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Abstract. Human motion prediction aims to forecast future human
poses given a past motion. Whether based on recurrent or feed-forward
neural networks, existing methods fail to model the observation that hu-
man motion tends to repeat itself, even for complex sports actions and
cooking activities. Here, we introduce an attention-based feed-forward
network that explicitly leverages this observation. In particular, instead
of modeling frame-wise attention via pose similarity, we propose to ex-
tract motion attention to capture the similarity between the current
motion context and the historical motion sub-sequences. Aggregating
the relevant past motions and processing the result with a graph con-
volutional network allows us to effectively exploit motion patterns from
the long-term history to predict the future poses. Our experiments on
Human3.6M, AMASS and 3DPW evidence the benefits of our approach
for both periodical and non-periodical actions. Thanks to our attention
model, it yields state-of-the-art results on all three datasets. Our code is
available at https://github.com/wei-mao-2019/HisRepItself.
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1 Introduction

Human motion prediction consists of forecasting the future poses of a person
given a history of their previous motion. Predicting human motion can be highly
beneficial for tasks such as human tracking [6], human-robot interaction [13],
and human motion generation for computer graphics [15, 14, 26]. To tackle the
problem effectively, recent approaches use deep neural networks [21, 5, 11] to
model the temporal historical data.

Traditional methods, such as hidden Markov models [3] and Gaussian Process
Dynamical Models [30], have proven effective for simple motions, such as walk-
ing and golf swings. However, they are typically outperformed by deep learning
ones on more complex motions. The most common trend in modeling the se-
quential data that constitutes human motion consists of using Recurrent Neural
Networks (RNNs)[21, 5, 11]. However, as discussed in [16], in the mid- to long-
term horizon, RNNs tend to generate static poses because they struggle to keep
track of long-term history. To tackle this problem, existing works [16, 8] either
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Fig. 1. Human motion prediction aims to forecast future human poses (> 0s)
given past ones. From top to bottom, we show the ground-truth pose sequence, the
predictions of LTD [19] and those of our approach. Frames where LTD [19] makes larger
error on arms and legs are highlighted in blue and red box respectively. Note that our
results better match the ground truth than those of LTD [19].

rely on Generative Adversarial Networks (GANs), which are notoriously hard to
train [1], or introduce an additional long-term encoder to represent information
from the further past [16]. Unfortunately, such an encoder treats the entire mo-
tion history equally, thus not allowing the model to put more emphasis on some
parts of the past motion that better reflect the context of the current motion.

In this paper, by contrast, we introduce an attention-based motion prediction
approach that effectively exploits historical information by dynamically adapting
its focus on the previous motions to the current context. Our method is motivated
by the observation that humans tend to repeat their motion, not only in short
periodical activities, such as walking, but also in more complex actions occurring
across longer time periods, such as sports and cooking activities [25].Therefore,
we aim to find the relevant historical information to predict future motion.

To the best of our knowledge, only [28] has attempted to leverage attention
for motion prediction. This, however, was achieved in a frame-wise manner, by
comparing the human pose from the last observable frame with each one in the
historical sequence. As such, this approach fails to reflect the motion direction
and is affected by the fact that similar poses may appear in completely different
motions. For instance, in most Human3.6M activities, the actor will at some
point be standing with their arm resting along their body. To overcome this, we
therefore propose to model motion attention, and thus compare the last visible
sub-sequence with a history of motion sub-sequences.

To this end, inspired by [19], we represent each sub-sequence in trajectory
space using the Discrete Cosine Transform (DCT). We then exploit our motion
attention as weights to aggregate the entire DCT-encoded motion history into a
future motion estimate. This estimate is combined with the latest observed mo-
tion, and the result acts as input to a graph convolutional network (GCN), which
lets us better encode spatial dependencies between different joints.As evidenced
by our experiments on Human3.6M [10], AMASS [18], and 3DPW [20], and illus-
trated in Fig. 1, our motion attention-based approach consistently outperforms
the state of the art on short-term and long-term motion prediction by training
a single unified model for both settings. This contrasts with the previous-best
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model LTD [19], which requires training different models for different settings to
achieve its best performance. Furthermore, we demonstrate that it can effectively
leverage the repetitiveness of motion in longer sequences.

Our contributions can be summarized as follows. (i) We introduce an attention-
based model that exploits motions instead of static frames to better leverage
historical information for motion prediction; (ii) Our motion attention allows us
to train a unified model for both short-term and long-term prediction; (iii) Our
approach can effectively make use of motion repetitiveness in long-term history;
(iv) It yields state-of-the-art results and generalizes better than existing methods
across datasets and actions.

2 Related Work

RNN-based human motion prediction. RNNs have proven highly success-
ful in sequence-to-sequence prediction tasks [27, 12]. As such, they have been
widely employed for human motion prediction [5, 11, 21, 7]. For instance, Fragki-
adaki et al. [5] proposed an Encoder-Recurrent-Decoder (ERD) model that in-
corporates a non-linear multi-layer feedforward network to encode and decode
motion before and after recurrent layers. To avoid error accumulation, curriculum
learning was adopted during training. In [11], Jain et al. introduced a Structural-
RNN model relying on a manually-designed spatio-temporal graph to encode
motion history. The fixed structure of this graph, however, restricts the flex-
ibility of this approach at modeling long-range spatial relationships between
different limbs. To improve motion estimation, Martinez et al. [21] proposed a
residual-based model that predicts velocities instead of poses. Furthermore, it
was shown in this work that a simple zero-velocity baseline, i.e., constantly pre-
dicting the last observed pose, led to better performance than [5, 11]. While this
led to better performance than the previous pose-based methods, the predictions
produced by the RNN still suffer from discontinuities between the observed poses
and predicted ones. To overcome this, Gui et al. proposed to adopt adversarial
training to generate smooth sequences [8]. In [9], Ruiz et al. treat human motion
prediction as a tensor inpainting problem and exploit a generative adversarial
network for long-term prediction. While this approach further improves perfor-
mance, the use of an adversarial classifier notoriously complicates training [1],
making it challenging to deploy on new datasets.
Feed-forward methods and long motion history encoding. In view of
the drawbacks of RNNs, several works considered feed-forward networks as an
alternative solution [4, 16, 19]. In particular, in [4], Butepage et al. introduced a
fully-connected network to process the recent pose history, investigating different
strategies to encode temporal historical information via convolutions and exploit-
ing the kinematic tree to encode spatial information. However, similar to [11], and
as discussed in [16], the use of a fixed tree structure does not reflect the motion
synchronization across different, potentially distant, human body parts. To cap-
ture such dependencies, Li et al. [16] built a convolutional sequence-to-sequence
model processing a two-dimensional pose matrix whose columns represent the
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Fig. 2. Overview of our approach. The past poses are shown as blue and red
skeletons and the predicted ones in green and purple. The last observed M poses
are initially used as query. For every M consecutive poses in the history (key), we
compute an attention score to weigh the DCT coefficients (values) of the corresponding
sub-sequence. The weighted sum of such values is then concatenated with the DCT
coefficients of the last observed sub-sequence to predict the future. At test time, to
predict poses in the further future, we use the output of the predictor as input and
predict future motion recursively (as illustrated by the dashed line).

pose at every time step. This model was then used to extract a prior from long-
term motion history, which, in conjunction with the more recent motion history,
was used as input to an autoregressive network for future pose prediction. While
more effective than the RNN-based frameworks, the manually-selected size of
the convolutional window highly influences the temporal encoding.

Our work is inspired by that of Mao et al. [19], who showed that encoding
the short-term history in frequency space using the DCT, followed by a GCN to
encode spatial and temporal connections led to state-of-the-art performance for
human motion prediction up to 1s. As acknowledged by Mao et al. [19], however,
encoding long-term history in DCT yields an overly-general motion representa-
tion, leading to worse performance than using short-term history. In this paper,
we overcome this drawback by introducing a motion attention based approach
to human motion prediction. This allows us to capture the motion recurrence in
the long-term history. Furthermore, in contrast to [16], whose encoding of past
motions depends on the manually-defined size of the temporal convolution filters,
our model dynamically adapts its history-based representation to the context of
the current prediction.

Attention models for human motion prediction. While attention-based
neural networks are commonly employed for machine translation [29, 2], their
use for human motion prediction remains largely unexplored. The work of Tang
et al. [28] constitutes the only exception, incorporating an attention module
to summarize the recent pose history, followed by an RNN-based prediction
network. This work, however, uses frame-wise pose-based attention, which may
lead to ambiguous motion, because static poses do not provide information about
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the motion direction and similar poses occur in significantly different motions.
To overcome this, we propose to leverage motion attention. As evidenced by our
experiments, this, combined with a feed-forward prediction network, allows us
to outperform the state-of-the-art motion prediction frameworks.

3 Our Approach

Let us now introduce our approach to human motion prediction. Let X1:N =
[x1,x2,x3, · · · ,xN ] encode the motion history, consisting of N consecutive hu-
man poses, where xi ∈ RK , with K the number of parameters describing each
pose, in our case 3D coordinates or angles of human joints. Our goal is to pre-
dict the poses XN+1:N+T for the future T time steps. To this end, we introduce
a motion attention model that allows us to form a future motion estimate by
aggregating the long-term temporal information from the history. We then com-
bine this estimate with the latest observed motion and input this combination to
a GCN-based feed-forward network that lets us learn the spatial and temporal
dependencies in the data. Below, we discuss these two steps in detail.

3.1 Motion Attention Model

As humans tend to repeat their motion across long time periods, our goal is
to discover sub-sequences in the motion history that are similar to the current
sub-sequence. In this paper, we propose to achieve this via an attention model.

Following the machine translation formalism of [29], we describe our atten-
tion model as a mapping from a query and a set of key-value pairs to an output.
The output is a weighted sum of values, where the weight, or attention, assigned
to each value is a function of its corresponding key and of the query. Mapping to
our motion attention model, the query corresponds to a learned representation
of the last observed sub-sequence, and the key-value pairs are treated as a dictio-
nary within which keys are learned representations for historical sub-sequences
and values are the corresponding learned future motion representations. Our mo-
tion attention model output is defined as the aggregation of these future motion
representations based on partial motion similarity between the latest motion
sub-sequence and historical sub-sequences.

In our context, we aim to compute attention from short sequences. To this
end, we first divide the motion history X1:N = [x1,x2,x3, · · · ,xN ] into N −
M − T + 1 sub-sequences {Xi:i+M+T−1}N−M−T+1

i=1 , each of which consists of
M + T consecutive human poses. By using sub-sequences of length M + T , we
assume that the predictor, which we will introduce later, exploits the past M
frames to predict the future T frames. We then take the first M poses of each
sub-sequence Xi:i+M−1 to be a key, and the whole sub-sequence Xi:i+M+T−1
is then the corresponding value. Furthermore, we define the query as the latest
sub-sequence XN−M+1:N with length M .

To leverage the state-of-the-art representation introduced in [19] and make
the output of our attention model consistent with that of the final predictor,
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we map the resulting values to trajectory space using the DCT on the tem-
poral dimension. That is, we take our final values to be the DCT coefficients
{Vi}N−M−T+1

i=1 , where Vi ∈ RK×(M+T ). Each row of Vi contains the DCT co-
efficients of one joint coordinate sequence. In practice, we can truncate some
high frequencies to avoid predicting jittery motion.

As depicted by Fig. 2, the query and keys are used to compute attention
scores, which then act as weights to combine the corresponding values. To this
end, we first map the query and keys to vectors of the same dimension d by
two functions fq : RK×M → Rd and fk : RK×M → Rd modeled with neural
networks. This can be expressed as

q = fq(XN−M+1:N ) ,ki = fk(Xi:i+M−1) (1)

where q,ki ∈ Rd, and i ∈ {1, 2, · · · , N −M − T + 1}. For each key, we then
compute an attention score as

ai =
qkTi∑N−M−T+1

i=1 qkTi
. (2)

Note that, instead of the softmax function which is commonly used in attention
mechanisms, we simply normalize the attention scores by their sum, which we
found to avoid the gradient vanishing problem that may occur when using a
softmax. While this division only enforces the sum of the attention scores to be
1, we further restrict the outputs of fq and fk to be non-negative with ReLU [22]
to avoid obtaining negative attention scores.

We then compute the output of the attention model as the weighed sum of
values. That is,

U =

N−M−T+1∑
i=1

aiVi , (3)

where U ∈ RK×(M+T ). This initial estimate is then combined with the latest
sub-sequence and processed by the prediction model described below to generate
future poses X̂N+1:N+T . At test time, to generate longer future motion, we
augment the motion history with the last predictions and update the query with
the latest sub-sequence in the augmented motion history, and the key-value pairs
accordingly. These updated entities are then used for the next prediction step.

3.2 Prediction Model

To predict the future motion, we use the state-of-the-art motion prediction model
of [19]. Specifically, as mentioned above, we use a DCT-based representation to
encode the temporal information for each joint coordinate or angle and GCNs
with learnable adjacency matrices to capture the spatial dependencies among
these coordinates or angles.
Temporal encoding. Given a sequence of kth joint coordinates or angles {xk,l}Ll=1

or its DCT coefficients {Ck,l}Ll=1, the DCT and Inverse-DCT (IDCT) are,

Ck,l =
√

2
L

L∑
n=1

xk,n
1√

1+δl1
cos
(
π
L (n− 1

2 )(l − 1)
)
, xk,n =

√
2
L

L∑
l=1

Ck,l
1√

1+δl1
cos
(
π
L (n− 1

2 )(l − 1)
)

(4)
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Table 1. Short-term prediction of 3D joint positions on H3.6M. The error is measured
in millimeter. The two numbers after the method name “LTD” indicate the number
of observed frames and that of future frames to predict, respectively, during training.
Our approach achieves state of the art performance across all 15 actions at almost all
time horizons, especially for actions with a clear repeated history, such as “Walking”.

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. [21] 23.2 40.9 61.0 66.1 16.8 31.5 53.5 61.7 18.9 34.7 57.5 65.4 25.7 47.8 80.0 91.3
convSeq2Seq [16] 17.7 33.5 56.3 63.6 11.0 22.4 40.7 48.4 11.6 22.8 41.3 48.9 17.1 34.5 64.8 77.6

LTD-50-25[19] 12.3 23.2 39.4 44.4 7.8 16.3 31.3 38.6 8.2 16.8 32.8 39.5 11.9 25.9 55.1 68.1
LTD-10-25[19] 12.6 23.6 39.4 44.5 7.7 15.8 30.5 37.6 8.4 16.8 32.5 39.5 12.2 25.8 53.9 66.7
LTD-10-10[19] 11.1 21.4 37.3 42.9 7.0 14.8 29.8 37.3 7.5 15.5 30.7 37.5 10.8 24.0 52.7 65.8

Ours 10.0 19.5 34.2 39.8 6.4 14.0 28.7 36.2 7.0 14.9 29.9 36.4 10.2 23.4 52.1 65.4

Directions Greeting Phoning Posing Purchases Sitting
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. [21] 21.6 41.3 72.1 84.1 31.2 58.4 96.3 108.8 21.1 38.9 66.0 76.4 29.3 56.1 98.3 114.3 28.7 52.4 86.9 100.7 23.8 44.7 78.0 91.2
convSeq2Seq [16] 13.5 29.0 57.6 69.7 22.0 45.0 82.0 96.0 13.5 26.6 49.9 59.9 16.9 36.7 75.7 92.9 20.3 41.8 76.5 89.9 13.5 27.0 52.0 63.1

LTD-50-25[19] 8.8 20.3 46.5 58.0 16.2 34.2 68.7 82.6 9.8 19.9 40.8 50.8 12.2 27.5 63.1 79.9 15.2 32.9 64.9 78.1 10.4 21.9 46.6 58.3
LTD-10-25[19] 9.2 20.6 46.9 58.8 16.7 33.9 67.5 81.6 10.2 20.2 40.9 50.9 12.5 27.5 62.5 79.6 15.5 32.3 63.6 77.3 10.4 21.4 45.4 57.3
LTD-10-10[19] 8.0 18.8 43.7 54.9 14.8 31.4 65.3 79.7 9.3 19.1 39.8 49.7 10.9 25.1 59.1 75.9 13.9 30.3 62.2 75.9 9.8 20.5 44.2 55.9

Ours 7.4 18.4 44.5 56.5 13.7 30.1 63.8 78.1 8.6 18.3 39.0 49.2 10.2 24.2 58.5 75.8 13.0 29.2 60.4 73.9 9.3 20.1 44.3 56.0

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. Sup. [21] 31.7 58.3 96.7 112.0 21.9 41.4 74.0 87.6 23.8 44.2 75.8 87.7 36.4 64.8 99.1 110.6 20.4 37.1 59.4 67.3 25.0 46.2 77.0 88.3
convSeq2Seq [16] 20.7 40.6 70.4 82.7 12.7 26.0 52.1 63.6 14.6 29.7 58.1 69.7 27.7 53.6 90.7 103.3 15.3 30.4 53.1 61.2 16.6 33.3 61.4 72.7

LTD-50-25[19] 17.1 34.2 63.6 76.4 9.6 20.3 43.3 54.3 10.4 22.1 47.9 59.2 22.8 44.7 77.2 88.7 10.3 21.2 39.4 46.3 12.2 25.4 50.7 61.5
LTD-10-25[19] 17.0 33.4 61.6 74.4 9.9 20.5 43.8 55.2 10.5 21.6 45.9 57.1 22.9 43.5 74.5 86.4 10.8 21.7 39.6 47.0 12.4 25.2 49.9 60.9
LTD-10-10[19] 15.6 31.4 59.1 71.7 8.9 18.9 41.0 51.7 9.2 19.5 43.3 54.4 20.9 40.7 73.6 86.6 9.6 19.4 36.5 44.0 11.2 23.4 47.9 58.9

Ours 14.9 30.7 59.1 72.0 8.3 18.4 40.7 51.5 8.7 19.2 43.4 54.9 20.1 40.3 73.3 86.3 8.9 18.4 35.1 41.9 10.4 22.6 47.1 58.3

where l ∈ {1, 2, · · · , L},n ∈ {1, 2, · · · , L} and δij =

{
1 if i = j

0 if i 6= j.
.

To predict future poses XN+1:N+T , we make use of the latest sub-sequence
XN−M+1:N , which is also the query in the attention model. Adopting the same
padding strategy as [19], we then replicate the last observed pose XN T times to
generate a sequence of length M + T and the DCT coefficients of this sequence
are denoted as D ∈ RK×(M+T ). We then aim to predict DCT coefficients of the
future sequence XN−M+1:N+T given D and the attention model’s output U.

Spatial encoding. To capture spatial dependencies between different joint co-
ordinates or angles, we regard the human body as a fully-connected graph with
K nodes. The input to a graph convolutional layer p is a matrix H(p) ∈ RK×F ,
where each row is the F dimensional feature vector of one node. For example,
for the first layer, the network takes as input the K × 2(M + T ) matrix that
concatenates D and U. A graph convolutional layer then outputs a K×F̂ matrix
of the form

H(p+1) = σ(A(p)H(p)W(p)) , (5)

where A(p) ∈ RK×K is the trainable adjacency matrix of layer p, representing the

strength of the connectivity between nodes, W(p) ∈ RF×F̂ also encodes trainable
weights but used to extract features, and σ(·) is an activation function, such as
tanh(·). We stack several such layers to form our GCN-based predictor.

Given D and U, the predictor learns a residual between the DCT coeffi-
cients D of the padded sequence and those of the true sequence. By applying
IDCT to the predicted DCT coefficients, we obtain the coordinates or angles
X̂N−M+1:N+T , whose last T poses X̂N+1:N+T are predictions in the future.
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Table 2. Long-term prediction of 3D joint positions on H3.6M. On average, our ap-
proach performs the best.

Walking Eating Smoking Discussion
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. Sup. [21] 71.6 72.5 76.0 79.1 74.9 85.9 93.8 98.0 78.1 88.6 96.6 102.1 109.5 122.0 128.6 131.8
convSeq2Seq [16] 72.2 77.2 80.9 82.3 61.3 72.8 81.8 87.1 60.0 69.4 77.2 81.7 98.1 112.9 123.0 129.3

LTD-50-25[19] 50.7 54.4 57.4 60.3 51.5 62.6 71.3 75.8 50.5 59.3 67.1 72.1 88.9 103.9 113.6 118.5
LTD-10-25[19] 51.8 56.2 58.9 60.9 50.0 61.1 69.6 74.1 51.3 60.8 68.7 73.6 87.6 103.2 113.1 118.6
LTD-10-10[19] 53.1 59.9 66.2 70.7 51.1 62.5 72.9 78.6 49.4 59.2 66.9 71.8 88.1 104.5 115.5 121.6

Ours 47.4 52.1 55.5 58.1 50.0 61.4 70.6 75.7 47.6 56.6 64.4 69.5 86.6 102.2 113.2 119.8

Directions Greeting Phoning Posing Purchases Sitting
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. Sup. [21] 101.1 114.5 124.5 129.1 126.1 138.8 150.3 153.9 94.0 107.7 119.1 126.4 140.3 159.8 173.2 183.2 122.1 137.2 148.0 154.0 113.7 130.5 144.4 152.6
convSeq2Seq [16] 86.6 99.8 109.9 115.8 116.9 130.7 142.7 147.3 77.1 92.1 105.5 114.0 122.5 148.8 171.8 187.4 111.3 129.1 143.1 151.5 82.4 98.8 112.4 120.7

LTD-50-25[19] 74.2 88.1 99.4 105.5 104.8 119.7 132.1 136.8 68.8 83.6 96.8 105.1 110.2 137.8 160.8 174.8 99.2 114.9 127.1 134.9 79.2 96.2 110.3 118.7
LTD-10-25[19] 76.1 91.0 102.8 108.8 104.3 120.9 134.6 140.2 68.7 84.0 97.2 105.1 109.9 136.8 158.3 171.7 99.4 114.9 127.9 135.9 78.5 95.7 110.0 118.8
LTD-10-10[19] 72.2 86.7 98.5 105.8 103.7 120.6 134.7 140.9 67.8 83.0 96.4 105.1 107.6 136.1 159.5 175.0 98.3 115.1 130.1 139.3 76.4 93.1 106.9 115.7

Ours 73.9 88.2 100.1 106.5 101.9 118.4 132.7 138.8 67.4 82.9 96.5 105.0 107.6 136.8 161.4 178.2 95.6 110.9 125.0 134.2 76.4 93.1 107.0 115.9

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Res. Sup. [21] 138.8 159.0 176.1 187.4 110.6 128.9 143.7 153.9 105.4 117.3 128.1 135.4 128.7 141.1 155.3 164.5 80.2 87.3 92.8 98.2 106.3 119.4 130.0 136.6
convSeq2Seq [16] 106.5 125.1 139.8 150.3 84.4 102.4 117.7 128.1 87.3 100.3 110.7 117.7 122.4 133.8 151.1 162.4 72.0 77.7 82.9 87.4 90.7 104.7 116.7 124.2

LTD-50-25[19] 100.2 118.2 133.1 143.8 75.3 93.5 108.4 118.8 77.2 90.6 101.1 108.3 107.8 120.3 136.3 146.4 56.0 60.3 63.1 65.7 79.6 93.6 105.2 112.4
LTD-10-25[19] 99.5 118.5 133.6 144.1 76.8 95.3 110.3 120.2 75.1 88.7 99.5 106.9 105.8 118.7 132.8 142.2 58.0 63.6 67.0 69.6 79.5 94.0 105.6 112.7
LTD-10-10[19] 96.2 115.2 130.8 142.2 72.5 90.9 105.9 116.3 73.4 88.2 99.8 107.5 109.7 122.8 139.0 150.1 55.7 61.3 66.4 69.8 78.3 93.3 106.0 114.0

Ours 97.0 116.1 132.1 143.6 72.1 90.4 105.5 115.9 74.5 89.0 100.3 108.2 108.2 120.6 135.9 146.9 52.7 57.8 62.0 64.9 77.3 91.8 104.1 112.1

3.3 Training

Let us now introduce the loss functions we use to train our model on either 3D
coordinates or joint angles. For 3D joint coordinates prediction, following [19],
we make use of the Mean Per Joint Position Error (MPJPE) proposed in [10].
In particular, for one training sample, this yields the loss

` =
1

J(M + T )

M+T∑
t=1

J∑
j=1

‖p̂t,j − pt,j‖2 , (6)

where p̂t,j ∈ R3 represents the 3D coordinates of the jth joint of the tth human

pose in X̂N−M+1:N+T , and pt,j ∈ R3 is the corresponding ground truth.
For the angle-based representation, we use the average `1 distance between

the predicted joint angles and the ground truth as loss. For one sample, this can
be expressed as

` =
1

K(M + T )

M+T∑
t=1

K∑
k=1

|x̂t,k − xt,k| , (7)

where x̂t,k is the predicted kth angle of the tth pose in X̂N−M+1:N+T and xt,k
is the corresponding ground truth.

3.4 Network Structure

As shown in Fig. 2, our complete framework consists of two modules: a motion
attention model and a predictor. For the attention model, we use the same
architecture for fq and fk. Specifically, we use a network consisting of two 1D
convolutional layers, each of which is followed by a ReLU [22] activation function.
In our experiments, the kernel size of these two layers is 6 and 5, respectively,
to obtain a receptive field of 10 frames. The dimension of the hidden features,
the query vector q and the key vectors {ki}N−M−T+1

i=1 is set to 256.
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(a)Discussion (b)Walking Dog

(c)Walking

Fig. 3. Qualitative comparison of short-term (“Discussion” and “Walking Dog”) and
long-term (“Walking”) predictions on H3.6M. From top to bottom, we show the ground
truth, and the results of LTD-10-25, LTD-10-10 and our approach on 3D positions. The
ground truth is shown as blue-red skeletons, and the predictions as green-purple ones.

For the predictor, we use the same GCN with residual structure as in [19]. It is
made of 12 residual blocks, each of which contains two graph convolutional layers,
with an additional initial layer to map the DCT coefficients to features and a final
layer to decode the features to DCT residuals. The learnable weight matrix W
of each layer is of size 256×256, and the size of the learnable adjacency matrix A
depends on the dimension of one human pose. For example, for 3D coordinates,
A is of size 66 × 66. Thanks to the simple structure of our attention model,
the overall network remains still compact. Specifically, in our experiments, it
has around 3.4 million parameters for both 3D coordinates and angles. The
implementation details are included in supplementary material.

4 Experiments

Following previous works [7, 16, 19, 21, 23], we evaluate our method on Human3.6m
(H3.6M) [10] and AMASS [18]. We further evaluate our method on 3DPW [20]
using our model trained on AMASS to demonstrate the generalizability of our
approach. Below, we discuss these datasets, the evaluation metric and the base-
line methods, and present our results using joint angles and 3D coordinates.

4.1 Datasets

Human3.6M [10] is the most widely used benchmark dataset for motion pre-
diction. It depicts seven actors performing 15 actions. Each human pose is rep-
resented as a 32-joint skeleton. We compute the 3D coordinates of the joints by
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Table 3. Short-term prediction of joint angles on H3.6M. Note that, we report results
on 8 sub-sequences per action for fair comparison with MHU [28].

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. sup. [21] 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
convSeq2Seq [16] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01

MHU [28] 0.32 0.53 0.69 0.77 - - - - - - - - 0.31 0.66 0.93 1.00
LTD-10-25 [19] 0.20 0.34 0.52 0.59 0.17 0.31 0.52 0.64 0.23 0.42 0.85 0.80 0.22 0.58 0.87 0.96
LTD-10-10 [19] 0.18 0.31 0.49 0.56 0.16 0.29 0.50 0.62 0.22 0.41 0.86 0.80 0.20 0.51 0.77 0.85

Ours 0.18 0.30 0.46 0.51 0.16 0.29 0.49 0.60 0.22 0.42 0.86 0.80 0.20 0.52 0.78 0.87

Directions Greeting Phoning Posing Purchases Sitting
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. sup. [21] 0.26 0.47 0.72 0.84 0.75 1.17 1.74 1.83 0.23 0.43 0.69 0.82 0.36 0.71 1.22 1.48 0.51 0.97 1.07 1.16 0.41 1.05 1.49 1.63
convSeq2Seq [16] 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18

MHU [28] - - - - 0.54 0.87 1.27 1.45 - - - - 0.33 0.64 1.22 1.47 - - - - - - - -
LTD-10-25 [19] 0.29 0.47 0.69 0.76 0.36 0.61 0.97 1.14 0.54 1.03 1.34 1.47 0.21 0.47 1.07 1.31 0.50 0.72 1.06 1.12 0.31 0.46 0.79 0.95
LTD-10-10 [19] 0.26 0.45 0.71 0.79 0.36 0.60 0.95 1.13 0.53 1.02 1.35 1.48 0.19 0.44 1.01 1.24 0.43 0.65 1.05 1.13 0.29 0.45 0.80 0.97

Ours 0.25 0.43 0.60 0.69 0.35 0.60 0.95 1.14 0.53 1.01 1.31 1.43 0.19 0.46 1.09 1.35 0.42 0.65 1.00 1.07 0.29 0.47 0.83 1.01

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res. sup. [21] 0.39 0.81 1.40 1.62 0.24 0.51 0.90 1.05 0.28 0.53 1.02 1.14 0.56 0.91 1.26 1.40 0.31 0.58 0.87 0.91 0.36 0.67 1.02 1.15
convSeq2Seq [16] 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

MHU [28] - - - - 0.27 0.54 0.84 0.96 - - - - 0.56 0.88 1.21 1.37 - - - - 0.39 0.68 1.01 1.13
LTD-10-25 [19] 0.31 0.64 0.94 1.07 0.17 0.38 0.62 0.74 0.25 0.52 0.96 1.17 0.49 0.80 1.11 1.26 0.18 0.39 0.56 0.63 0.30 0.54 0.86 0.97
LTD-10-10 [19] 0.30 0.61 0.90 1.00 0.14 0.34 0.58 0.70 0.23 0.50 0.91 1.14 0.46 0.79 1.12 1.29 0.15 0.34 0.52 0.57 0.27 0.52 0.83 0.95

Ours 0.30 0.63 0.92 1.04 0.16 0.36 0.58 0.70 0.22 0.49 0.92 1.14 0.46 0.78 1.05 1.23 0.14 0.32 0.50 0.55 0.27 0.52 0.82 0.94

applying forward kinematics on a standard skeleton as in [19]. Following [16,
19, 21], we remove the global rotation, translation and constant angles or 3D
coordinates of each human pose, and down-sample the motion sequences to 25
frames per second. As previous work [16, 19, 21], we test our method on subject
5 (S5). However, instead of testing on only 8 random sub-sequences per action,
which was shown in [23] to lead to high variance, we report our results on 256
sub-sequences per action when using 3D coordinates. For fair comparison, we
report our angular error on the same 8 sub-sequences used in [28]. Nonethe-
less, we provide the angle-based results on 256 sub-sequences per action in the
supplementary material.

AMASS. The Archive of Motion Capture as Surface Shapes (AMASS) dataset [18]
is a recently published human motion dataset, which unifies many mocap datasets,
such as CMU, KIT and BMLrub, using a SMPL [17, 24] parameterization to ob-
tain a human mesh. SMPL represents a human by a shape vector and joint
rotation angles. The shape vector, which encompasses coefficients of different
human shape bases, defines the human skeleton. We obtain human poses in 3D
by applying forward kinematics to one human skeleton. In AMASS, a human
pose is represented by 52 joints, including 22 body joints and 30 hand joints.
Since we focus on predicting human body motion, we discard the hand joints
and the 4 static joints, leading to an 18-joint human pose. As for H3.6M, we
down-sample the frame-rate to 25Hz. Since most sequences of the official test-
ing split1 of AMASS consist of transition between two irrelevant actions, such
as dancing to kicking, kicking to pushing, they are not suitable to evaluate our
prediction algorithms, which assume that the history is relevant to forecast the
future. Therefore, instead of using this official split, we treat BMLrub2 (522 min.

1 Described at https://github.com/nghorbani/amass
2 Available at https://amass.is.tue.mpg.de/dataset.
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Table 4. Long-term prediction of joint angles on H3.6M.

Walking Eating Smoking Discussion
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

convSeq2Seq [16] 0.87 0.96 0.97 1.00 0.86 0.90 1.12 1.24 0.98 1.11 1.42 1.67 1.42 1.76 1.90 2.03
MHU [28] 1.44 1.46 - 1.44 - - - - - - - - 1.37 1.66 - 1.88

LTD-10-25 [19] 0.65 0.69 0.69 0.67 0.76 0.82 1.00 1.12 0.87 0.99 1.33 1.57 1.33 1.53 1.62 1.70
LTD-10-10 [19] 0.69 0.77 0.76 0.77 0.76 0.81 1.00 1.10 0.88 1.01 1.36 1.58 1.27 1.51 1.66 1.75

Ours 0.59 0.62 0.61 0.64 0.74 0.81 1.01 1.10 0.86 1.00 1.35 1.58 1.29 1.51 1.61 1.63

Directions Greeting Phoning Posing Purchases Sitting
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

convSeq2Seq [16] 1.00 1.18 1.41 1.44 1.73 1.75 1.92 1.90 1.66 1.81 1.93 2.05 1.95 2.26 2.49 2.63 1.68 1.65 2.13 2.50 1.31 1.43 1.66 1.72
MHU [28] - - - - 1.75 1.74 - 1.87 - - - - 1.82 2.17 - 2.51 - - - - - - - -

LTD-10-25 [19] 0.84 1.02 1.23 1.26 1.43 1.44 1.59 1.59 1.45 1.57 1.66 1.65 1.62 1.94 2.22 2.42 1.42 1.48 1.93 2.21 1.08 1.20 1.39 1.45
LTD-10-10 [19] 0.90 1.07 1.32 1.35 1.47 1.47 1.63 1.59 1.49 1.64 1.75 1.74 1.61 2.02 2.35 2.55 1.47 1.57 1.99 2.27 1.12 1.25 1.46 1.52

Ours 0.81 1.02 1.22 1.27 1.47 1.47 1.61 1.57 1.41 1.55 1.68 1.68 1.60 1.78 2.10 2.32 1.43 1.53 1.94 2.22 1.16 1.29 1.50 1.55

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

convSeq2Seq [16] 1.45 1.70 1.85 1.98 1.09 1.18 1.27 1.32 1.68 2.02 2.33 2.45 1.73 1.85 1.99 2.04 0.82 0.89 0.95 1.29 1.35 1.50 1.69 1.82
MHU [28] - - - - 1.04 1.14 - 1.35 - - - - 1.67 1.81 - 1.90 - - - - 1.34 1.49 1.69 1.80

LTD-10-25 [19] 1.26 1.54 1.70 1.87 0.85 0.92 0.99 1.06 1.55 1.89 2.20 2.29 1.52 1.63 1.78 1.84 0.70 0.75 0.82 1.16 1.15 1.29 1.48 1.59
LTD-10-10 [19] 1.17 1.40 1.54 1.67 0.81 0.89 0.97 1.05 1.57 1.94 2.29 2.37 1.58 1.66 1.80 1.86 0.65 0.73 0.81 1.16 1.16 1.32 1.51 1.62

Ours 1.18 1.42 1.55 1.70 0.82 0.91 1.00 1.08 1.54 1.90 2.22 2.30 1.57 1.63 1.76 1.82 0.63 0.68 0.79 1.16 1.14 1.28 1.46 1.57

video sequence), as our test set as each sequence consists of one actor performing
one type of action. We then split the remaining parts of AMASS into training
and validation data.

3DPW. The 3D Pose in the Wild dataset (3DPW) [20] consists of challenging
indoor and outdoor actions. We only evaluate our model trained on AMASS on
the test set of 3DPW to show the generalization of our approach.

4.2 Evaluation Metrics and Baselines

Metrics. For the models that output 3D positions, we report the Mean Per
Joint Position Error (MPJPE) [10] in millimeter, which is commonly used in
human pose estimation. For those that predict angles, we follow the standard
evaluation protocol [21, 16, 19] and report the Euclidean distance in Euler angle
representation.

Baselines. We compare our approach with two RNN-based methods, Res. sup. [21]
and MHU [28], and two feed-forward models, convSeq2Seq [16] and LTD [19],
which constitutes the state of the art. The angular results of Res. sup. [21], con-
vSeq2Seq [16] and MHU on H3.6M are directly taken from the respective paper.
For the other results of Res. sup. [21] and convSeq2Seq [16], we adapt the code
provided by the authors for H3.6M to 3D and AMASS. For LTD [19], we rely on
the pre-trained models released by the authors for H3.6M, and train their model
on AMASS using their official code. While Res. sup. [21], convSeq2Seq [16] and
MHU [28] are all trained to generate 25 future frames, LTD [19] has 3 different
models, which we refer to as LTD-50-25 [19], LTD-10-25 [19], and LTD-10-10 [19].
The two numbers after the method name indicate the number of observed past
frames and that of future frames to predict, respectively, during training. For
example, LTD-10-25 [19] means that the model is trained to take the past 10
frames as input to predict the future 25 frames.
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(a) Left foot of Walking (b) Right wrist of Discussion
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Fig. 4. Visualization of attention maps and joint trajectories. The x-axis denotes the
frame index, with prediction starting at frame 0. The y-axis of the attention map
(top) is the prediction step. Specifically, since the model is trained to predict 10 future
frames, we recursively perform prediction for 3 steps to generate 30 frames. Each row
of an attention map is then the attention vector when predicting the corresponding 10
future frames. For illustration purpose, we show per-frame attention, which represents
the attention for its motion subsequence consisting of M-1 frames forward and T frames
afterwards. (a) Predicted attention map and trajectory of the left foot’s x coordinate for
’Walking’, where the future motion closely resembles that between frames−45 and−10.
Our model correctly attends to that very similar motion in the history. (b) Predicted
attention map and trajectory of the right wrist’s x coordinate for ’Discussion’. In this
case, the attention model searches for the most similar motion in the history. For
example, in the 1st prediction step, to predict frames 0 to 10 where a peak occurs, the
model focuses on frames −30 to −20, where a similar peak pattern occurs.

4.3 Results

Following the setting of our baselines [21, 16, 28, 19], we report results for short-
term (< 500ms) and long-term (> 500ms) prediction. On H3.6M, our model is
trained using the past 50 frames to predict the future 10 frames, and we produce
poses further in the future by recursively applying the predictions as input to
the model. On AMASS, our model is trained using the past 50 frames to predict
the future 25 frames.

Human3.6M. In Tables 1 and 2, we provide the H3.6M results for short-term
and long-term prediction in 3D space, respectively. Note that we outperform
all the baselines on average for both short-term and long-term prediction. In
particular, our method yields larger improvements on activities with a clear
repeated history, such as “Walking” and “Walking Together”. Nevertheless, our
approach remains competitive on the other actions. Note that we consistently
outperform LTD-50-25, which is trained on the same number of past frames as
our approach. This, we believe, evidences the benefits of exploiting attention on
the motion history.

Let us now focus on the LTD [19] baseline, which constitutes the state of the
art. Although LTD-10-10 is very competitive for short-term prediction, when
it comes to generate poses in the further future, it yields higher average error,
i.e., 114.0mm at 1000ms. By contrast, LTD-10-25 and LTD-50-25 achieve good
performance at 880ms and above, but perform worse than LTD-10-10 at other
time horizons. Our approach, however, yields state-of-the-art performance for
both short-term and long-term predictions. To summarize, our motion atten-
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Table 5. Short-term and long-term prediction of 3D joint positions on BMLrub (left)
and 3DPW (right).

AMASS-BMLrub 3DPW
milliseconds 80 160 320 400 560 720 880 1000 80 160 320 400 560 720 880 1000

convSeq2Seq [16] 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5 18.8 32.9 52.0 58.8 69.4 77.0 83.6 87.8
LTD-10-10 [19] 10.3 19.3 36.6 44.6 61.5 75.9 86.2 91.2 12.0 22.0 38.9 46.2 59.1 69.1 76.5 81.1
LTD-10-25 [19] 11.0 20.7 37.8 45.3 57.2 65.7 71.3 75.2 12.6 23.2 39.7 46.6 57.9 65.8 71.5 75.5

Ours 11.3 20.7 35.7 42.0 51.7 58.6 63.4 67.2 12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7

tion model improves the performance of the predictor for short-term prediction
and further enables it to generate better long-term predictions. This is further
evidenced by Tables 3 and 4, where we report the short-term and long-term
prediction results in angle space on H3.6M, and by the qualitative comparison
in Fig. 3. More qualitative results are provided in the supplementary material.

AMASS & 3DPW. The results of short-term and long-term prediction in 3D
on AMASS and 3DPW are shown in Table 5. Our method consistently outper-
forms baseline approaches, which further evidences the benefits of our motion
attention model. Since none of the methods were trained on 3DPW, these results
further demonstrate that our approach generalizes better to new datasets than
the baselines.

Visualisation of attention. In Fig. 4, we visualize the attention maps com-
puted by our motion attention model on a few sampled joints for their corre-
sponding coordinate trajectories. In particular, we show attention maps for joints
in a periodical motion (“Walking”) and a non-periodical one (“Discussion”). In
both cases, the attention model can find the most relevant sub-sequences in the
history, which encode either a nearly identical motion (periodical action), or a
similar pattern (non-periodical action).

Motion repeats itself in longer-term history. Our model, which is trained
with fixed-length observations, can nonetheless exploit longer history at test time
if it is available. To evaluate this and our model’s ability to capture long-range
motion dependencies, we manually sampled 100 sequences from the test set of
H3.6M, in which similar motion occurs in the further past than that used to
train our model.

In Table 6, we compare the results of a model trained with 50 past frames and
using either 50 frames (Ours-50) or 100 frames (Ours-100) at test time. Although
the performance is close in the very short term (< 160ms), the benefits of our
model using longer history become obvious when it comes to further future,
leading to a performance boost of 4.2mm at 1s. In Fig. 5, we compare the
attention maps and predicted joint trajectories of Ours-50 (a) and Ours-100 (b).
The highlighted regions (in red box) in the attention map demonstrate that our
model can capture the repeated motions in the further history if it is available
during test and improve the motion prediction results.

To show the influence of further historical frames, we replace the past 40
frames with a static pose, thus removing the motion in that period, and then
perform prediction with this sequence. As shown in Fig. 5 (c), attending to the



14 W. Mao, M. Liu, M. Salzmann

Table 6. Short-term and long-term prediction of 3D positions on selected sequences
where similar patterns occur in the longer history. The number after “Ours” indicates
the observed frames during testing. Both methods observed 50 frames during training.

milliseconds 80 160 320 400 560 720 880 1000

Ours-50 10.7 22.4 46.9 58.3 79.0 97.1 111.0 121.1
Ours-100 10.7 22.5 46.4 57.5 77.8 95.1 107.6 116.9
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Fig. 5. Visualization of attention maps and joint coordinate trajectories for “Smoking”
on H3.6M. (a) Results of our model observing 50 past frames. (b) Results of our model
observing 100 frames. (c) Results obtained when replacing the motion of the past 40
frames with a constant pose.

similar motion between frames −80 and −60, yields a trajectory much closer to
the ground truth than only attending to the past 50 frames.

5 Conclusion

In this paper, we have introduced an attention-based motion prediction ap-
proach that selectively exploits historical information according to the similarity
between the current motion context and the sub-sequences in the past. This has
led to a predictor equipped with a motion attention model that can effectively
make use of historical motions, even when they are far in the past. Our approach
achieves state-of-the-art performance on the commonly-used motion prediction
benchmarks and on recently-published datasets. Furthermore, our experiments
have demonstrated that our network generalizes to previously-unseen datasets
without re-training or fine-tuning, and can handle longer history than that it
was trained with to further boost performance on non-periodical motions with
repeated history. In the future, we will further investigate the use of our motion
attention mechanisms to discover human motion patterns in body parts level
such as legs and arms to get more flexible attentions and explore new prediction
frame works.
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