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Abstract. Object tracking is a well-studied problem in computer vi-
sion while identifying salient spots of objects in a video is a less ex-
plored direction in the literature. Video eye gaze estimation methods
aim to tackle a related task but salient spots in those methods are not
bounded by objects and tend to produce very scattered, unstable predic-
tions due to the noisy ground truth data. We reformulate the problem
of detecting and tracking of salient object spots as a new task called ob-
ject hotspot tracking. In this paper, we propose to tackle this task jointly
with unsupervised video object segmentation, in real-time, with a uni-
fied framework to exploit the synergy between the two. Specifically, we
propose a Weighted Correlation Siamese Network (WCS-Net) which em-
ploys a Weighted Correlation Block (WCB) for encoding the pixel-wise
correspondence between a template frame and the search frame. In ad-
dition, WCB takes the initial mask / hotspot as guidance to enhance
the influence of salient regions for robust tracking. Our system can op-
erate online during inference and jointly produce the object mask and
hotspot track-lets at 33 FPS. Experimental results validate the effec-
tiveness of our network design, and show the benefits of jointly solving
the hotspot tracking and object segmentation problems. In particular,
our method performs favorably against state-of-the-art video eye gaze
models in object hotspot tracking, and outperforms existing methods on
three benchmark datasets for unsupervised video object segmentation.

Keywords: Unsupervised video object segmentation; Hotspot tracking;
Weighted correlation siamese network

1 Introduction

Unsupervised video object segmentation (UVOS) aims to generate the masks
of the primary objects in the video sequence without any human annotation.
It has attracted a lot of interests due to the wide application scenarios such as
autonomous driving, video surveillance and video editing.

However, in some applications, such as video cropping, zooming and auto-
focus, tracking the full mask of a dominant object may not be sufficient. In video
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Fig. 1: The visual comparison of our object hotspot tracking results (top row) with the
video eye gaze estimation results in [22] (middle row) and the eye gaze tracking ground
truth in [48]. The peaks of hotspot map indicate the saliency distribution inside the
object. Please zoom in for details.

zooming, for example, the deformable shape of object mask may not provide a
stable focal point for the zooming window. Furthermore, the mask only can’t
support the users to zoom in to the attractive part of the object (e.g., the head
of a person or the hood of a car). In such scenario, the attention distribution
inside the object region can be very useful. The peak of the attention distribution
can be thought of as a virtual focal region of the object, which provides a clean
saliency indication on the object part (see the highlighted regions in the first row
of Fig. 1). We refer to this virtual focal region of an object as an Object Hotspot.
In this work, we propose a new task of Hotspot Tracking, which aims to produce
clean, stable and temporally consistent object hotspot distribution along video
sequence (see the first row in Fig. 1). This task is different from the video eye gaze
prediction task [22, 48] in which the eye gaze tracking ground truth is intrinsically
unstable and noisy due to the saccadic eye movement [36, 13]. However, our
hotspot tracking is a clean and stable intra-object focal saliency estimation and
thus a more useful evidence to facilitate the video editing applications.

The UVOS and hotspot tracking are highly related tasks. The UVOS provides
a sequence of object masks, which can provide a strong spatial guidance for the
hotspot detection and tracking. Meanwhile, the hotspot of an object can also help
the object mask tracking, as it tends to be more robust to object deformation,
occlusion and appearance change. Jointly solving both tasks can leverage the
synergy between them and provides a richer supervision for the model training.

In this paper, we show how to tackle the unsupervised video object segmen-
tation and hotspot tracking in a simple unified framework. Our model consists
of two modules, Target Object Initialization (TOI) and Object Segmentation
and Hotspot Tracking (OSHT). The TOI module exploits the idea of the corre-
lation between human eye gaze and UVOS [48] and builds an efficient method
for automatically determining the target object in the video. Specifically, for an
initial frame, an Eye Gaze Network (EG-Net) is first utilized to make a rough
estimation on the location of the target object. Then a Gaze2Mask Network
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(Gaze2Mask-Net) is proposed to predict the mask of the target object according
to the distribution of eye gaze. By applying the automatic initialization process
on the first frame, our model can perform online inference. Furthermore, this
approach also allows interactive tracking, where the eye gaze distribution can be
indicated by a real human via eye gaze sensors or gestures.

To capture the temporal dependency among video frames, we formulate the
task of UVOS and hotspot tracking as a template matching problem. In detail,
we employ the eye gaze map and mask from TOI as a template for producing
the corresponding hotspot and mask in the subsequent frames. We propose a
novel Weighted Correlation Siamese Network (WCS-Net) for the joint tracking
of object mask and hotspot. In the WCS-Net, the Weighted Correlation Block
(WCB) is exploited to calculate the cross-pixel correspondence between a tem-
plate frame and the current search frame. In WCB, a weighted pooling operation
is conducted between the mask / hotspot and feature of template frame to em-
phasize the contribution of foreground pixels. The WCB is built on multi-level
side-outputs to encode the correlation features, which will be used in the parallel
decoder branches to produce the track-lets of mask and hotspot across time.

Considering the difficulty in annotating hotspot using eye tracker, we de-
sign a training strategy on multi-source data. The network learns to predict
the intra-object hotspots from large-scale image-level eye gaze data [19] and the
temporal correlation feature representation via limited video object segmenta-
tion data [34]. Once trained, our model can operate online and produce the
object mask and hotspot at a real-time speed of 33 fps. To investigate the effi-
cacy of our proposed model, we conduct thorough experiments including overall
comparison and ablation study on three benchmark datasets [34, 29, 12]. The
results show that our proposed method performs favorable against state-of-the-
arts on UVOS. Meanwhile, our model could achieve promising results on hotspot
tracking with only training on image-level data.

Our contributions can be summarized as follows:

– We introduce the problem of video object hotspot tracking, which tries to
consistently track the focal saliency distribution of target object. This task
is beneficial for applications like video editing and camera auto-focus.

– We present a multi-task systematic design for unsupervised video object
segmentation and hotspot tracking, which supports both online real-time
inference and user interaction.

– We conduct experiments on three benchmark datasets (DAVIS-2016 [34],
SegTrackv2 [29] and Youtube-Objects [12]) to demonstrate that our model1

performs favorable on both tasks while being able to run at 33 FPS.

2 Related Work

Unsupervised VOS. Different from SVOS, unsupervised VOS (UVOS) meth-
ods aim to automatically detect the target object without any human definition.

1 Project Page: https://github.com/luzhangada/code-for-WCS-Net
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Early approaches use the low-level cues like visual saliency [47, 18] or optical
flow [23, 31, 21, 30] to segment the objects. With the recent success of CNNs on
segmentation tasks [7, 49, 50, 16, 56, 54, 9, 8, 55, 57, 10], many methods [31, 5] de-
velop various network architectures and have achieved promising performance.
For example, some models [20, 42, 31] propose to build a bilateral network to
combine the appearance feature and motion cues. In [20], two parallel streams
are built to extract features from raw image and optical flow, which are further
fused in the decoder for predicting the segmentation results. Except for the bi-
lateral network, recurrent neural network (RNN) is also exploited in UVOS to
capture temporal information [48, 39]. However, the RNN-based methods are not
robust enough to handle the long-term videos. Inspired by the success of siamese
network [27, 28] in video object tracking, several methods [3, 30–32, 53] propose
to build siamese architecture to extract features for two frames to calculate their
pixel-wise correspondence. [30, 31] construct a seed-propagation method to ob-
tain segmentation mask, in which the foreground/background seeds are obtained
through temporal link. Yang et al. [53] propose an anchor diffusion module which
computes the similarity of each frame with an anchor frame. The anchor-diffusion
is then combined with the intra-diffusion to predict the segmentation results. In
this paper, we put forward a weighted correlation siamese network for UVOS.
Our model is different from the aforementioned methods on three folds. First, our
WCS-Net is designed as a multi-task architecture for jointly addressing UVOS
and hotspot tracking. Second, a weighted correlation block is proposed, which
exploits the mask and hotspot from the template frame to highlight the influence
of foreground pixel in the correlation feature calculation. Third, our correlation
block is performed on multiple side-outputs to capture the rich CNN feature.

Video Eye Gaze Tracking. Video eye gaze tracking aims to record human
attention in the dynamic scenario. The CNN+RNN framework is widely used
in this task to encode spatio-temporal information. Wang et al. [46] propose to
learn spatial attention from static data and utilize LSTM to predict temporal eye
tracking. In [22], the spatial and temporal cues are respectively produced from
objectness sub-net and motion sub-net, which are further integrated to produce
eye tracking by LSTM. The current eye tracking training data are annotated with
eye tracker in a free-view manner, which would incur eye gaze shifting among
several salient objects in the video. This limits the existing models to apply on
the video editing tasks. To address this issue, Wang et al. [48] construct eye gaze
data on existing video object segmentation datasets, where the eye fixation is
consistent with the moving object. However, due to the eye tracker annotation,
the proposed eye gaze data often flickers inside the object. In this paper, we
propose a problem of object hotspot tracking, which aims to produce a clean and
temporally consistent track-let for the salient region inside the target object.

3 Methodology

We present a neural network model for the task of unsupervised video object
segmentation and hotspot tracking. Given a video sequence Ii ∈ {I1, ..., IN}, our
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model aims to produce the corresponding object masks {Mi}Ni=1 and hotspots
{Hi}Ni=1. Our model contains two sub-modules, Target Object Initialization
(TOI) and Object Segmentation and Hotspot Tracking (OSHT). We formulate
our task as a template matching problem, where the TOI module determines the
target object of the video sequence and the OSHT module aims to predict the
target object mask and its hotspot across time. In the subsequent sections, we
will introduce the details of TOI, OSHT, and the training strategy, respectively.

3.1 Target Object Initialization

In the UVOS, it is very important to determine what the target object is to be
segmented in a video sequence. Some recent CNN-based models [48, 32] propose
to incorporate visual attention to localize the target object in a video, where
the attention is temporally propagated with the RNN architecture. These works
have demonstrated the correlation between human attention and video object
determination. Inspired by this, we build a target object initialization module
to identify the target object from the guidance of human eye gaze. Different
from the previous methods [48, 32] where the human attention is encoded im-
plicitly in the LSTM, we propose an Eye Gaze Network (EG-Net) to make an
explicit eye gaze estimation on the initial frame and a Gaze to Mask Network
(Gaze2Mask-Net) to generate the corresponding object mask. The advantages
of our TOI module are two folds. First, instead of scanning multiple frames dur-
ing object determination [3, 30, 31], using single frame could largely reduce the
computational cost and meet the applications in real-time scenarios. Second, the
initialization order from eye gaze to object mask makes it possible for our model
to extend in the interactive applications where the eye gaze data can be easily
acquired from user click or eye tracker.

Eye gaze network. Given a template frame It, the EG-Net aims to pro-
duce an eye gaze estimation Et to indicate the location of the target object in
the video. Considering the network efficiency, we build our EG-Net on the Ef-
ficientNet [40], which is a very small-size network with impressive performance.
Specifically, we first exploit the encoder to extract features for the template
frame It. Here, we use the last three level features, which are represented as
FE = {fEj }5j=3 (the feature size can be referred in Fig. 2). In the decoder, we
stack three residual refinement blocks [6] to produce the eye gaze map in a
coarse-to-fine manner, which can be represented as follows:

OE
j = Conv2(Cat(fEj , Up(O

E
j+1))) + Up(OE

j+1) (1)

where Up() is the upsampling operation with stride 2. Cat() is the channel-wise
concatenation operation. Conv2() indicates the operation with two convolutional
layers. OE

j is the output of current residual block. Note that the term Up(OE
j+1)

is ignored when j = 5. We take the final output from 3rd decoder block as the
eye gaze prediction Et.

Gaze to mask network. With the EG-Net, we can obtain an eye gaze es-
timation on the template frame. The highlighted region is capable of indicating
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Fig. 2: The framework of Weighted Correlation Siamese Network (WCS-Net). The
WCS-Net is a siamese architecture for jointly video object segmentation and hotspot
tracking. Given the template frame and search frame, we first use siamese encoder to
extract their multi-level features. The weighted correlation block, which takes the initial
mask and eye gaze map (see Sec.3.2) as guidance, is exploited to calculate the corre-
spondence between template and search features. Then we build two parallel decoder
branches to generate the hotspot and mask for the search frame.

the location of the target region. In order to generate the mask of the target
object, we propose a Gaze to Mask Network (Gaze2Mask-Net). Given the tem-
plate frame It and its eye gaze map Et, the Gaze2Mask-Net aims to segment
out the object mask M t according to the highlight region in eye gaze map. In
the Gaze2Mask-Net, we also exploit EfficientNet [40] as encoder. To emphasize
the guidance of eye gaze, the encoder takes the concatenation of both template
frame and eye gaze map as the input. We extract five level features, which are
represented as FG2M = {fG2M

j }5j=1. In Gaze2Mask-Net, we utilize a revised
residual block, which adds the eye gaze map Et into architecture.

OG2M
j = Conv2(Cat(fG2M

j , Up(OG2M
j+1 ), Et)) + Up(OG2M

j+1 ) (2)

OG2M
j is the output of the revised residual block. Note that the eye gaze map

Et should be resized according to the corresponding feature resolution. We stack
five residual blocks as decoder and exploit the output from the first block OG2M

1

as object mask M t.

3.2 Object Segmentation and Hotspot Tracking

The previous UVOS methods [48, 32, 17] usually utilize LSTM or mask prop-
agation method to capture the temporal consistency between adjacent frames.
While these methods are not effective enough to handle the object in long-term
video. Recent tracking approaches [27, 28, 44] propose a siamese architecture,
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which uses the cross correlation operation to capture the dependence between
template and search region. Their works have demonstrated the robustness of
such siamese network in long-term videos. Inspired by this, we formulate the
task of VOS and hotspot tracking as template matching problem. We propose a
Weighted Correlation Siamese Network (WCS-Net) for joint unsupervised video
object segmentation and hotspot tracking. The overall architecture of WCS-Net
is shown in Fig. 2. Given the template frame It and the search region of current
frame Ii, we first build a siamese encoder network to extract their multi-level
features, which are represented as F t = {f tj}5j=1 and F i = {f ij}5j=1. Then the
weighted correlation block is constructed among multiple side-outputs to calcu-
late the multi-level correlation features. Taken the eye gaze map Et and mask
M t from EG-Net and Gaze2Mask-Net as template guidance, we implement two
parallel decoder branches to generate the corresponding hotspot Hi and mask
Mi for each frame in the video sequence.

Weighted correlation block. We propose a weighted correlation block to
calculate the correspondence between template and search features. Taken the
template feature f tj , search feature f ij and the template guidance G as input, the
weighted correlation block produces the corresponding correlation feature by:

Ci
j = W (f tj , Rj(G)) ? f ij (3)

where ? denotes the depth-wise cross correlation layer [27, 44]. Ci
j is the corre-

lation feature between template and search frames. Rj() is the resize operation.
W () indicates the weighted pooling operation, which transfers the feature map
(h× w × c) into feature vector (1× 1× c) by weighted summation with Rj(G).
G = M t when constructing the correlation block for the video object segmenta-
tion, or G = Ht for the hotspot tracking (see Fig. 3 for more details). Compared
with the original cross correlation [27, 44] (formulated as f tj ? f

i
j), our weighted

correlation block is more effective at our pixel-wise prediction problem. On one
hand, the weighted pooling with template guidance is able to highlight the con-
tribution of foreground and reduce the noise from background. On the other
hand, the correlation between template vector and search feature would not de-
crease the resolution of search feature and thus helps to remain the details of
target object. We conduct the comparison experiment in Sec. 4.4 to demonstrate
the effectiveness of our weighted correlation on UVOS.

Mask decoder branch. Different from previous methods [48, 32] in which
only the single level feature is used to generate object mask, we exploit multi-level
feature representations. Specifically, we build the weighted correlation blocks
among five side-outputs to produce the multi-level correlation feature between
template and search frames. Similarly with the decoder in EG-Net, we stack five
residual refinement blocks to produce the object mask in a coarse to fine manner.

Oi,M
j = Conv2(Cat(Ci,M

j , Up(Oi,M
j+1))) + Up(Oi,M

j+1) (4)

where the Oi,M
j represents the the output in the j-th decoder residual block.

Ci,M
j is the correlation feature calculated by weighted correlation block with
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Fig. 3: The details of components in weighted correlation siamese network. (a) The
details of weighted correlation block at j-th level. (b) The details of mask decoder
block at j-th level. (c) The details of hotspot decoder block.

initial mask M t as template guidance (i.e., G = M t in Eq. 3). We take the
output from the 1st residual decoder block as the final object mask Mi for i-th
frame. The architecture of the decoder block for mask branch is illustrated in
Fig. 3 (b).

Hotspot decoder branch. The function of hotspot decoder is to generate
the track-let of hotspots {Hi}Ni=1 for the video sequence according to the initial
eye gaze. We visiualize the framework of hotspot decoder branch in Fig. 3 (c).
In the hotspot decoder branch, the correlation features on both 3-rd and 4-th
side-outputs are used for generating the hotspot map,

Oi,H = Conv2(Cat(Ci,H
3 , Up(Ci,H

4 )) (5)

where Oi,H is the hotspot map Hi for i-th frame. Ci,H
3 and Ci,H

4 are the corre-
lation features by Eq. 3 with G set as initial eye gaze map Et.

3.3 Network Training

Implementation details. The input size of EG-Net and Gaze2Mask-Net is
set to 320× 320. In the WCS-Net, the template and search frames fed into the
siamese encoder network share the same resolution as 320×320. Similar with the
object tracking methods [27, 44], we take the sub-region centered on the target
object as template frame. The current search region is a local crop centered on
the last estimated position of the target object. We use the EfficientNetv2 [40]
as the backbone of siamese encoder. For all the residual refinement blocks in
the decoders of EG-Net, Gaze2Mask-Net and WCS-Net, the two convolutional
layers are set with kernel size 3× 3 and 1× 1, respectively.

Training of EG-Net and Gaze2Mask-Net. We exploit the SALICON
dataset [19] to train our EG-Net. The loss for EG-Net is formulated as the
cross entropy loss between predicted eye gaze map and ground truth. For the
Gaze2Mask-Net, we produce the eye gaze and object mask pair on the PASCAL
VOC dataset [14]. Specifically, we utilize the EG-Net to generate the eye gaze
map inside the ground truth instance mask. The Gaze2Mask-Net takes the RGB
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image and eye gaze map as input to predict the object mask, which would be
used to calculate the cross entropy loss with the corresponding ground truth.
We use the Adam optimization with learning rate of 0.001 and batch size of 32
to train both EG-Net and Gaze2Mask-Net.

Training of WCS-Net. The overall loss of our WCS-Net is defined as:

L = λ1LHotspot + λ2LMask (6)

where LHotspot is the cross entropy loss between predicted hotspots with ground
truth. LMask is the cross entropy loss between predicted masks and ground truth
mask. For hotspot detection, we generate the ground truth based on SALICON
data [19]. The WCS-Net is trained in two steps. We first pre-train the WCS-Net
on the static image datasets of SALICON [19] and DUTS [43]. We use the human
eye gaze annotations from SALICON to generate sufficient synthetic hotspot
data for training our hotspot branch. Specifically, we use a large threshold to
extract the peak distribution and take the focal regions as hotspot ground truth.
We randomly combine the images from both datasets. The trade-off λ1 is set to 1
if the data comes from SALICON, and 0 vise versa. The Adam with learning rate
of 0.0001 and batch size of 15 is used in this stage to train the network. At the
second stage, the WCS-Net is trained on the DAVIS-2016 training set [34] and
SALICON datasets [19]. The network is trained using Adam with learning rate
0.0001 and batch size 10. Similarly, we integrate the data from two benchmarks
and take the same setting on the trade-offs as the first stage.

4 Experiments

4.1 Dataset and Metrics

Dataset. To evaluate the performance of our proposed model, we conduct com-
parison experiments on three public VOS datasets, including DAVIS-2016 [34],
SegTrackv2 [29] and Youtube-Objects [12]. The DAVIS-2016 dataset [34] con-
tains 50 high-quality videos with 3455 densely annotated frames. All the videos
in DAVIS-2016 are annotated with only one foreground object and they are
splitted into 30 for training and 20 for testing. The SegTrackv2 dataset [29] is
another challenging VOS dataset, which has 14 video sequences with densely
annotated pixel-level ground truth. The videos in SegTrackv2 have large vari-
ations in resolution, object size and occlusion. The Youtube-Objects dataset is
a large-size dataset, which contains 126 video sequences of 10 object categories.
The ground truth in Youtube-Objects is sparsely annotated in every 10 frames.

Metrics. To compare the performance of our model with other state-of-the-
arts in UVOS, we exploit two metrics, which are mean region similarity (J Mean)
and mean contour accuracy (F Mean) [35]. To evaluate our hotspot tracking
results, we exploit CC, SIM, KLD and NSS [1]. Besides, we also provide the run
time of our method for efficiency evaluation. All the experiments are conducted
on one NVIDIA 1080Ti GPU.
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Table 1: Overall comparison with state-of-the-arts on the DAVIS-2016 validation
dataset. The “X” is used to indicate whether the method contains First Frame (FF),
Online Finetuning (OF) or Post-processing (PP).

Method FF OF PP J Mean F Mean

OSVOS [2] X X X 79.8 80.6
PLM [37] X X X 70.0 62.0
SegFlow [5] X X 74.8 74.5
RGMP [51] X 81.5 82.0
TrackPart [4] X X 77.9 76.0
OSMN [52] X 74.0 72.9
Siammask [44] X 71.7 67.8

FSEG [20] X 70.0 65.3
LMP [41] X X 70.0 65.9
LVO [42] X X 75.9 72.1
ARP [24] X 76.2 70.6
PDB [39] X 77.2 74.5
MOA [38] X X 77.2 78.2
AGS [48] X 79.7 77.4
COSNet [32] X 80.5 79.4
AGNN [45] X 80.7 79.1

Ours 82.2 80.7

Table 2: Overall comparison with state-of-the-arts on SegTrackv2 dataset.

Method KEY [26]FST [33]NLC [11]FSEG [20]MSTP [18]Ours

J Mean 57.3 52.7 67.2 61.4 70.1 72.2

4.2 Evaluation on Unsupervised Video Object Segmentation

DAVIS 2016. We compare our proposed model with state-of-the-art approaches
on DAVIS-2016 dataset [34]. In Tab. 1, we list comparison results with methods
from both SVOS and UVOS. Besides, we provide the indicator of some operations
in the existing methods, including first frame annotation (FF), online finetuning
(OF) and post-processing (PP). Compared with the existing UVOS methods,
our model outperforms the second-best AGNN [45] by 1.8%, 2.0% on J Mean
and F-Mean, respectively. Note that we do not implement any post-processing
in our model as other methods. We also propose the comparison results between
our model and SVOS methods. We can observe that even without providing first
frame’s ground truth during testing, our model can perform favorably against
most SVOS approaches (without online training).

SegTrackv2. We also illustrate the comparison results on SegTrackv2 dataset
in Tab. 2. We report the J Mean performance as suggested by [29, 18]. As can
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Table 3: Overall comparison with state-of-the-arts on Youtube-Objects dataset. We
report the per-category J Mean and the average result. Since COSNet and AGNN use
dense-CRF post-processing, we also report our method with the same post-processing,
denoted as Ours∗.

Method PP
AirplaneBirdBoat Car Cat Cow Dog HorseMotorTrain

Avg.
(6) (6) (15) (7) (16) (20) (27) (14) (10) (5)

FST [33] 70.9 70.6 42.5 65.2 52.1 44.5 65.3 53.5 44.2 29.6 53.8
ARP [24] 73.6 56.1 57.8 33.9 30.5 41.8 36.8 44.3 48.9 39.2 46.2
PDB [39] X 78.0 80.0 58.9 76.5 63.0 64.1 70.1 67.6 58.3 35.2 65.4
FSEG [20] 81.7 63.872.3 74.9 68.4 68.0 69.4 60.4 62.7 62.2 68.4
AGS [48] X 87.7 76.7 72.2 78.669.264.6 73.3 64.4 62.1 48.2 69.7
COSNet [32] X 81.1 75.7 71.3 77.6 66.569.876.8 67.4 67.7 46.8 70.5
AGNN [45] X 81.1 75.9 70.7 78.1 67.9 69.7 77.4 67.3 68.3 47.8 70.8

Ours 81.8 81.1 67.7 79.2 64.7 65.8 73.4 68.6 69.7 49.2 70.5
Ours∗ X 81.8 81.2 67.679.565.8 66.2 73.4 69.5 69.3 49.7 70.9

Table 4: Run time comparison on the DAVIS-2016 dataset. “Ours” is the model im-
plemented on EfficientNet [40] and “Ours†” is the model built on Resnet101 [15].

Method Siammask [44]OSMN [52]RGMP [51]AGS [48]OursOurs†

Time (s) 0.02 0.14 0.13 0.60 0.03 0.04

be seen, our model significantly outperforms state-of-the-art methods and has
an improvement of 3% on J Mean against MSTP [18].

Youtube-Objects. Tab. 3 lists the J Mean results of the state-of-the-arts
on Youtube-Objects. Our model achieves the best results on the categories of
bird, car, horse, motorbike and train. It is also comparable with recent UVOS
methods AGS [48], COSNet [32] and AGNN [45] across all categories. For a
fair comparison with methods using Dense-CRF [25], we evaluate our method
with the same post-processing (named as “Ours∗”), and it achieves the best
performance on this dataset.

Qualitative results. We illustrate the visual results of our model in Fig. 4.
For the video object segmentation, our model can keep tracking the target object
with shape deformation and occlusion and produce accurate segmentation masks
with well-defined details.

Run Time. We also report the comparison on run time to verify the ef-
ficiency of our model. The run time of our model and other state-of-the-arts
on DAVIS-2016 are shown in Tab. 4. The results illustrate that our model can
not only produce accurate segmentation and eye gaze results, but achieves real-
time inference speed. The Siammask [44] performs much faster than our model.
However, our method does not need any ground truth indicator as [44] and we
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Fig. 4: Qualitative results of our proposed model on DAVIS-2016. For the two sequences,
the top row is the hotspot tracking results and the bottom row lists the object seg-
mentation. Zoom in to see the details.

significantly outperform Siammask in accuracy with 15% and 19% improvement
on J Mean and F Mean, respectively.

4.3 Evaluation on Hotspot Tracking

Hotspot ground truth for testing. As illustrated in Sec.1, the existing video
eye gaze data is noisy and unstable due to the saccade in eye movement. It
can not meet the problem formulation of our hotspot tracking. To evaluate the
effectiveness of our hotspot tracking, we provide the hotspot data on DAVIS-2016
validation dataset. To annotate the hotspots for the target object in DAVIS-2016,
we exploit the mouse click to stimulate the human attention as [19]. The reason
why we don’t use the eye tracker is two folds. First, it is hard to constrain the
eye gaze inside the object using eye tracker. Second, the delay between human
eye gaze and fast object movement makes it difficult for users to keep tracking
the salient region. Such cases would produce flicker annotations inside the object
(See the third row in Fig. 1. Compared with the eye tracker, using the mouse
click is more suitable for our task to produce a clean and consistent hotspot
ground truth [19]. Specifically, we sample the video clips from DAVIS-2016 test
set in every 10 frame for annotating. We randomly disrupt the frame order in
each video sequence and ask five users to annotate. The users are required to
first determine the salient part inside the object and provide consistent mouse
click on that region along the video sequence.

Comparison results. In our experiment, we exploit the existing metrics in
eye gaze to evaluate the stability of our hotspot tracking [48]. The comparison
results with other video eye tracking models are shown in Tab. 5. We can observe
that our model outperforms state-of-the-arts on all metrics. The qualitative re-
sults in Fig 4 illustrate that our model can produce clean and consistent hotspot
tracking for the video objects.
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Table 5: Quantitative results of hotspot tracking on the DAVIS-2016 dataset.

Method KLD ↓NSS ↑ CC↑ SIM↑
DeepVS [22] 3.148 2.010 0.189 0.089
AGS [48] 2.704 2.944 0.275 0.138

Ours 2.592 3.1740.4290.333
Ours w/o. mask branch 2.701 3.025 0.399 0.291

Table 6: Ablation study on the DAVIS-2016 validation dataset.

Model Setting J Mean ∆J Mean

Full Model 82.2 -

Multi-level feature
45 74.5 -7.7
345 78.0 -4.2
2345 79.9 -2.3

w/o. weighted correlation 75.3 -6.9
w/o. weighted pooling 78.3 -3.9
w/o. hotspot branch 81.5 -0.7

Resnet101 81.7 -0.5

4.4 Ablation Study

In this section, we analyze the contribution of each component in our weighted
correlation siamese network. The results in terms of J Mean on DAVIS-2016
dataset are shown in Tab. 6.

Effectiveness of multi-level construction. In our model, we implement
the weighted correlation block on the multiple side-outputs to calculate the cor-
respondence between template and search frames. The generated multi-level cor-
relation features are further fed into two sub-branches to produce both hotspot
and object mask. To demonstrate the effectiveness of such multi-level architec-
ture, we gradually remove the skip connection from each feature level. The results
can be referred in the rows named “Multi-level feature” in Tab 6. For example,
the item named “45” indicates that only features from the 4-th and 5-th encoder
blocks are used to produce the correlation feature and generate the final results.
The results in Tab. 6 verify the efficacy of our multi-level architecture.

Effectiveness of joint training. Our model builds a unified architecture for
joint video object segmentation and hotspot tracking. Specifically, with a shared
siamese encoder, we implement two parallel decoder branches for both tasks.
The decoder branches are jointly trained with both object mask and hotspot
annotations using Eq. 6. To investigate the efficacy of joint training strategy on
video object segmentation, we remove the hotspot tracking branch and train the
network for only video object segmentation. Its comparison result between full
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model (“w/o. hotspot tracking branch” in Tab. 6) demonstrate the effectiveness
for such joint training method. We also implement the ablation experiment on
the hotspot tracking branch. The result “Ours w/o. mask branch” in Tab. 5
verifies the joint training strategy on hotspot tracking task.

Effectiveness of weighted correlation. To verify the effect of weighted
correlation block, we build a baseline network. Instead of conducting the correla-
tion operation, we first concatenate the template and search feature in channel
wise. Then the concatenated feature would be fed into the decoder block to
produce the object mask. Note that the multi-level construction is also imple-
mented in this baseline network. The result of this baseline network is illustrated
in “w/o. weighted correlation” of Tab. 6. The comparison result with baseline
verifies the efficacy of our weighted correlation block.

Effectiveness of weighted pooling. In our weighted correlation block, we
transfer the template feature map into 1× 1 feature vector via weighted pooling
with the initial mask and hotspot. To demonstrate the effect of weighted pooling,
we implement a model with the original correlation operation as Siammask [44].
Specifically, the size of template frame is half of the search frame, and they are
fed into the siamese encoder to produce multi-level features. Instead of conduct
the weighted pooling operation, we directly use the template and search features
to calculate correlation features for mask generation. From the results in Tab. 6,
we can observe that the weighted pooling is more effective compared with the
original correlation operation in tracking methods [27, 28, 44].

Implementation using Resnet101. We implement our WCS-Net on the
Resnet101 [15]. The results of J Mean and the run time are listed in Tab. 6
and Tab. 4, respectively. They demonstrate that our WCS-Net also works on
the Resnet on both accuracy and efficiency.

5 Conclusion

In this paper, we propose a Weighted Correlation Siamese Network (WCS-Net)
for joint unsupervised video object segmentation and hotspot tracking. We intro-
duce a novel weighted correlation block (WCB) to calculate the cross-correlation
between template frame and the search frame. The correlation feature from WCB
is used in both sub-branches for generating the track-lets of mask and hotspots.
The experimental results on three benchmarks demonstrate our proposed model
outperforms existing competitors on both unsupervised video object segmenta-
tion and hotspot tracking with a significantly faster speed of 33 FPS.
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L.: One-shot video object segmentation. In: CVPR (2017)

3. Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object
segmentation with pixel-wise metric learning. In: CVPR (2018)

4. Cheng, J., Tsai, Y.H., Hung, W.C., Wang, S., Yang, M.H.: Fast and accurate online
video object segmentation via tracking parts. In: CVPR (2018)

5. Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: Segflow: Joint learning for video
object segmentation and optical flow. In: CVPR (2017)

6. Deng, Z., Hu, X., Zhu, L., Xu, X., Qin, J., Han, G., Heng, P.A.: R3Net: Recurrent
residual refinement network for saliency detection. In: IJCAI (2018)

7. Ding, H., Cohen, S., Price, B., Jiang, X.: Phraseclick: Toward achieving flexible
interactive segmentation by phrase and click. In: ECCV (2020)

8. Ding, H., Jiang, X., Liu, A.Q., Thalmann, N.M., Wang, G.: Boundary-aware feature
propagation for scene segmentation. In: ICCV (2019)

9. Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Context contrasted feature
and gated multi-scale aggregation for scene segmentation. In: CVPR (2018)

10. Ding, H., Jiang, X., Shuai, B., Liu, A.Q., Wang, G.: Semantic correlation promoted
shape-variant context for segmentation. In: CVPR (2019)

11. Faktor, A., Irani, M.: Video segmentation by non-local consensus voting. In: BMVC
(2014)

12. Ferrari, V., Schmid, C., Civera, J., Leistner, C., Prest, A.: Learning object class
detectors from weakly annotated video. In: CVPR (2012)

13. Gegenfurtner, K.R.: The interaction between vision and eye movements. Perception
45(12), 1333–1357 (2016)
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