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Supplementary Material: Example-Guided
Image Synthesis using Masked Spatial-Channel

Attention and Self-Supervision

In the supplementary material, we provide details on how to perform inter-
polation in Sec. 1, more analysis of the learned attention in Sec. 2, the impact
of semantic similarity to performance in Sec. 3, results on an additional dataset
in Sec. 4, more results of scenes swapping in Sec. 5, more details of the synthesis
module in Sec 6, patch sampling strategy and more training details in Sec. 7,
pretraining of MSCA modules in Sec. 8. The code containing our model and
demos will be made avaiable after the review process.

1 Details of Interpolation

In Fig.5 and Fig. 7 of the main paper, we show how to interpolate between
two inputs styles by manipulating the attention of the trained model. Here, we
describe the details of style interpolation.

First, we show how to achieve global style interpolation (Fig.5 of the
main paper). In this setting, we generate interpolated images using condition
c1, two example images x2 and x3, and an interpolating factor γ ∈ [0, 1] that
controls how much the style of x2 is used. To perform interpolation, we first

compute features F
(i)
x,2, F

(i)
x,3 and unnormalized spatial-attention maps α̃

(i)
2 , α̃

(i)
3 of

the exemplar images x2, x3. Next, the unnormalized spatial attention map of x2
is updated by α̃

(i)
2 := α̃

(i)
2 +log γ

1−γ . Afterwards, both feature maps F
(i)
x,2, F

(i)
x,3 and

unnormalized spatial attention α̃
(i)
2 , α̃

(i)
3 are concatenated along the horizontal

axis. The concatenated unnormalized spatial attention are used to generated an
joint spatial attention map. Then, the masking score (output scores of the 2-layer
MLP) is also interpolated. Finally, with the remaining procedures unchanged,
i.e., spatial aggregation, feature masking, channel aggregation and synthesis,
interpolation results are readily generated.

Next, we show how to achieve spatial styles interpolation (Fig.7 of the
main paper). To generate spatial style interpolation results, we keep the proce-
dures of our method unchanged before the before channel aggregation step. Then,
we perform style interpolate at the channel aggregation stage. Specifically, with
condition c1 and two exemplar images x2 and x3, we first compute two sets of

masked features Ṽ
(i)
2 , Ṽ

(i)
3 and un-normalized channel attention β̃

(i)
2 , β̃

(i)
3 from

inputs c1, x2 and c1, x3, respectively 1. Then, using the interpolating factor γ
each spatial location, the unnormalized channel attention map of x2 is updated

by β̃
(i)
2 := β̃

(i)
2 + log γ

1−γ . Finally, both masked features and the unnormalized

1 Note that the un-nromalized channel attention β̃
(i)
2 , β̃

(i)
3 are the same for the two

inputs.
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channel attention map are concatenated along the channel axis for channel ag-
gregation.

2 Analysis of the Learned Attention

To understand how the learned attention transfer features across different se-
mantics from exemplar images to target label maps, the following visualiza-
tion is performed on test set. Specifically, we use the learned MSCA at the
finest scale to transfer one-hot encoded semantic label maps of the exemplar
images, then compare the transferred results against the target semantic label
map. The resulting transfer matrix is visualized in Fig. 1. From the figure, the
learned attention tends to transfer feature across semantically similar labels, such
as {plant-other,bush,hill,leaves} � tree, {clouds,fog} � sky-other,
{grass} � playingfield and {bush} � plant-other. It shows that our at-
tention can automatically discover semantics labels that shares similar visual
appearance.
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Fig. 1. The transfer matrix visualizes how our learned attention transform features
from semantics of exemplar images (vertical axis) to semantics of target label maps
(horizontal axis) on the test set. Colors from blue to red represent ratios from
0 to 1. The most appeared 20 semantics are shown in figure. The learned atten-
tion can transfer across semantic labels with similar appearance, for instance, from
{plant-other,bush,hill,leaves} to tree on column 3.
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In addition, we perform a hierarchical clustering on the top-25 semantic labels
on the test set. Specifically, we use each row of the transfer matrix as the feature
vector of each semantic labels. The diagonal of the transfer matrix is set to
the second largest value of each row. From the dengrogram visualized in Fig. 2,
we observe that semantics with similar appearances such as {cloud, sky-other},
{river, sea}, {dirt, sand} tend to group together, suggesting that our attention
model can discover semantic labels with similar visual appearances for effective
feature transfer.

Fig. 2. Hierarchical clustering on semantics by using each row of transfer matrix
(Fig. 1) as feature vector (See Sec. 2). Our learned attention can discovery similar
semantics such as {clound, sky-other}, {river, sea}, {dirt, sand} without additional
semantic-level supervision.

3 The Impact of Semantic Similarity

To show the impact of semantic similarity to example-guided image synthesis, we
conduct a style swapping experiment. We randomly select 2500 exemplars and
targets from the COCO-stuff outdoor scene dataset to test style swapping. We
use label histogram intersection to measure the semantic similarity between the
reference image and target label map. To measure the style transfer performance
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of different approaches, we apply several metrics such as: 1) style loss on VGG
conv1&conv2 (Lstyle), 2) averaged nearest neighbor distance from output to ex-
emplar at each location on pixel space (NN pixel), 3) averaged nearest neighbor
distance from output to exemplar at each location on VGG conv1 feature space
(NN conv1).

Methods Lstyle ↓ NN pixel↓ NN conv1↓
SPADE VAE 1.13e-03 6.24e-03 1.80e+00

ours GAP 1.02e-03 1.01e-02 1.89e+00
ours 8.08e-04 3.91e-03 1.68e+00

Table 1. The averaged style transfer performances on 2500 random exemplar-label
map pairs. Our approach performs the best among two comparative baselines.

4 Results on an Additional Dataset

We also train our model on an additional indoor scene dataset. Specifically, we
collect 26713 diversified indoor scene images from the COCO-stuff dataset for
training. As shown in Fig. 3, our model is able to consistently transfer style across
different indoor scenes, showing that our approach can effectively generalize to
other datasets with complex structures.

5 More Scenes Swapping Results

We show our style swapping results on 12 diversified scenes in Fig. 4 and compare
them against the style swapping results of SPADE VAE and GAP (Fig. 5 and
Fig. 6 respectively). As shown in the figures, our model can successfully transfer
and preserve style for each scene semantics region. Note that our model can infer
the style of river (column 2) from other visual content of the exemplar images
that does not contain water. Also, our model can precisely transfer styles for the
foreground animals.

6 The Synthesis Module

As shown in Fig. 7, our image synthesis module (the dash block on the right)

takes the image features map F
(i)
x,1 and segmentation features map F

(i)
c,1 as inputs

to output a new image x̂2�1. Specifically, at each scale, a SPADE residue block [1]

with upsampling layer takes the concatenation of F
(i)
x,1 and F

(i)
c,1 as input to

generate an upsampled feature map or image.

7 Patch Sampling Strategy and Training Details

We employ the following patch sampling strategy during training. In the first 20
epochs during training, we sample two 256×256 patches from the 512×512 global
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Fig. 3. Style-structure swapping on 8 arbitrary indoor scenes at resolution 256× 256.
Our model can generalize across recognizably different scenes of different semantics,
and synthesize images with reasonable and consistent styles. Please zoom in for details.
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Fig. 4. Style-structure swapping results of our model. Results are generated on 12 ar-
bitrary scenes at resolution 256 × 256. Our model can generalize across recognizably
different scenes of different semantics, and synthesize images with reasonable and con-
sistent styles. Our model can effectively transfer the color of foreground animals. Also
note that our model can implicitly infer the style of river (column 2) from exemplar
images without relying on water-related visual contents. Please zoom in for details.
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Fig. 5. Style-structure swapping results of SPADE VAE. Results are generated on 12
arbitrary scenes at resolution 256× 256.
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Fig. 6. Style-structure swapping results of ours GAP. Results are generated on 12 ar-
bitrary scenes at resolution 256× 256. Note that with the global average pooling, style
of individual regions are not well-transferred (e.g. sky in the second last row).
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Fig. 7. The details of the image synthesis module (the dash block on the right). The

image synthesis module takes image features maps F
(i)
x,1 and segmentation features

maps F
(i)
c,1 at all scale i as inputs to output a new image x̂2�1. Multiple SPADE residue

blocks [1] with upsampling layers are used to upsample the spatial resolutions.

images. Then we perform random collision avoidance in horizontal direction or
vertical direction. To help our model generalize better across scenes that have
larger variances, we employ only the patch-scale cross-reconstruction task at the
first 20 epochs.

During the next 20 epochs of training, we randomly crop 384× 384 patches
from the 512 × 512 global image, and resize patches to 256 × 256 to generate
patches for the patch-scale cross-reconstruction task. The enlarged patch scale
can potentially helps our model to generalize at the global scale. In this stage, we
employ global image to facilitate better global scale synthesis. Random flipping
is employed to augment data during training.

8 MSCA Pretraining

As shown in Fig. 8, an auxiliary feature decoder (the dash block on the right)
is used to pretrain the feature extractors and the MSCA modules. Specifically,

at each scale, the concatenation of F
(i)
x,1 and F

(i)
c,1 at each scale is fed into a 1× 1

convolutional layer to reconstruct the ground-truth VGG feature of x1 at the
corresponding scale. We weighted sum the L1 losses between predictions and
ground-truth at each scales, then apply backpropagation to update weights of
the whole model. We pretrain the model for 20 epochs. Because of the light-
weight design of the feature decoder, the pretraining step only takes around 12
hours, and around 2% of the total training time. During the MSCA pretraining,
we crop non-overlapping, 256× 256 patches from the 512× 512 global images.
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Fig. 8. The details of the auxiliary feature decoder for feature extractor and MSCA
pretraining (dash block on the right). At each scale i, the image features map F

(i)
x,1 and

the segmentation features map F
(i)
c,1 are concatenated and feed to a 1 × 1 convolution

layer to predict the VGG-19 features map of x1.
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