to a broader range of situations.

Current work in weakly-supervised temporal activity localization shares a
common framework [12, 16, 17, 19, 9]. First, rather than using a raw video, they
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Fig. 1. (a): An illustration of the proposed A2CL-PT. F and f are aggregated video-
level features where f is designed to be more attended to the background features.
c is their corresponding center and cn is the negative center. A triplet of (F, c, cn) is
used to learn discriminative features. We propose to exploit another triplet of (c, F, f)
which distinguishes background features from the activity-related features. We call this
method of two triplets ACL-PT. In addition, we design our network with two parallel
branches so that the two separate sets of centers can be learned in an adversarial way.
We call our final proposed method A2CL-PT. (b): Sample frames of a video containing
Diving activity class from THUMOS14 dataset [5] and the corresponding results of
activity localization. It is shown that our final method A2CL-PT performs the best.

use a sequence of features extracted by deep networks where the features are
much smaller than the raw video in size. Second, they apply a fully-connected
layer to embed the pre-extracted features to the task-specific feature space.
Third, they project the embedded features to the label space by applying a 1-D
convolutional layer to those features. The label space has the same dimension as
the number of activities, so the final output becomes a sequence of vectors that
represents the classification scores for each activity over time. Each sequence
of vectors is typically referred to as CAS (Class Activation Sequence) [21] or
T-CAM (Temporal Class Activation Map) [17]. Finally, activities are localized
by thresholding this T-CAM. T-CAM is sometimes applied with the softmax
function to generate class-wise attention. This top-down attention represents
the probability mass function for each activity over time.

An important component in weakly-supervised temporal activity localization
is the ability to automatically determine background portions of the video where
no activity is occurring. For example, BaS-Net [9] suggests using an additional
suppression objective to suppress the network activations on the background
portions. Nguyen et al. [18] proposes a similar objective to model the background
contents. However, we argue that existing methods are not able to sufficiently
distinguish background information from activities of interest for each video even
though such an ability is critical to strong temporal activity localization.

To this end, we propose a novel method for the task of weakly-supervised
temporal activity localization, which we call Adversarial and Angular Center
Loss with a Pair of Triplets (A2CL-PT). It is illustrated in Fig. 1(a). Our key
innovation is that we explicitly enable our model to capture the background re-
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gion of the video while using an adversarial approach to focus on completeness
of the activity learning. Our method is built on two triplets of vectors of the
feature space, and one of them is designed to distinguish background portions
from the activity-related parts of a video. Our method is inspired by the angu-
lar triplet-center loss (ATCL) [10] originally designed for multi-view 3D shape
retrieval. Let us first describe what ATCL is and then how we develop our novel
method of A2CL-PT.

In ATCL [10], a center is defined as a parameter vector representing the
center of a cluster of feature vectors for each class. During training, the centers
are updated by reducing the angular distance between the embedded features
and their corresponding class centers. This groups together features that corre-
spond to the same class and distances features from the centers of other class
clusters (i.e. negative centers), making the learned feature space more useful for
discriminating between classes. It follows that each training sample is a triplet
of a feature vector, its center, and a negative center where the feature serves as
an anchor.

Inspired by ATCL, we first formulate a loss function to learn discriminative
features. ATCL cannot be directly applied to our problem because it assumes
that all the features are of the same size, whereas an untrimmed video can have
any number of frames. Therefore, we use a different feature representation at the
video-level. We aggregate the embedded features by multiplying the top-down
attention described above at each time step. The resulting video-level feature
representation has the same dimension as the embedded features, so we can
build a triplet whose anchor is the video-level feature vector (it is (F, c, cn) in
Fig. 1(a)). This triplet ensures that the embedded features of the same activity
are grouped together and that they have high attention values at time steps
when the activity occurs.

More importantly, we argue that it is possible to exploit another triplet. Let
us call the features at time steps when some activity occurs activity features,
and the ones where no activity occurs background features. The main idea is
that the background features should be distinguished from the activity features
for each video. First, we generate a new class-wise attention from T-CAM. It
has higher attention values for the background features when compared to the
original top-down attention. If we aggregate the embedded features with this
new attention, the resulting video-level feature will be more attended to the
background features than the original video-level feature is. In a discriminative
feature space, the original video-level feature vector should be closer to its center
than the new video-level feature vector is. This property can be achieved by using
the triplet of the two different video-level feature vectors and their corresponding
center where the center behaves as an anchor (it is (c, F, f) in Fig. 1(a)). The
proposed triplet is novel and will be shown to be effective. Since we make use of
a pair of triplets on the same feature space, we call it Angular Center Loss with
a Pair of Triplets (ACL-PT).

To further improve the localization performance, we design our network to
have two parallel branches which find activities in an adversarial way, also illus-
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trated in Fig. 1(a). Using a network with a single branch may be dominated by
salient activity features that are too short to localize all the activities in time.
We zero out the most salient activity features localized by the first branch for
each activity so that the second (adversarial) branch can find other supplemen-
tary activities from the remaining parts of the video. Here, each branch has its
own set of centers which group together the features for each activity and one
1-D convolutional layer that produces T-CAM. The two adversary T-CAMs are
weighted to produce the final T-CAM that is used to localize activities. We want
to note that our network produces the final T-CAM with a single forward pass
so it is trained in an end-to-end manner. We call our final proposed method
Adversarial and Angular Center Loss with a Pair of Triplets (A2CL-PT). It is
shown in Fig. 1(b) that our final method performs the best.

There are three main contributions in this paper:

• We propose a novel method using a pair of triplets. One facilitates learning
discriminative features. The other one ensures that the background features
are distinguishable from the activity-related features for each video.

• We build an end-to-end two-branch network by adopting an adversarial ap-
proach to localize more complete activities. Each branch comes with its own
set of centers so that embedded features of the same activity can be grouped
together in an adversarial way by the two branches.

• We perform extensive experiments on THUMOS14 and ActivityNet datasets
and demonstrate that our method outperforms all the previous state-of-the-
art approaches.

2 Related Work

Center loss (CL) [25] is recently proposed to reduce the intra-class variations
of feature representations. CL learns a center for each class and penalizes the
Euclidean distance between the features and their corresponding centers. Triplet-
center loss (TCL) [4] shows that using a triplet of each feature vector, its cor-
responding center, and a nearest negative center is effective in increasing the
inter-class separability. TCL enforces that each feature vector is closer to its
corresponding center than to the nearest negative center by a pre-defined mar-
gin. Angular triplet-center loss (ATCL) [10] further improves TCL by using the
angular distance. In ATCL, it is much easier to design a better margin because
it has a clear geometric interpretation and is limited from 0 to π.

BaS-Net [9] and Nguyen et al. [18] are the leading state-of-the-art methods for
weakly-supervised temporal activity localization. They take similar approaches
to utilize the background portions of a video. There are other recent works with-
out explicit usage of background information. Liu et al. [12] utilizes multi-branch
network where T-CAMs of these branches differ from each other. This property
is enforced by the diversity loss: the sum of the simple cosine distances between
every pair of the T-CAMs. 3C-Net applies an idea of CL, but the performance
is limited because CL does not consider the inter-class separability.
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Fig. 2. An illustration of our overall architecture. It consists of two streams (RGB
and optical flow), and each stream consists of two (first and adversarial) branches.
Sequences of features are extracted from two input streams using pre-trained I3D
networks [1]. We use two fully-connected layers with ReLU activation (FC) to compute
the embedded features Xr

i ,X
o
i . Next, T-CAMs Cr

i ,C
o
i are computed by applying 1-

D convolutional layers (Conv). The most salient activity features localized by the first
branch are zeroed out for each activity class, and the resulting features are applied with
different 1-D convolutional layers (Conv) to produce Cra

i ,C
oa
i . Using the embedded

features Xr
i ,X

o
i and T-CAMs Cr

i ,C
o
i ,C

ra
i ,C

oa
i , we compute the term of A2CL-PT

(Eq. 16). The final T-CAM CF
i is computed from the four T-CAMs and these T-CAMs

are used to compute the loss function for classification (Eq. 19).

Using an end-to-end two-branch network that operates in an adversarial way
is proposed in Adversarial Complementary Learning (ACoL) [30] for the task of
weakly-supervised object localization. In ACoL, object localization maps from
the first branch are used to erase the salient regions of the input feature maps for
the second branch. The second branch then tries to find other complementary
object areas from the remaining regions. To the best of our knowledge, we are
the first to merge the idea of ACoL with center loss and to apply it to weakly-
supervised temporal activity localization.

3 Method

The overview of our proposed method is illustrated in Fig. 2. The total loss
function is represented as follows:

L = αLA2CL-PT + LCLS (1)

where LA2CL-PT and LCLS denote our proposed loss term and the classification
loss, respectively. α is a hyperparameter to control the weight of A2CL-PT term.
In this section, we describe each component of our method in detail.
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3.1 Feature Embedding

Let us say that we have N training videos {vi}Ni=1. Each video vi has its ground-
truth annotation for video-level label yi ∈ RNc where Nc is the number of activ-
ity classes. yi(j) = 1 if the activity class j is present in the video and yi(j) = 0
otherwise. We follow previous works [19, 16] to extract the features for both RGB
and optical flow streams. First, we divide vi into non-overlapping 16-frame seg-
ments. We then apply I3D [1] pretrained on Kinetics dataset [6] to the segments.
The intermediate D-dimensional (D = 1024) outputs after the global pooling
layer are the pre-extracted features. For the task-specific feature embedding, we
use two fully-connected layers with ReLU activation. As a result, sequences of
the embedded features Xr

i ,X
o
i ∈ RD×li are computed for RGB and optical flow

stream where li denotes the temporal length of the features of the video vi.

3.2 Angular Center Loss with a Pair of Triplets (ACL-PT)

For simplicity, we first look at the RGB stream. The embedded features Xr
i

are applied with a 1-D convolutional layer. The output is T-CAM Cr
i ∈ RNc×li

which represents the classification scores of each activity class over time. We
compute class-wise attention Ar

i ∈ RNc×li by applying the softmax function to
T-CAM:

Ar
i (j, t) =

exp
(
Cr

i (j, t)
)∑li

t′=1 exp
(
Cr

i (j, t′)
) (2)

where j ∈ {1, ..., Nc} denotes each activity class and t is for each time step. Since
this top-down attention represents the probability mass function of each activity
over time, we can use it to aggregate the embedded features Xr

i :

Fr
i (j) =

li∑
t=1

Ar
i (j, t)Xr

i (t) (3)

where Fr
i (j) ∈ RD denotes a video-level feature representation for the activity

class j. Now, we can formulate a loss function that is inspired by ATCL [10] on
the video-level feature representations as follows:

Lr
ATCL =

1

N

N∑
i=1

∑
j:yi(j)=1

max
(

0,D
(
Fr

i (j), crj
)
−D

(
Fr

i (j), crnr
i,j

)
+m1

)
(4)

where crj ∈ RD is the center of activity class j, nri,j = argmin
k 6=j

D
(
Fr

i (j), crk
)

is an

index for the nearest negative center, and m1 ∈ [0, π] is an angular margin. It
is based on the triplet of (Fr

i (j), crj , c
r
nr
i,j

) that is illustrated in Fig. 1(a). Here,

D(·) represents the angular distance:

D
(
Fr

i (j), crj
)

= arccos

(
Fr

i (j) · crj
‖Fr

i (j)‖2‖crj‖2

)
(5)
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Optimizing the loss function of Eq. 4 ensures that the video-level features of
the same activity class are grouped together and that the inter-class variations
of those features are maximized at the same time. As a result, the embedded
features are learned to be discriminative and T-CAM will have higher values for
the activity-related features.

For the next step, we exploit another triplet. We first compute a new class-
wise attention ar

i ∈ RNc×li from T-CAM:

ar
i (j, t) =

exp
(
βCr

i (j, t)
)∑li

t′=1 exp
(
βCr

i (j, t′)
) (6)

where β is a scalar between 0 and 1. This new attention still represents the
probability mass function of each activity over time, but it is supposed to have
lower values for the activity features and higher values for the background fea-
tures when compared to the original attention Ar

i . Therefore, if we aggregate the
embedded features Xr

i using ar
i , the resulting new video-level feature fri should

attend more strongly to the background features than Fr
i is. This property can

be enforced by introducing a different loss function based on the new triplet of
(crj ,F

r
i (j), fri (j)) that is also illustrated in Fig. 1(a):

Lr
NT =

1

N

N∑
i=1

∑
j:yi(j)=1

max
(

0,D
(
Fr

i (j), crj
)
−D

(
fri (j), crj

)
+m2

)
(7)

where the subscript NT refers to the new triplet and m2 ∈ [0, π] is an angular
margin. Optimizing this loss function makes the background features more dis-
tinguishable from the activity features. Merging the two loss functions of Eq. 4
and Eq. 7 gives us a new loss based on a pair of triplets, which we call Angular
Center Loss with a Pair of Triplets (ACL-PT):

Lr
ACL-PT = Lr

ATCL + γLr
NT (8)

where γ is a hyperparameter denoting the relative importance of the two losses.
Previous works on center loss [25, 4, 10] suggest using an averaged gradient

(typically denoted as ∆crj) to update the centers for better stability. Following
this convention, the derivatives of each term of Eq. 8 with respect to the centers
are averaged. For simplicity, we assume that the centers have unit length. Refer
to the supplementary material for general case without such assumption. Let
L̃r
ATCLi,j

and L̃r
NTi,j

be the loss terms inside the max operation of the i-th
sample and of the j-th activity class as follows:

L̃r
ATCLi,j

= D
(
Fr

i (j), crj
)
−D

(
Fr

i (j), crnr
i,j

)
+m1 (9)

L̃r
NTi,j

= D
(
Fr

i (j), crj
)
−D

(
fri (j), crj

)
+m2 (10)

Next, let gr
1i,j and gr

2i,j be the derivatives of Eq. 9 with respect to crj and crnr
i,j

,

respectively; and let hr
i,j be the derivative of Eq. 10 with respect to crj . For
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example, gr
1i,j is given by:

gr
1i,j = − Fr

i (j)

sin
(
D
(
Fr

i (j), crj
))
‖Fr

i (j)‖2
(11)

Then, we can represent the averaged gradient considering the three terms:

∆crj = ∆gr
1i,j

+∆gr
2i,j

+∆hr
i,j

(12)

For example, ∆gr
1i,j

is computed as follows:

∆gr
1i,j

=
1

N

(∑
i:yi(j)=1 gr

1i,jδ(L̃
r
ATCLi,j

> 0)

1 +
∑

i:yi(j)=1 δ(L̃
r
ATCLi,j

> 0)

)
(13)

Here, δ(condition) = 1 if the condition is true and δ(condition) = 0 otherwise.
Finally, the centers are updated using ∆crj for every iteration of the training
process by a gradient descent algorithm. More details can be found in the sup-
plementary material.

3.3 Adopting an adversarial approach (A2CL-PT)

We further improve the performance of the proposed ACL-PT by applying an
adversarial approach inspired by ACoL [30]. For each stream, there are two
parallel branches that operate in an adversarial way. The motivation is that a
network with a single branch might be dominated by salient activity features
that are not enough to localize all the activities in time. We zero out the most
salient activity features localized by the first branch for activity class j of vi as
follows:

Xra
i,j(t) =

{
0, if Cr

i (j, t) ∈ top-ka elements of Cr
i (j)

Xr
i (t), otherwise

(14)

where Xra
i,j ∈ RD×li denotes the input features of activity class j for the second

(adversarial) branch and ka is set to b lisa c for a hyperparameter sa that controls
the ratio of zeroed-out features. For each activity class j, a separate 1-D convolu-
tional layer of the adversarial branch transforms Xra

i,j to the classification scores
of the activity class j over time. By iterating over all the activity classes, new
T-CAM Cra

i ∈ RNc×li is computed. We argue that Cra
i can be used to find other

supplementary activities that are not localized by the first branch. By using the
original features Xr

i , new T-CAM Cra
i , and a separate set of centers {craj }

Nc
j=1,

we can compute the loss of ACL-PT for this adversarial branch Lra
ACL-PT in a

similar manner (Eq. 1-7). We call the sum of the losses of the two branches
Adversarial and Angular Center Loss with a Pair of Triplets (A2CL-PT):

Lr
A2CL-PT = Lr

ACL-PT + Lra
ACL-PT (15)

In addition, the losses for the optical flow stream Lo
ACL-PT and Loa

ACL-PT are also
computed in the same manner. As a result, the total A2CL-PT term is given by:

LA2CL-PT = Lr
A2CL-PT + Lo

A2CL-PT (16)
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3.4 Classification Loss

Following the previous works [19, 12, 16], we use the cross-entropy between the
predicted pmf (probability mass function) and the ground-truth pmf of activi-
ties for classifying different activity classes in a video. We will first look at the
RGB stream. For each video vi, we compute the class-wise classification scores
sri ∈ RNc by averaging top-k elements of Cr

i per activity class where k is set to
d lis e for a hyperparameter s. Then, the softmax function is applied to compute
the predicted pmf of activities pr

i ∈ RNc . The ground-truth pmf qi is obtained
by l1-normalizing yi. Then, the classification loss for the RGB stream is:

Lr
CLS =

1

N

N∑
i=1

Nc∑
j=1

−qi(j) log
(
pr
i (j)

)
(17)

The classification loss for the optical flow stream Lo
CLS is computed in a similar

manner. Lra
CLS and Loa

CLS of adversarial branches are also computed in the same
way.

Finally, we compute the final T-CAM CF
i from the four T-CAMs (two from

the RGB stream: Cr
i ,C

ra
i , two from the optical flow stream: Co

i ,C
oa
i ) as follows:

CF
i = wr · (Cr

i + ωCra
i ) + wo · (Co

i + ωCoa
i ) (18)

where wr,wo ∈ RNc are class-specific weighting parameters that are learned
during training and ω is a hyperparameter for the relative importance of T-CAMs
from the adversarial branch. We can then compute the classification loss for the
final T-CAM LF

CLS in the same manner. The total classification loss is given by:

LCLS = Lr
CLS + Lra

CLS + Lo
CLS + Loa

CLS + LF
CLS (19)

3.5 Classification and Localization

During the test time, we use the final T-CAM CF
i for the classification and

localization of activities following the previous works [19, 16]. First, we compute
the class-wise classification scores sFi ∈ RNc and the predicted pmf of activities
pF
i ∈ RNc as described in Section 3.4. We use pF

i for activity classification. For
activity localization, we first find a set of possible activities that has positive
classification scores, which is {j : sFi (j) > 0}. For each activity in this set, we
localize all the temporal segments that has positive T-CAM values for two or
more successive time steps. Formally, a set of localized temporal segments for vi
is:

{[s, e] : ∀t ∈ [s, e], CF
i (t) > 0 and CF

i (s− 1) < 0 and CF
i (e+ 1) < 0} (20)

where CF
i (0) and CF

i (li +1) are defined to be any negative values and e ≥ s+ 2.
The localized segments for each activity are non-overlapping. We assign a confi-
dence score for each localized segment, which is the sum of the maximum T-CAM
value of the segment and the classification score of it.
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4 Experiments

4.1 Datasets and Evaluation

We evaluate our method on two datasets: THUMOS14 [5] and ActivityNet1.3 [3].
For the THUMOS14 dataset, the validation videos are used for training without
temporal boundary annotations and the test videos are used for evaluation fol-
lowing the convention in the literature. This dataset is known to be challenging
because each video has a number of activity instances and the duration of the
videos varies widely. For the ActivityNet1.3 dataset, we use the training set for
training and the validation set for evaluation. Following the standard evaluation
protocol, we report mean average precision (mAP) at different intersection over
union (IoU) thresholds.

4.2 Implementation Details

First, we extract RGB frames from each video at 25 fps and generate optical
flow frames by using the TV-L1 algorithm [29]. Each video is then divided into
non-overlapping 16-frame segments. We apply I3D networks [1] pre-trained on
Kinetics dataset [6] to the segments to obtain the intermediate 1024-dimensional
features after the global pooling layer. We train our network in an end-to-end
manner using a single GPU (TITAN Xp).

For the THUMOS14 dataset [5], we train our network using a batch size of
32. We use the Adam optimizer [7] with learning rate 10−4 and weight decay
0.0005. The centers are updated using the SGD algorithm with learning rate 0.1
for the RGB stream and 0.2 for the optical flow stream. The kernel size of the
1-D convolutional layers for the T-CAMs is set to 1. We set α in Eq. 1 to 1 and
γ in Eq. 8 to 0.6. For β in Eq. 6, we randomly generate a number between 0.001
and 0.1 for each training sample. We set angular margins m1 to 2 and m2 to
1. sa of Eq. 14 and s for the classification loss are set to 40 and 8, respectively.
Finally, ω in Eq. 18 is set to 0.6. The whole training process of 40.5k iterations
takes less than 14 hours.

For the ActivityNet1.3 dataset [3], it is shown from the previous works [19,
16] that post-processing of the final T-CAM is required. We use an additional
1-D convolutional layer (kernel size=13, dilation=2) to post-process the final
T-CAM. The kernel size of the 1-D convolutional layers for T-CAMs is set to
3. In addition, we change the batch size to 24. The learning rate for centers are
0.05 and 0.1 for the RGB and optical flow streams, respectively. We set α to 2,
γ to 0.2, and ω to 0.4. The remaining hyperparameters of β, m1, m2, sa, and s
are the same as above. We train the network for 175k iterations.

4.3 Comparisons with the State-of-the-art

We compare our final method A2CL-PT with other state-of-the-art approaches
on the THUMOS14 dataset [5] in Table 1. Full supervision refers to training from
frame-level activity annotations, whereas weak supervision indicates training



A2CL-PT for Weakly-supervised Temporal Activity Localization 11

Table 1. Performance comparison of A2CL-PT with state-of-the-art methods on the
THUMOS14 dataset [5]. A2CL-PT significantly outperforms all the other weakly-
supervised methods. † indicates an additional usage of other ground-truth annotations
or independently collected data. A2CL-PT also outperforms all weakly†-supervised
methods that use additional data at higher IoUs (from 0.4 to 0.9). The column AVG
is for the average mAP of IoU threshold from 0.1 to 0.9.

Supervision Method
mAP(%)@IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 AVG

Full

S-CNN [22] 47.7 43.5 36.3 28.7 19.0 10.3 5.3 - - -
R-C3D [26] 54.5 51.5 44.8 35.6 28.9 - - - - -
SSN [32] 66.0 59.4 51.9 41.0 29.8 - - - - -
TAL-Net [2] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 - - -
BSN [11] - - 53.5 45.0 36.9 28.4 20.0 - - -
GTAN [14] 69.1 63.7 57.8 47.2 38.8 - - - - -

Weak†

Liu et al. [12] 57.4 50.8 41.2 32.1 23.1 15.0 7.0 - - -
3C-Net [16] 59.1 53.5 44.2 34.1 26.6 - 8.1 - - -
Nguyen et al. [18] 64.2 59.5 49.1 38.4 27.5 17.3 8.6 3.2 0.5 29.8
STAR [27] 68.8 60.0 48.7 34.7 23.0 - - - - -

Weak

UntrimmedNet [24] 44.4 37.7 28.2 21.1 13.7 - - - - -
STPN [17] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1 21.2
W-TALC [19] 55.2 49.6 40.1 31.1 22.8 - 7.6 - - -
AutoLoc [21] - - 35.8 29.0 21.2 13.4 5.8 - - -
CleanNet [13] - - 37.0 30.9 23.9 13.9 7.1 - - -
MAAN [28] 59.8 50.8 41.1 30.6 20.3 12.0 6.9 2.6 0.2 24.9
BaS-Net [9] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5 27.9

A2CL-PT (Ours) 61.2 56.1 48.1 39.0 30.1 19.2 10.6 4.8 1.0 30.0

only from video-level activity labels. For fair comparison, we use the symbol
† to separate methods utilizing additional ground-truth annotations [16, 27] or
independently collected data [12, 18]. The column AVG is for the average mAP
of IoU thresholds from 0.1 to 0.9 with a step size of 0.1. Our method significantly
outperforms other weakly-supervised methods across all metrics. Specifically, an
absolute gain of 2.1% is achieved in terms of the average mAP when compared
to the best previous method (BaS-Net [9]). We want to note that our method
performs even better than the methods of weak† supervision at higher IoUs.

We also evaluate A2CL-PT on the ActivityNet1.3 dataset [3]. Following the
standard evaluation protocol of the dataset, we report mAP at different IoU
thresholds, which are from 0.05 to 0.95. As shown in Table 2, our method again
achieves the best performance.

4.4 Ablation Study and Analysis

We perform an ablation study on the THUMOS14 dataset [5]. In Table 3, we an-
alyze the two main contributions of this work, which are the usage of the newly-
suggested triplet (Eq. 7) and the adoption of adversarial approach (Eq. 15).
ATCL refers to the baseline that uses only the loss term of Eq. 4. We use the
superscript + to indicate the addition of adversarial branch. As described in
Section 3.2, ACL-PT additionally uses the new triplet on top of the baseline.
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Table 2. Performance comparison on the ActivityNet1.3 dataset [3]. A2CL-PT again
achieves the best performance. † indicates an additional usage of other ground-truth
annotations or independently collected data. The column AVG is for the average mAP
of IoU threshold from 0.5 to 0.95.

Supervision Method
mAP(%)@IoU

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 AVG

Weak†
Liu et al. [12] 34.0 - - - - 20.9 - - - 5.7 21.2
Nguyen et al. [18] 36.4 - - - - 19.2 - - - 2.9 -
STAR [27] 31.1 - - - - 18.8 - - - 4.7 -

Weak

STPN [17] 29.3 - - - - 16.9 - - - 2.6 -
MAAN [28] 33.7 - - - - 21.9 - - - 5.5 -
BaS-Net [9] 34.5 - - - - 22.5 - - - 4.9 22.2

A2CL-PT (Ours) 36.8 33.6 30.8 27.8 24.9 22.0 18.1 14.9 10.2 5.2 22.5

Table 3. Performance comparison of different ablative settings on the THUMOS14
dataset [5]. The superscript + indicates that we add an adversarial branch to the
baseline method. It demonstrates that both components are effective.

Method New triplet Adversarial
mAP(%)@IoU

0.3 0.4 0.5 0.6 0.7 AVG(0.1:0.9)

ATCL 44.7 34.8 25.7 15.8 8.3 27.4
ATCL+ X 43.7 35.1 26.3 15.7 8.3 27.2
ACL-PT X 46.6 37.2 28.9 18.2 10.0 29.2
A2CL-PT X X 48.1 39.0 30.1 19.2 10.6 30.0

We can observe that our final proposed method, A2CL-PT, performs the best.
It implies that both components are necessary to achieve the best performance
and each of them is effective. Interestingly, adding an adversarial branch does
not bring any performance gain without our new triplet. We think that although
using ACL-PT increases the localization performance by learning discriminative
features, it also makes the network sensitive to salient activity-related features.

We analyze the impact of two main hyperparameters in Fig. 3. The first one is
α that controls the weight of A2CL-PT term (Eq. 1), and the other one is ω that
is for the relative importance of T-CAMs from adversarial branches (Eq. 18). We
can observe from Fig. 3(a) that positive α always brings the performance gain.
It indicates that A2CL-PT is effective. As seen in Fig. 3(b), the performance is
increased by using an adversarial approach when ω is less or equal to 1. If ω
is greater than 1, T-CAMs of adversarial branches will play a dominant role in
activity localization. Therefore, the results tell us that the adversarial branches
provide mostly supplementary information.

4.5 Qualitative Analysis

We perform a qualitative analysis to better understand our method. In Fig. 4,
qualitative results of our A2CL-PT on four videos from the test set of the
THUMOS14 dataset [5] are presented. (a), (b), (c), and (d) are examples of
JavelinThrow, HammerThrow, ThrowDiscus, and HighJump, respectively. De-
tection denotes the localized activity segments. For additional comparison, we
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(a) (b)

Fig. 3. We analyze the impact of two main hyperparameters α and ω. (a): Positive α
always provides the performance gain, so it indicates that our method is effective. (b):
If ω is too large, the performance is decreased substantially. It implies that T-CAMs
of adversarial branches provide mostly supplementary information.

also show the results of BaS-Net [9], which is the leading state-of-the-art method.
We use three different colors on the contours of sampled frames: blue, green, and
red which denote true positive, false positive, and false negative, respectively. In
(a), there are multiple instances of false positive. These false positives are chal-
lenging because the person in the video swings the javelin, which can be mistaken
for a throw. Similar cases are observed in (b). One of the false positives includes
the person drawing the line on the field, which looks similar to a HammerThrow
activity. In (c), some false negative segments are observed. Interestingly, this
is because the ground-truth annotations are wrong; that is, the ThrowDiscus
activity is annotated but it does not actually occur in these cases. In (d), all
the instances of the HighJump activity are successfully localized. Other than the
unusual situations, our method performs well in general.

5 Conclusion

We have presented A2CL-PT as a novel method for weakly-supervised tempo-
ral activity localization. We suggest using two triplets of vectors of the feature
space to learn discriminative features and to distinguish background portions
from activity-related parts of a video. We also propose to adopt an adversarial
approach to localize activities more thoroughly. We perform extensive experi-
ments to show that our method is effective. A2CL-PT outperforms all the ex-
isting state-of-the-art methods on major datasets. Ablation study demonstrates
that both contributions are significant. Finally, we qualitatively analyze the ef-
fectiveness of our method in detail.
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(a)

(b)

(c)

(d)

Fig. 4. Qualitative results on the THUMOS14 dataset [5]. Detection denotes the lo-
calized activity segments. The results of BaS-Net [9] are also included for additional
comparison. Contours of the sampled frames have three different colors. We use blue,
green, and red to indicate true positives, false positives, and false negatives, respec-
tively. (a): An example of JavelinThrow activity class. The observed false positives are
challenging. The person in the video swings the javelin on the frames of these false
positives, which can be mistaken for a throw. (b): An example of HammerThrow. One
of the false positives include the person who draws the line on the field. It is hard to
distinguish the two activities. (c): An example of ThrowDiscus. Multiple false negatives
are observed, which illustrates the situations where the ground-truth activity instances
are wrongly annotated. (d): An example of HighJump without such unusual cases. It
can be observed that our method performs well in general.
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