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Abstract. Human poses that are rare or unseen in a training set are
challenging for a network to predict. Similar to the long-tailed distri-
bution problem in visual recognition, the small number of examples for
such poses limits the ability of networks to model them. Interestingly,
local pose distributions suffer less from the long-tail problem, i.e., local
joint configurations within a rare pose may appear within other poses in
the training set, making them less rare. We propose to take advantage
of this fact for better generalization to rare and unseen poses. To be spe-
cific, our method splits the body into local regions and processes them in
separate network branches, utilizing the property that a joint’s position
depends mainly on the joints within its local body region. Global coher-
ence is maintained by recombining the global context from the rest of
the body into each branch as a low-dimensional vector. With the reduced
dimensionality of less relevant body areas, the training set distribution
within network branches more closely reflects the statistics of local poses
instead of global body poses, without sacrificing information important
for joint inference. The proposed split-and-recombine approach, called
SRNet, can be easily adapted to both single-image and temporal mod-
els, and it leads to appreciable improvements in the prediction of rare
and unseen poses.
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1 Introduction

Human pose estimation is a longstanding computer vision problem with numer-
ous applications, including human-computer interaction, augmented reality, and
computer animation. For predicting 3D pose, a common approach is to first
estimate the positions of keypoints in the 2D image plane, and then lift these
keypoints into 3D. The first step typically leverages the high performance of

? The work is done when Ailing Zeng is an intern at Microsoft Research Asia.



2 Zeng et al.
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Fig. 1: An unseen test pose (b) may be decomposed into local joint configurations
(c) that appear in poses that exist in the training set (a). Our method takes
advantage of this property to improve estimation of rare and unseen poses.

existing 2D human pose estimation algorithms [4, 21, 28]. For the second stage,
a variety of techniques have been proposed, based on structural or kinematic
body models [2, 6, 7, 14, 31], learned dependencies and relationships among body
parts [7, 22], and direct regression [18].

Besides algorithm design, an important factor in the performance of a ma-
chine learning system is its training data. A well-known issue in pose estimation
is the difficulty of predicting poses that are rare or unseen in the training set.
Since few examples of such poses are available for training, it is hard for the net-
work to learn a model that can accurately infer them. Better generalization to
such poses has been explored by augmenting the training set with synthetically
generated images [27, 3, 29, 32, 19, 12]. However, the domain gap that exists be-
tween real and synthesized images may reduce their efficacy. Different viewpoints
of existing training samples have also been simulated to improve generalization
to other camera positions [7], but this provides only a narrow range of pose
augmentations.

In this work, we propose to address the rare/unseen pose problem through a
novel utilization of the data in the original training set. Our approach is based
on the observation that rare poses at the global level are composed of local joint
configurations that are generally less rare in the training set. For example, a
bicycling pose may be uncommon in the dataset, but the left leg configuration
of this pose may resemble the left legs of other poses in the dataset, such as
stair climbing and marching. Many instances of a local pose configuration may
thus exist in the training data among different global poses, and they could be
leveraged for learning local pose. Moreover, it is possible to reconstruct unseen
poses as a combination of local joint configurations that are presented in the
dataset. For example, an unseen test pose may be predicted from the upper
body of one training pose and the lower body of another, as illustrated in Fig. 1.

Based on this observation, we design a network structure that splits the hu-
man body into local groups of joints that have strong inter-relationships within
each group and relatively weak dependencies on joints outside the group. Each
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group is processed in a separate network branch. To account for the weak depen-
dencies that exist with the rest of the body, low-dimensional global context is
computed from the other branches and recombined into the branch. The dimen-
sionality reduction of less-relevant body areas within the global context decreases
their impact on the feature learning for local joints within each branch. At the
same time, accounting for some degree of global context can avoid local pose
estimates that are incoherent with the rest of the body. With this split-and-
recombine approach, called SRNet, generalization performance is enhanced to
effectively predict global poses that are rare or absent from the training set.

In extensive comparisons to state-of-the-art techniques, SRNet exhibits com-
petitive performance on single-frame input and surpasses them on video input.
More importantly, we show that SRNet can elevate performance considerably
on rare/unseen poses. Moreover, we conduct various ablation studies to validate
our approach and to examine the impact of different design choices.

2 Related Work

Extensive research has been conducted on reconstructing 3D human pose from
2D joint predictions. In the following, we briefly review methods that are closely
related to our approach.

Leveraging Local Joint Relations Many recent works take advantage of the
physical connections that exist between body joints to improve feature learning
and joint prediction. As these connections create strong inter-dependencies and
spatial correlations between joints, they naturally serve as paths for information
sharing [14, 35, 2, 5] and for encoding kinematic [7] and anatomical [6, 8, 23, 31]
constraints.

The structure of these connections defines a locality relationship among
joints. More closely connected joints have greater inter-dependency, while dis-
tantly connected joints have less and indirect dependence via the joints that lie
on the paths between them. These joint relationships have been modeled hier-
archically, with feature learning that starts within local joint groups and then
expands to account for all the joint groups together at a global level [22]. Al-
ternatively, these relationships have been represented in a graph structure, with
feature learning and pose estimation conducted in a graph convolutional net-
work (GCN) [35, 2, 5]. Within a GCN layer, dependencies are explicitly modeled
between connected joints and expand in scope to more distant joints through
the stacking of layers.

For both hierarchical and GCN based techniques, feature learning within a
local group of joints can be heavily influenced by joints outside the group. In
contrast, the proposed approach SRNet restricts the impact of non-local joints
on local feature learning through dimensionality reduction of the global context,
which facilitates the learning of local joint configurations without ignoring global
pose coherence. By doing so, SRNet can achieve better generalization to rare and
unseen poses in the training data.
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Generalization in Pose Estimation A common approach to improve gen-
eralization in pose estimation is to generate more training images through data
augmentation. Approaches to augmentation have included computer graphics
rendering [3, 29], image-based synthesis [27], fitting 3D models to people and
deforming them to generate new images [25], and changing the background,
clothing and occluders in existing images [19]. These methods can produce a
large amount of data for training, but the gap in realism between artificially
constructed images and actual photographs may limit their effectiveness. Since
our technique obtains improved training data distributions by focusing on local
pose regions instead of global poses, it does not involve image manipulation or
synthesis, thereby maintaining the realism of the original training set.

Other works have explored generalization to different viewpoints [7, 30] and to
in-the-wild scenes [34, 8], which are orthogonal to our goal of robustly estimating
rare and unseen poses.

Robustness to Long-tailed Distributions In visual recognition, there exists
a related problem of long-tailed training set distributions, where classes in the
distribution tail have few examples. As these few examples have little impact
on feature learning, the recognition performance for tail classes is often poor.
Recent approaches to this problem include metric learning to enforce inter-class
margins [9] and meta-learning that learns to regress many-shot model parame-
ters from few-shot model parameters [33]. Such techniques improve the discrim-
inability of tail classes from other classes, but they are not compatible with the
problem of keypoint localization in pose estimation.

3 Method

To address the issue of rare and unseen poses, our approach is to decompose
global pose estimation into a set of local pose estimation problems. For this
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Fig. 2: Illustration of (a) a fully connected layer, (b) group connected layer, (c)
our split-and-recombine layer, and (d) our convolution layer for temporal models.
The four types of layers can be stacked to form different network structures as
shown in Figure 3.



SRNet: Improving Generalization in 3D Human Pose Estimation 5

strategy to be effective, the local problems must be defined in a manner that
allows the feature learning of a local region to primarily reflect the statistical
distribution of its local poses, yet account for other local regions such that the
final overall pose estimate is globally coherent.

In the following, we start with the most common baseline for lifting 2D joints
to 3D, and then describe how to modify this baseline to follow our strategy.

Fully-Connected Network Baseline For lifting 2D keypoints to 3D, a pop-
ular yet simple baseline is to use a fully-connected network (FCN) consisting of
several layers [18]. Given the 2D keypoint detections K = {Ki|i, ..., N} ∈ R2N

in the image coordinate system, the FCN estimates the 3D joint locations J =
{Ji|i, ..., N} ∈ R3N in the camera coordinate system with the origin at the root
joint J0. Formally, a fully-connected network layer can be expressed as

f l+1 = Θlf l (1)

where Θl ∈ RDl+1×Dl

is the fully-connected weight matrix to be learned, and Dl

is the feature dimension for the lth layer, namely f l ∈ RDl

. Batch normalization
and ReLU activation are omitted for brevity. For the input and output layers,
their feature dimensions are D1 = 2N and DL+1 = 3N , respectively.

It can be noted that in this FCN baseline, each output joint and each inter-
mediate feature is connected to all of the input joints indiscriminately, allowing
the prediction of an output joint to be overfitted to the positions of distant
joints with little relevance. In addition, all the output joints share the same set
of features entering the final layer and have only this single linear layer (ΘL

i ) to
determine a solution particular to each joint.

Body Partitioning into Local Pose Regions In turning global pose esti-
mation into several local pose estimation problems, a suitable partitioning of
the human body into local pose regions is needed. A local pose region should
contain joints whose positions are heavily dependent on one another, but less so
on joints outside the local region.

Here, we adopt the partitioning used in [22], where the body is divided into
left/right arms, left/right legs, and torso. These parts have distinctive and co-
ordinated behaviors such that the joint positions within each group are highly
correlated. In contrast, joint positions between groups are significantly less re-
lated.

To accommodate this partitioning, the FCN layers are divided into groups.
Formally, Glg represents the feature/joint indexes of the gth group at layer l.
Specifically, for the first input layer,

G1
0 = [joint indices of the right arm], (2)

and for the intermediate feature layers, we have

Gl0 = [feature indices of the right leg at the lth layer]. (3)
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Then, a group connected layer for the gth group is expressed as

f l+1[Gl+1
g ] = Θl

gf
l[Glg]. (4)

In a group connected layer, the connections between joint groups are removed.
This “local connectivity” structure is commonly used in convolutional neural
networks to capture spatially local patterns [13]. The features learned in a group
depend on the statistical distribution of the training data for only its local pose
region. In other words, this local feature is learned independently of the pose
configurations of other parts, and thus it generalizes well to any global pose that
includes similar local joint configurations.

However, a drawback of group connected layers is that the status of the other
body parts is completely unknown when inferring the local pose. As a result, the
set of local inferences may not be globally coherent, leading to low performance.
There is thus a need to account for global information while largely preserving
local feature independence.

SRNet: Incorporating Low-Dimensional Global Context To address this
problem, we propose to incorporate Low-Dimensional Global Context (LDGC) in
a group connected layer. It coarsely represents information from the less relevant
joints, and is brought back to the local group in a manner that limits disruption
to the local pose modeling while allowing the local group to account for non-
local dependencies. This split-and-recombine approach for global context can be
expressed as the following modification of Eq. 4:

f l+1[Gl+1
g ] = Θl

g(f l[Glg] ◦Mf l[Gl \ Glg]) (5)

where f l[Gl \Glg] is the global context for the gth group.M is a mapping function
that defines how the global context is represented. Special cases of the mapping
function are M = Identity, equivalent to a fully-connected layer, and M =
Zero, which is the case for a group connected layer. The mapped global context
is recombined with local features by an operator ◦, typically concatenation for
an FCN.

The mapping function M acts as a gate controlling the information passed
from the non-local joints. If the gate is wide open (FCN), the local feature
learning will account for the exact joint positions of other body parts, weakening
the ability to model the local joint configurations of rare global poses. However,
if the gate is closed (Group), the local feature learning receives no knowledge
about the state of other body parts and may lose global coherence. We argue
that the key to achieving high performance and strong generalization to rare
poses is to learn a low-dimensional representation of the global context, namely

M = Γ l
g ∈ RH×(Dl−Dl

g) (6)

where Dl
g is the feature dimension for the gth group at layer l. Γ l

g is a weight

matrix that maps the global context f l[Gl \Glg] of dimensions Dl−Dl
g to a small

number of dimensions H.
In our experiments, we empirically evaluate different design choices for the

mapping function M and the combination operator ◦.
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Fig. 3: Illustration of fully connected (FC), group connected (GP), late fusion
(LF), early split (ES), split-fuse-split (SPS) and split-and-recombine (SR) mod-
els. The components of each layer are shown in Figure 2.

Network Structure With our split-and-recombine approach for processing lo-
cal pose regions and global context, the SRNet model can be illustrated as shown
at the right side of Fig. 3. This network follows the structure of a group con-
nected network, with the body joints split into separate groups according to
their local pose region. Added to this network are connections to each group in
a layer from the other groups in the preceding layer. As illustrated in Fig. 2 (c,d),
these connections representing the global context reduce the dimensionality of
the context features and recombine them with the local features in each group.
These inputs are mapped into outputs of the original feature dimensions.

SRNet balances feature learning dependency between the most related local
region and the less related global context. For demonstrating the efficacy of this
split-and-recombine strategy, we describe several straightforward modifications
to the FC network, illustrated in Fig. 3, that will serve as baselines in our
experiments:

– Late Fusion (LF), which postpones feature sharing among groups by cutting
their connections in the earlier layers. This structure is similar to that used
in [22], which first learns features within each group and fuses them later
with stacked fully connected layers. Formally, the LF baseline is defined as

f l+1 =

{
Cat{f l[Glg]|g = 1, ..., G}, if l < Lfuse

Θlf l, otherwise.
(7)

– Early Split (ES), which aims to provide more expressive features for each
group, by cutting the connections between groups in the latter layers. For-
mally,

f l+1 =

{
Θlf l, if l < Lsplit

Cat{f l[Glg]|g = 1, ..., G}, otherwise.
(8)

– Group Connected (GP), which is the standard group connected network.
Late Fusion degenerates to this form when Lfuse = L, and Early Split does
when Lsplit = 1.
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– Split-Fuse-Split (SFS), where the middle Llink layers of the network are fully-
connected and the connections between joint groups are cut in the first and
last layers.

The differences among FCN, these baselines, and SRNet are summarized in
Table 1. The table also highlights differences of SRNet from GCN [35] and its
modification LCN [5], specifically in controlling the feature dependencies between
local regions and global context.

Method local inference local features info passing dimension control
FCN weak(share feature) no yes no
Group yes yes no no
Late Fusion [22] weak(share feature) yes yes no
Early Split yes no yes no
Split-Fuse-Split yes yes yes no
GCN [35] no(share weight) yes(overlapped group) yes no
LCN [5] yes yes(overlapped group) yes no
Ours (SRNet) yes yes yes yes

Table 1: Different network structures used for 2D to 3D pose estimation.

SR Convolution for Temporal Models Temporal information in 2D to 3D
mapping is conventionally modeled with Recurrent Neural Networks (RNNs) [2,
14]. Recently, Pavllo et al. [23] introduce an alternative temporal convolutional
model that stacks all the spatial information of a frame into the channel di-
mensions and replaces fully-connected operations in the spatial domain by con-
volutions in the temporal domain. The temporal convolution enables parallel
processing of multiple frames and brings greater accuracy, efficiency, and sim-
plicity.

As illustrated in Fig. 2 (d), our split-and-recombine modification to the fully
connected layer can be easily adapted to the temporal convolution model by
applying the same split-and-recombine strategy to the channels during convo-
lution. Specifically, the group connected operations for local joint groups are
replaced with corresponding temporal convolutions for local feature learning,
where the features from other joint groups undergo an extra convolution for di-
mension reduction in channels and are concatenated back with the local joint
group as global context. We call this split-and-recombine strategy in the channel
dimensions during convolution the SR convolution.

4 Datasets and Rare-Pose Evaluation Protocols

4.1 Datasets and Evaluation Metrics

Our approach is validated on two popular benchmark datasets:
– Human3.6M [11] is a large benchmark widely-used for 3D human pose estima-
tion. It consists of 3.6 million video frames from four camera viewpoints with 15
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activities. Accurate 3D human joint locations are obtained from motion capture
devices. Following convention, we use the mean per joint position error (MPJPE)
for evaluation, as well as the Procrustes Analysis MPJPE (PA-MPJPE).
– MPI-INF-3DHP [19, 20] is a more challenging 3D pose dataset, containing not
only constrained indoor scenes but also complex outdoor scenes. Compared to
Human3.6M, it covers a greater diversity of poses and actions. For evaluation,
we follow common practice [31, 5, 32, 34] by using the Percentage of Correct
Keypoints (PCK) with a threshold of 150mm and the Area Under Curve (AUC)
for a range of PCK thresholds.

4.2 Evaluation Protocols

The most widely-used evaluation protocol [18, 32, 10, 23, 5] on Human3.6M uses
five subjects (S1, S5, S6, S7, S8) as training data and the other two subjects (S9,
S11) as testing data. We denote it as the Subject Protocol. However, the rare
pose problem is not well examined in this protocol since each subject is asked
to perform a fixed series of actions in a similar way.

To better demonstrate the generalization of our method to rare/unseen poses,
we use two other protocols, introduced in [5]. The first is the Cross Action
Protocol that trains on only one of the 15 actions in the Human3.6M dataset
and tests on all actions. The second is the Cross Dataset Protocol that applies
the model trained on Human3.6M to the test set of MPI-INF-3DHP. In addition,
we propose a new protocol called Rare Pose Protocol.

Rare Pose Protocol. In this protocol, we use all the poses of subjects S1, S5,
S6, S7, S8 for training but only use a subset of poses from subjects S9, S11 for
testing. The subset is selected as the rarest poses in the testing set. To identify
rare poses, we first define pose similarity (PS) as

PS(J , I) =
1

N

N∑
i

exp(−||Ji − Ii||
2

2σ2
i

) (9)

where ||Ji − Ii|| is the Euclidean distance between corresponding joints of two
poses. To compute PS, we pass ∆Ji through an unnormalized Gaussian with
a standard deviation σi controlling falloff. This yields a pose similarity that
ranges between 0 and 1. Perfectly matched poses will have PS = 1, and if all
joints are distant by more than the standard deviation σi, PS will be close to 0.
The occurrence of a pose J in a pose set O is defined as the average similarity
between itself and all the poses in O:

OCCO(J ) =
1

M

O∑
I
PS(J , I) (10)

where M is the total number of poses in the pose set O. A rare pose will have
a low occurrence value with respect to other poses in the set. We select the R%
of poses with the lowest occurrence values in the testing set for evaluation.
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5 Experiments

5.1 Ablation Study

All our ablation studies are evaluated on the Human3.6M dataset. Both the
Subject Protocol and our new Rare Pose Protocol are used for evaluation. MPJPE
serves as the evaluation metric. Please refer to the supplementary material for
details on data pre-processing and training settings.

Effect of the SRNet In Table 2, we compare our SR network with the baseline
networks FC, GP, LF, ES, SFS described in Section 3. By default, the mapped
dimensions H is set to 1 and the combination operator ◦ is set to multiplication.

It is found that both the LF and ES baselines are superior to the FC and
GP baselines. A more detailed comparison is shown in Figure 4, with different
splitting configurations for each. In Figure 4, both LF and ES start on the left
with the FC network (Lfuse = 0 and Lsplit = 6). When the fully connected
layers are gradually replaced by group connected layers, from the beginning of
the network for LF (Lfuse ↑) or the end for ES (Lsplit ↓), testing error decreases
at first. This indicates that local feature learning and local inference are each
helpful. However, replacing all the fully connected layers with group layers leads
to a sharp performance drop. This indicates that a local joint region still needs
information from the other regions to be effective.

Combining the LF and ES baselines to create SFS yields further improve-
ments from sharing the merits of both. These two simple modifications already
improve upon FC by a large margin. Specifically, it improves upon FC by 7.4mm
(relative 15.8%), 16.8mm (relative 22.1%) and 20.9mm (relative 23.5%) on the
Subject, Rare Pose 20% and Rare Pose 10% protocols, respectively.

SRNet with its use of low-dimensional global context performs significantly
better than the SFS baseline. Specifically, it improves upon SFS by 2.8mm
(relative 7.1%), 10.6mm (relative 17.9%) and 14.5mm (relative 21.2%) on the
Subject, Rare Pose 20% and Rare Pose 10% protocols, respectively. Note that
the improvement is especially large on rare poses, indicating the stronger gen-
eralization ability of SRNet to such poses. Figure 5 breaks down the results of
the FC, SFS and SR networks for different degrees of pose rareness. It can be
seen that the performance improvements of SRNet increase for rarer poses.

Protocol GP FC LF ES SFS Ours (SR)

Subject (100%) 62.7 46.8 39.8 42.0 39.4 ↓7.4 36.6 ↓2.8(7.1%)

Rare Pose (20%) 89.1 76.0 60.1 62.5 59.2 ↓16.8 48.6 ↓10.6(17.9%)

Rare Pose (10%) 98.9 89.1 69.9 73.5 68.2 ↓20.9 53.7 ↓14.5(21.3%)

Table 2: Comparing the SR network to different baseline networks under the
Subject protocol and the Rare Pose protocol (with 10% and 20% of the rarest
poses). MPJPE is used as the evaluation metric. The improvements of SFS from
FC, and of SR from SFS, are shown as subscripts.
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(a) Late Fusion (b) Early Split (c) Split-Fuse-Split

Fig. 4: Training loss and test error (MPJPE in mm) of the baseline networks (a)
LF, (b) ES, and (c) SFS with respect to different splitting configurations. Rare
Pose Protocol 20% is used for evaluation.

(a) (b)

Fig. 5: Testing errors of FC, SFS and our SR networks on poses with different
degrees of rareness. The horizontal axis represents the top R% of rarest poses.
(a) Cumulative mean error. (b) Mean error at 10% intervals.

Low-Dimensional Representation for Global Context Table 3 presents
the performance of SRNet with different dimensions H for the global context.
To readily accommodate different dimensions, the combination operator ◦ is
set to concatenation. When H = 0, SRNet degenerates into the GP baseline.
It can be seen that the GP baseline without any global context obtains the
worst performance. This shows the importance of bringing global context back
to local groups. Also, it is found that a lower dimension of global context leads
to better results. The best result is achieved by keeping only a single dimension
for global context. This indicates that a low-dimensional representation of the
global context can better account for the information of less relevant joints while
preserving effective local feature learning.

Effect of Grouping Strategy We compare the results of using different num-
bers of local groups in Table 4. The corresponding sets of joints for each group
are shown in Figure 6. More joint groups leads to greater local correlation of
joints within a group. It is shown that the performance first improves with more
groups, especially in the Rare Pose case. However, with more than five groups,
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Dimension H 0(GP) 1 3 10 25% Dl
g 50% Dl

g 100% Dl
g 200% Dl

g

Subject (100%) 62.7 38.3 41.9 42.9 44.6 45.3 45.7 45.8
Rare Pose (20%) 89.1 49.1 52.2 53.6 56.5 63.8 70.1 78.5

Table 3: Effect of using different dimension H for the proposed global context.
100% corresponds to the same dimensionality as the local feature.

Group Num 1(FC) 2 3 5 6 8 17
Subj.(100%) 46.8 41.4 37.7 36.6 41.1 46.7 91.5
Rare(20%) 76.0 55.9 51.0 48.6 55.6 60.6 115.3

Table 4: Mean testing error with different
group numbers for Subject and Rare Pose
20% protocols.

Shuffled Groups 5 4 3 2 0(Ours)
Subject (100%) 53.8 49.7 45.9 43.4 36.6

Table 5: Mean testing error with
respect to the number of shuffled
groups (5 in total).

the performance drops due to weakening of local features when there are fewer
than three joints in a group. Moreover, to show that separation into local groups
is important, we randomly shuffle the joints among a subset of groups, with
five groups in total, as illustrated in Figure 6 (f). In Table 5, it is shown that
the performance decreases when randomly shuffling joints among more groups.
This indicates that a strong physical relationship among joints in a group is a
prerequisite for learning effective local features.

5.2 Comparison with State-of-The-Art Methods

We compare with the state of the art in three different experiment settings: cross-
dataset on MPI-INF-3DHP, single-frame model on Human3.6M, and temporal
model on Human3.6M. MPJPE is used as the evaluation metric on Human3.6M.
Please refer to the supplementary material for more results that use PA-MPJPE
as the evaluation metric.

(a) Group=2 (b) Group=3 (c) Group=5 (d) Group=6 (e) Group=8 (f) Shuffled Group=2
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Fig. 6: Different numbers of groups and their corresponding sets of joints. Joints
in the same group are shown in the same color. A random shuffle setting is also
shown and evaluated in Table 5.



SRNet: Improving Generalization in 3D Human Pose Estimation 13

Cross-Dataset Results on MPI-INF-3DHP. In this setting, we follow com-
mon practice [16, 32, 5, 34, 36] by training the model on the Human3.6M training
set and evaluating on the MPI-INF-3DHP test set to examine cross-dataset gen-
eralization ability. PCK and AUC are used as evaluation metrics, for which
higher is better. In Table 6, our approach achieves the best cross-data general-
ization performance. It improves upon the state-of-the-art [5] by a large margin
(4.9% on PCK and 19.3% on AUC), indicating superior generalization ability.

Method Martinez [18] Mehta [19] Luo [16] Biswas [1] Yang [34] Zhou [36] Wang [32] Ci [5] Ours
Outdoor 31.2 58.8 65.7 67.4 - 72.7 - 77.3 80.3 ↑3.9%
PCK 42.5 64.7 65.6 65.8 69.0 69.2 71.2 74.0 77.6 ↑4.9%
AUC 17.0 31.7 33.2 31.2 32.0 32.5 33.8 36.7 43.8 ↑19.3%

Table 6: Cross-dataset results on MPI-INF-3DHP. All models are trained on
Human3.6M and tested on the MPI-INF-3DHP test set.

Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Martinez [18] 127.3 104.6 95.0 116.1 95.5 117.4 111.4 125.0 116.9 93.6 111.0 126.0 131.0 106.3 140.5 114.5

Ci [5] 102.8 88.6 79.1 99.3 80.0 91.5 93.2 89.6 90.4 76.6 89.6 102.1 108.8 90.8 118.9 93.4

Ours 92.3 71.4 71.8 86.4 66.8 79.1 82.5 86.6 88.9 93.4 66.1 83.0 74.4 90.0 97.8 82.0

Table 7: Cross Action results compared with Fully Connected Network and Lo-
cally Connected Network on Human3.6M. Smaller values are better.

Method Luvizon[17] Martinez[18] Park[22] Wang [32] Zhao[35] Ci[5] Pavllo [23] Cai[2] Ours

Subject (100%) 64.1 62.9 58.6 58.0 57.6 52.7 51.8 50.6 49.9

Table 8: Comparison on single-frame 2D pose detection input in terms of mean
per-joint position error (MPJPE). Best result in bold.

Single-Frame Model Results on Human3.6M. In this setting, we first com-
pare with the state-of-the-art method [5] using the Cross Action Protocol. Table
7 shows that our method yields an overall improvement of 11.4mm (relative
12.2% improvement) over [5] and performs better on 93% of the actions, in-
dicating strong generalization ability on unseen actions. We also compare our
model to previous works using the standard Subject Protocol in Table 8 and
Table 9, which use 2D keypoint detection and 2D ground truth as inputs, re-
spectively. Under the standard protocol, our model surpasses the state-of-the-art
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Method Martinez [18] Pham [24] Biswas[1] Zhao [35] Wang [32] Ci [5] Ours
Subject (100%) 45.5 42.4 42.8 43.8 37.6 36.4 33.9

Table 9: Comparison on single-frame 2D ground truth pose input in terms of
MPJPE. With ground truth 2D pose as input, the upper bound of these methods
is explored.

in each case, namely [2] for 2D keypoint detection and [5] for 2D ground truth
as input.
Temporal Model Results on Human3.6M In Table 10, our approach achieves
the new state-of-the-art with either 2D keypoint detection or 2D ground truth
(with 5) as input. Specifically, SRNet improves upon [23] from 37.2mm to
32.0mm (relative 14.0% improvement) with 2D ground truth input and from
46.8mm to 44.8mm (relative 4.3% improvement) with 2D keypoint detection in-
put. Besides, SRNet has around one fifth parameters 3.61M of [23](16.95M) with
243 frame poses as input.

Method Direct Discuss Eat Greet Phone Photo Pose Purcha. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Hossain et al. [26] 48.4 50.77 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Lee et al. [14] 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8
Cai et al. [2] 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Pavllo et al. [23] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Lin et al. [15] 42.5 44.8 42.6 44.2 48.5 57.1 42.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6
Ours 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8

Hossain et al. [26] 5 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Lee et al. [14] 5 32.1 36.6 34.3 37.8 44.5 49.9 40.9 36.2 44.1 45.6 35.3 35.9 37.6 30.3 35.5 38.4
Pavllo et al. [23] 5 - - - - - - - - - - - - - - - 37.2
Ours 5 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0

Table 10: Comparison on Temporal Pose input in terms of mean per-joint posi-
tion error (MPJPE). Below the double line, 5 indicates use of 2D ground truth
pose as input, which is examined to explore the upper bound of these methods.
Best results in bold.

6 Conclusion

In this paper, we proposed SRNet, a split-and-recombine approach that improves
generalization performance in 3D human pose estimation. The key idea is to
design a network structure that splits the human body into local groups of joints
and recombines a low-dimensional global context for more effective learning.
Experimental results show that SRNet outperforms state-of-the-art techniques,
especially for rare and unseen poses.
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