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Abstract. Despite great progress in supervised semantic segmentation,
a large performance drop is usually observed when deploying the model
in the wild. Domain adaptation methods tackle the issue by aligning the
source domain and the target domain. However, most existing methods
attempt to perform the alignment from a holistic view, ignoring the un-
derlying class-level data structure in the target domain. To fully exploit
the supervision in the source domain, we propose a fine-grained adversar-
ial learning strategy for class-level feature alignment while preserving the
internal structure of semantics across domains. We adopt a fine-grained
domain discriminator that not only plays as a domain distinguisher, but
also differentiates domains at class level. The traditional binary domain
labels are also generalized to domain encodings as the supervision signal
to guide the fine-grained feature alignment. An analysis with Class Cen-
ter Distance (CCD) validates that our fine-grained adversarial strategy
achieves better class-level alignment compared to other state-of-the-art
methods. Our method is easy to implement and its effectiveness is evalu-
ated on three classical domain adaptation tasks, i.e., GTA5→Cityscapes,
SYNTHIA→Cityscapes and Cityscapes→Cross-City. Large performance
gains show that our method outperforms other global feature alignment
based and class-wise alignment based counterparts. The code is publicly
available at https://github.com/JDAI-CV/FADA.

1 Introduction

The success of semantic segmentation [26] in recent years is mostly driven by
a large amount of accessible labeled data. However, collecting massive densely
annotated data for training is usually a labor-intensive task [9]. Recent advances
in computer graphics provide an alternative for replacing expensive human labor.
Through physically based rendering, we can obtain photo-realistic images with
the pixel-level ground-truth readily available in an effortless way [23,24].

However, performance drop is observed when the model trained with syn-
thetic data (a source domain) is applied in realistic scenarios (a target domain),
because the data from different domains usually share different distributions.

* These authors contributed equally. This work was performed when Haoran Wang
was visiting JD AI research as a research intern.
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Fig. 1: Illustration of traditional and our fine-grained adversarial learning. Tra-
ditional adversarial learning pursues the marginal distribution alignment while
ignoring the semantic structure inconsistency between domains. We propose to
use a fine-grained discriminator to enable class-level alignment.

This phenomenon is known as domain shift problem [27], which poses a chal-
lenge to cross-domain tasks [16].

Domain adaptation aims to alleviate the domain shift problem by aligning the
feature distributions of the source and the target domain. A group of works focus
on adopting an adversarial framework, where a domain discriminator is trained
to distinguish the target samples from the source ones, while the feature network
tries to fool the discriminator by generating domain-invariant features [8,15,16,
20,25,30,34,35,38].

Although impressive progress has been achieved in domain adaptive seman-
tic segmentation, most of prior works strive to align global feature distributions
without paying much attention to the underlying structures among classes. How-
ever, as discussed in recent works [3,17], matching the marginal feature distribu-
tions does not guarantee small expected error on the target domain. The class
conditional distributions should also be aligned, meaning that class-level align-
ment also plays an important role. As illustrated in Figure 1, the upper part
shows the result of global feature alignment where the two domains are well-
aligned but some samples are falsely mixed up. This motivates us to incorporate
class information into the adversarial framework to enable fine-grained feature
alignment. As illustrated in the bottom of Figure 1, features are expected to be
aligned according to specific classes.

There have been some pioneering works [7, 20] trying to address this prob-
lem. Chen et al. [7] propose to use several independent discriminators to perform
class-wise alignment, but independent discriminators might fail to capture the
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relationships between classes. Luo et al. [20] introduce an self-adaptive adver-
sarial loss to apply different weights to each region. However, in fact, they do
not explicitly incorporate class information in their methods, which might fail
to promote class-level alignment.

Our motivation is to directly incorporate class information into the discrim-
inator and encourage it to align features at a fine-grained level. Traditional
adversarial training has been proven effective for aligning features by using a bi-
nary domain discriminator to model distribution P (d|f) (d refers to domain and
f is the feature extracted from input data). By confusing such a discriminator,
expecting P (d = 0|f) ≈ P (d = 1|f) where 0 stands for the source domain and
1 for the target domain, the features become domain invariant and well aligned.
To further take classes into account, we split the output into multiple channels
according to P (d|f) =

∑K
c=1 P (d, c|f) (where c refers to classes {1, . . . ,K}). We

directly model the discriminator as P (d, c|f) to formulate a fine-grained domain
alignment task. Although in the setting of domain adaptation the category-level
labels for target domain are inaccessible, we find that the model predictions on
target domain also contain class information and prove that it is possible to
supervise the discriminator with the predictions on both domains. In the ad-
versarial learning process, class information is incorporated and the features are
expected to be aligned according to specific classes.

In this paper, we propose such a fine-grained adversarial learning framework
for domain adaptive semantic segmentation (FADA). As illustrated in Figure
1, we represent the supervision of traditional discriminator at a fine-grained se-
mantic level, which enables our fine-grained discriminator to capture rich class-
level information. The adversarial learning process is performed at fine-grained
level, so the features are expected to be adaptively aligned according to their
corresponding semantic categories. The class mismatch problem, which broadly
exists in the global feature alignment, is expected to be further suppressed. Cor-
respondingly, by incorporating class information, the binary domain labels are
also generalized to a more complex form, called “domain encodings” to serve as
the new supervision signal. Domain encodings could be extracted from the net-
work’s predictions on both domains. Different strategies of constructing domain
encodings will be discussed. We conduct an analysis with Class Center Distance
to demonstrate the effectiveness of our method regarding class-level alignment.
Our method is also evaluated on three popular cross-domain benchmarks and
presents new state-of-the-art results.

The main contributions of this paper are summarized below.

– We propose a fine-grained adversarial learning framework for cross-domain
semantic segmentation that explicitly incorporates class-level information.

– The fine-grained learning framework enables class-level feature alignment,
which is further verified by analysis using Class Center Distance.

– We evaluate our methods with comprehensive experiments. Significant im-
provements compared to other state-of-the-art methods are achieved on pop-
ular domain adaptive segmentation tasks including GTA5 → Cityscapes,
SYNTHIA → Cityscapes and Cityscapes → Cross-City.
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2 Related Work

2.1 Semantic Segmentation

Semantic segmentation is a task of predicting unique semantic label for each pixel
of the input image. With the advent of deep convolutional neural networks, the
academia of computer vision witnesses a huge progress in this field. FCN [26]
triggered the interests in introducing deep learning for this task. Many follow-
up methods are proposed to enlarge the receptive fields to cover more context
information [4–6,36]. Among all these works, the family of Deeplab [4–6] attracts
a lot of attention and has been widely applied in many works for their simplicity
and effectiveness.

2.2 Domain Adaptation

Domain adaptation strives to address the performance drop caused by the dif-
ferent distributions of training data and testing data. In the recent years, sev-
eral works are proposed to approach this problem in image classification [3,25].
Inspired by the theoretical upper bound of risk in target domain [2], some pio-
neering works suggest to optimize some distance measurements between the two
domains to align the features [18, 29]. Recently, motivated by GAN [13], adver-
sarial training becomes popular for its power to align features globally [7,25,30].

2.3 Domain Adaptive Semantic Segmentation

Unlike domain adaptation for image classification task, domain adaptive seman-
tic segmentation receives less attention for its difficulty even though it supports
many important applications including autonomous driving in the wild [8, 16].
Based on the theoretical insight [2] on domain adaptive classification, most works
follow the path of shortening the domain discrepancy between the two domains.
Large progress is achieved through optimization by adversarial training or ex-
plicit domain discrepancy measures [15,16,30]. In the context of domain adaptive
semantic segmentation task, AdaptSegnet [30] attempts to align the distribution
in the output space. Inspired by CycleGAN [37], CyCADA [15] suggests to adapt
the representation in pixel-level and feature-level. There are also many works fo-
cusing on aligning different properties between two domains such as entropy [32]
and information [19].

Although huge progress has been made in this field, most of existing methods
share a common limitation: Enforcing global feature alignment would inevitably
mix samples with different semantic labels together when drawing two domains
closer, which usually results in a mismatch of classes from different domains.
CLAN [20] is a pioneer work to address category-level alignment. It suggests
applying different adversarial weight to different regions, but it does not directly
and explicitly incorporate the classes into the model.
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Fig. 2: Overview of the proposed fine-grained adversarial framework. Images from
the source domain and target domain are randomly picked and fed to the feature
extractor and the classifier. A segmentation loss is computed with the source pre-
dictions and the source annotations to help the segmentation network to generate
discriminative features and learn task specific knowledge. The semantic features
from both domains are fed to the convolutional fine-grained domain discrimina-
tor. The discriminator strives to distinguish the feature’s domain information at
a fine-grained class level using the domain encodings processed from the sample
predictions.

3 Method

3.1 Revisit Traditional Feature Alignment

Semantic segmentation aims to predict per-pixel unique label for the input im-
age [26]. In an unsupervised domain adaptation setting for semantic segmen-

tation, we have access to a collection of labeled data XS = {(x(s)i , y
(s)
i )}ns

i=1 in

a source domain S, and unlabeled data XT = {x(t)j }
nt
j=1 in a target domain T

where ns and nt are the numbers of samples from different domains. Domain
S and domain T share the same K semantic class labels {1, . . . ,K}. The goal
is to learn a segmentation model G which could achieve a low expected risk on
the target domain. Generally, segmentation network G could be divided into a
feature extractor F and a multi-class classifier C, where G = C ◦ F .

Traditional feature-level adversarial training relies on a binary domain dis-
criminator D to align the features extracted by F on both domains. Domain
adaptation is tackled by alternatively optimizing G and D with two steps:

(1) D is trained to distinguish features from different domains. This process
is usually achieved by fixing F and C and solving:

min
D
LD = −

ns∑
i=1

(1− d) logP (d = 0|fi)−
nt∑
j=1

d logP (d = 1|fj) (1)
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where fi and fj are the features extracted by F on source sample x
(s)
i and target

sample x
(t)
j ; d refers to the domain variable where 0 refers to the source domain

and 1 refers to the target domain. P (d|f) is the probability output from the
discriminator.

(2) G is trained with the task loss Lseg on the source domain and the ad-
versarial loss Ladv on the target domain. This process requires fixing D and
updating F and C:

min
F,C
Lseg + λadvLadv (2)

The cross-entropy loss Lseg on source domain minimizes the difference be-
tween the prediction and the ground truth, which helps G to learn the task
specific knowledge.

Lseg = −
ns∑
i=1

K∑
k=1

y
(s)
ik log p

(s)
ik , (3)

where p
(s)
ik is the probability confidence of source sample x

(s)
i belonging to se-

mantic class k predicted by C, y
(s)
ik is the entry for the one-hot label.

The adversarial loss Ladv is used to confuse the discriminator to encourage
F to generate domain invariant features.

Ladv = −
nt∑
j=1

logP (d = 0|fj) (4)

3.2 Fine-grained Adversarial Learning

To incorporate the class information into the adversarial learning framework,
we propose a novel discriminator and enable a fine-grained adversarial learning
process. The whole pipeline is illustrated in Figure 2.

The traditional adversarial training strives to align the marginal distribution
by confusing a binary discriminator. To make the discriminator not merely focus
on distinguishing domains, we split each of the two output channels of the bi-
nary discriminator into K channels and encourage a fine-grained level adversarial
learning. With this design, the predicted confidence for domains is represented
as a confidence distribution over different classes, which enables the new fine-
grained discriminator to model more complex underlying structures between
classes, thus encouraging class-level alignment.

Correspondingly, the binary domain labels are also converted to a general
form, namely domain encodings, to incorporate class information. Traditionally,
the domain labels used for training the binary discriminator are [1, 0] and [0, 1]
for the source and target domains respectively. The domain encodings are rep-
resented as a vector [a; 0] and [0; a] for the two domains respectively, where a
is the knowledge extracted from the classifier C represented by a K-dimensional
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Fig. 3: Illustration of different strategies to generate domain encodings. Here
we compare three different strategies to extract knowledge from segmentation
network for constructing domain encodings: binary domain labels, one-hot hard
labels and multi channel soft labels.

vector; 0 is an all-zero K-dimensional vector. The choices of how to generate
domain knowledge a will be discussed in Section 3.3.

During the training process, the discriminator not only tries to distinguish
domains, but also learns to model class structures. The LD in Equation 1 be-
comes:

LD =−
ns∑
i=1

K∑
k=1

a
(s)
ik logP (d = 0, c = k|fi)

−
nt∑
j=1

K∑
k=1

a
(t)
jk logP (d = 1, c = k|fj)

(5)

where a
(s)
ik and a

(t)
jk are the kth entries of the class knowledge for the source

sample i and target sample j. The adversarial loss Ladv used to confuse the
discriminator and guide the generation of domain-invariant features in Equation
4 becomes:

Ladv = −
nt∑
j=1

K∑
k=1

a
(t)
jk logP (d = 0, c = k|fj), (6)

Ladv is designed to maximize the probability of features from target domain
being considered as the source features without hurting the relationship between
features and classes.

The overall network in Figure 2 is used in the training stage. During inference,
the domain adaptation component is removed and one only needs to use the
original segmentation network with the adapted weights.



8 H. Wang et al.

3.3 Extracting class knowledge for domain encodings

Now that we have a fine-grained domain discriminator, which could adaptively
align features according to the class-level information contained in domain en-

codings, another challenge raises: how to get the class knowledge a
(s)
ik and a

(t)
ik

in Equations 5 and 6 to construct domain encoding for each sample? Consider-
ing that in the unsupervised domain adaptive semantic segmentation task none
of annotations in target domain is accessible, it seems contradictory to use the
class knowledge on the target domain for guiding class-level alignment. How-
ever, during training, with ground-truth annotations from the source domain,
the classifier C learns to map features into the semantic classes. Considering
that the source domain and the target domain share the same semantic classes,
it would be a natural choice to use the predictions of C as knowledge to supervise
the discriminator.

As illustrated in equations 5 and 6, the class knowledge for optimizing the

fine-grained discriminator works as the supervision signal. The choices of a
(s)
ik

and a
(t)
jk are open to many possibilities. For specific tasks, people could design

different forms to produce class knowledge with prior knowledge. Here we discuss
two general solutions to extract class knowledge from network predictions for
constructing domain encodings. Because the class-level knowledge for different
domains could be extracted in the same way, in the following discussion we
would use ak to represent kth entry for a single sample without differentiating
the domain.

The one-hot hard labels could be a straightforward solution for generating
knowledge, which could be denoted as:

ak =

{
1 if k = arg max

k
pk

0 otherwise
(7)

where pk is the softmax probability output of C for class k. In this way, only the
most confident class is selected. In practice, in order to remove the impact of
noisy samples, we can select samples whose confidence is higher than a certain
threshold and ignore those with low confidence.

Another alternative is multi-channel soft labels, which has the following def-
inition:

ak =
exp ( zk

T )∑K
j=1 exp (

zj
T )

(8)

where zk is kth entry of logits and T is a temperature to encourage soft proba-
bility distribution over classes. Note that during training, an additional regular-
ization could also be applied. For example, we practically find that clipping the
values of the soft labels by a given threshold achieves more stable performance
because it prevents from overfitting to certain classes.

An illustrative comparison of these two strategies with the traditional binary
domain labels is presented in Figure 3. We also conduct experiments in section
4.6 to demonstrate the performance of different strategies.
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Table 1: Experimental results for Cityscapes → Cross-City.
Cityscapes → Cross-City

City Method road sidewalk building light sign veg sky person rider car bus mbike bike mIoU

Rome

Source Dilation-Frontend 77.7 21.9 83.5 0.1 10.7 78.9 88.1 21.6 10.0 67.2 30.4 6.1 0.6 38.2

Cross-City [7] 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

Source DeepLab-v2 83.9 34.3 87.7 13.0 41.9 84.6 92.5 37.7 22.4 80.8 38.1 39.1 5.3 50.9

AdaptSegNet [30] 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8

FADA 84.9 35.8 88.3 20.5 40.1 85.9 92.8 56.2 23.2 83.6 31.8 53.2 14.6 54.7

Rio

Source Dilation-Frontend 69.0 31.8 77.0 4.7 3.7 71.8 80.8 38.2 8.0 61.2 38.9 11.5 3.4 38.5

Cross-City [7] 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

Source DeepLab-v2 76.6 47.3 82.5 12.6 22.5 77.9 86.5 43.0 19.8 74.5 36.8 29.4 16.7 48.2

AdaptSegNet [30] 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

FADA 80.6 53.4 84.2 5.8 23.0 78.4 87.7 60.2 26.4 77.1 37.6 53.7 42.3 54.7

Tokyo

Source Dilation-Frontend 81.2 26.7 71.7 8.7 5.6 73.2 75.7 39.3 14.9 57.6 19.0 1.6 33.8 39.2

Cross-City [7] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

Source DeepLab-v2 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

AdaptSegNet [30] 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

FADA 85.8 39.5 76.0 14.7 24.9 84.6 91.7 62.2 27.7 71.4 3.0 29.3 56.3 51.3

Taipei

Source Dilation-Frontend 77.2 20.9 76.0 5.9 4.3 60.3 81.4 10.9 11.0 54.9 32.6 15.3 5.2 35.1

Cross-City [7] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

Source DeepLab-V2 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

AdaptSegNet [30] 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

FADA 86.0 42.3 86.1 6.2 20.5 78.3 92.7 47.2 17.7 72.2 37.2 54.3 44.0 52.7

4 Experiments

4.1 Datasets

We present a comprehensive evaluation of our proposed method on three pop-
ular unsupervised domain adaptive semantic segmentation benchmarks, e.g.,
Cityscapes → Cross-City, SYNTHIA → Cityscapes, and GTA5 → Cityscapes.

Cityscapes Cityscapes [9] is a real-world urban scene dataset consisting of a
training set with 2,975 images, a validation set with 500 images and a testing set
with 1,525 images. Following the standard protocols [15,16,30], we use the 2,975
images from Cityscapes training set as the unlabeled target domain training set
and evaluate our adapted model on the 500 images from the validation set.

Cross-City Cross-City [7] is an urban scene dataset collected with Google
Street View. It contains 3,200 unlabeled images and 100 annotated images of
four different cities respectively. The annotations of Cross-City share 13 classes
with Cityscapes.

SYNTHIA SYNTHIA [24] is a synthetic urban scene dataset. We pick its
subset SYNTHIA-RAND-CITYSCAPES, which shares 16 semantic classes with
Cityscapes, as the source domain. In total, 9,400 images from SYNTHIA dataset
are used as source domain training data for the task.

GTA5 GTA5 dataset [23] is another synthetic dataset sharing 19 seman-
tic classes with Cityscapes. 24,966 urban scene images are collected from a
physically-based rendered video game Grand Theft Auto V (GTAV) and are
used as source training data.
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Table 2: Experimental results for SYNTHIA → Cityscapes.

SYNTHIA → Cityscapes

Backbone Method Road SW Build Wall Fence Pole TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU*

VGG-16

FCNs in the wild [16] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2 22.9

CDA [34] 65.2 26.1 74.9 0.1 0.5 10.7 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

ST [38] 0.2 14.5 53.8 1.6 0.0 18.9 0.9 7.8 72.2 80.3 48.1 6.3 67.7 4.7 0.2 4.5 23.9 27.8

CBST [38] 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 36.1

AdaptSegNet [30] 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

SIBAN [19] 70.1 25.7 80.9 - - - 3.8 7.2 72.3 80.5 43.3 5.0 73.3 16.0 1.7 3.6 - 37.2

CLAN [20] 80.4 30.7 74.7 - - - 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 - 39.3

AdaptPatch [31] 72.6 29.5 77.2 3.5 0.4 21.0 1.4 7.9 73.3 79.0 45.7 14.5 69.4 19.6 7.4 16.5 33.7 39.6

ADVENT [32] 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6

Source only 10.0 14.7 52.4 4.2 0.1 20.9 3.5 6.5 74.3 77.5 44.9 4.9 64.0 21.6 4.2 6.4 25.6 29.6

Baseline (feat. only) [30] 63.6 26.8 67.3 3.8 0.3 21.5 1.0 7.4 76.1 76.5 40.5 11.2 62.1 19.4 5.3 13.2 31.0 36.2

FADA 80.4 35.9 80.9 2.5 0.3 30.4 7.9 22.3 81.8 83.6 48.9 16.8 77.7 31.1 13.5 17.9 39.5 46.0

ResNet-101

SIBAN [19] 82.5 24.0 79.4 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 - 46.3

AdaptSegNet [30] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CLAN [20] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

AdaptPatch [31] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

ADVENT [32] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

Source only 55.6 23.8 74.6 9.2 0.2 24.4 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 33.5 38.6

Baseline (feat. only) [30] 62.4 21.9 76.3 11.5 0.1 24.9 11.7 11.4 75.3 80.9 53.7 18.5 59.7 13.7 20.6 24.0 35.4 40.8

FADA 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5

4.2 Evaluation Metrics

The metrics for evaluating our algorithm is consistent with the common semantic
segmentation task. Specifically, we compute PSACAL VOC intersection-over-
union (IoU) [11] of our prediction and the ground truth label. We have IoU =

TP
TP+FP+FN , where TP, FP and FN are the numbers of true positive, false positive
and false negative pixels respectively. In addition to the IoU for each class, a
mIoU is also reported as the mean of IoUs over all classes.

4.3 Implementation Details

Our pipeline is implemented by PyTorch [22]. For fair comparison, we employ
DeeplabV2 [4] with VGG-16 [28] and ResNet-101 [14] as the segmentation base
networks. All models are pre-trained on ImageNet [10]. For the fine-grained
discriminator, we adopt a simple structure consisting of 3 convolution layers with
channel numbers {256, 128, 2K}, 3×3 kernels, and stride of 1. Each convolution
layer is followed by a Leaky-ReLU [21] parameterized by 0.2 except for the last
layer.

To train the segmentation network, we use the Stochastic Gradient Descent
(SGD) optimizer where the momentum is 0.9 and the weight decay is 10−4. The
learning rate is initially set to 2.5 × 10−4 and is decreased following a ‘poly’
learning rate policy with power of 0.9. For training the discriminator, we adopt
the Adam optimizer with β1 = 0.9, β2 = 0.99 and the initial learning rate as
10−4. The same ’poly’ learning rate policy is used. λadv is constantly set to 0.001.
Temperature T is set as 1.8 for all experiments.
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Table 3: Experimental results for GTA5 → Cityscapes.

GTA5 → Cityscapes

Backbone Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

VGG-16

FCNs in the wild [16] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CDA [34] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

ST [38] 83.8 17.4 72.1 14.6 2.9 16.5 16.0 6.8 81.4 24.2 47.2 40.7 7.6 71.7 10.2 7.6 0.5 11.1 0.9 28.1

CBST [38] 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1

CyCADA [15] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

AdaptSegNet [30] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

SIBAN [19] 83.4 13.0 77.8 20.4 17.5 24.6 22.8 9.6 81.3 29.6 77.3 42.7 10.9 76.0 22.8 17.9 5.7 14.2 2.0 34.2

CLAN [20] 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6

AdaptPatch [31] 87.3 35.7 79.5 32.0 14.5 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 15.5 4.1 37.5

ADVENT [32] 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

Source only 35.4 13.2 72.1 16.7 11.6 20.7 22.5 13.1 76.0 7.6 66.1 41.1 19.0 69.8 15.2 16.3 0.0 16.2 4.7 28.3

Baseline (feat. only) [30] 85.7 22.8 77.6 24.8 10.6 22.2 19.7 10.8 79.7 27.8 64.8 41.5 18.4 79.7 19.9 21.8 0.5 16.2 4.2 34.1

FADA 92.3 51.1 83.7 33.1 29.1 28.5 28.0 21.0 82.6 32.6 85.3 55.2 28.8 83.5 24.4 37.4 0.0 21.1 15.2 43.8

ResNet-101

AdaptSegNet [30] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

SIBAN [19] 88.5 35.4 79.5 26.3 24.3 28.5 32.5 18.3 81.2 40.0 76.5 58.1 25.8 82.6 30.3 34.4 3.4 21.6 21.5 42.6

CLAN [20] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2

AdaptPatch [31] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

ADVENT [32] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

Source only 65.0 16.1 68.7 18.6 16.8 21.3 31.4 11.2 83.0 22.0 78.0 54.4 33.8 73.9 12.7 30.7 13.7 28.1 19.7 36.8

Baseline (feat. only) [30] 83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.3

FADA 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2

FADA-MST 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

Regarding the training procedure, the network is first trained on source data
for 20k iterations and then fine-tuned using our framework for 40k iterations. The
batch size is eight. Four are source images and the other four are target images.
Some data augmentations are used including random flip and color jittering to
prevent overfitting.

Although our model is already able to achieve new state-of-the-art results, we
further boost the performance by using self distillation [1,12,33] and multi-scale
testing. A detailed ablation study is conducted in Section 4.5 to reveal the effect
of each component, which, we hope, could provide more insights into the topic.

4.4 Comparison with State-of-the-art Methods

Small shift: Cross city adaptation. Adaptation between real images from
different cities is a scenario with great potential for practical applications. Table
1 shows the results of domain adaptation on Cityscapes → Cross-City dataset.
Our method has different performance gains for the four cities. On average over
four cities, our FADA achieves 8.5% improvement compared with the source-only
baselines, and 2.25% gain compared with the previous best method.

Large shift: Synthetic to real adaptation. Table 2 and 3 demonstrate the
semantic segmentation performance on SYNTHIA → Cityscapes and GTA5 →
Cityscapes tasks in comparison with existing state-of-the-art domain adaptation
methods. We could observe that our FADA outperforms the existing methods by
a large margin and obtain new state-of-the-art performance in terms of mIoU.
Compared to the source model without any adaptation, a gain of 16.4% and
13.9% are achieved for VGG16 and ResNet101 respectively on SYNTHIA →
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Fig. 4: Quantitative analysis of the feature joint distributions. For each class,
we show the Class Center Distance as defined in Equation 9. Our FADA shows
a better aligned structure in class-level compared with other state-of-the-art
methods.

Cityscapes. FADA also obtains 15.5% and 12.4% improvement on different bae-
lines for GTA5 → Cityscapes task. Besides, compared to the state-of-the-art
feature-level methods, a general improvement of over 4% is witnessed. Note that
as mentioned in [34], the “train” images in Cityscapes are more visually similar
to the “bus” in GTA5 instead of the “train” in GTA5, which is also a challenge
to other methods. Qualitative results for GTA5→ Cityscapes task are presented
at Figure 5, reflecting that FADA also brings a significant visual improvement.

4.5 Feature distribution

To verify whether our fine-grained adversarial framework aligns features on a
class-level, we design an experiment to investigate to what degree the class-level
features are aligned. Considering different networks map features to different
feature spaces, it’s necessarily to find a stable metric. CLAN [20] suggests to use
a Cluster Center Distance, which is defined as the ratio of intra-class distance
between the trained model and the initial model, to measure class-level alignment
degree. To better evaluate the effectiveness of class-level feature alignment on
the same scale, we propose to modify the Cluster Center Distance to the Class
Center Distance (CCD) by taking inter-class distance into account. The CCD
for class i is defined as follows:

CCD(i) =
1

K − 1

K∑
j=1,j 6=i

1
|Si|

∑
x∈Si

‖x− µi‖2

‖µi − µj‖2
(9)

where µi is the class center for class i, Si is the set of all features belonging to
class i. With CCD, we could measure the ratio of intra-class compactness over
inter-class distance. A low CCD suggests the features of same class are clus-
tered densely while the distance between different classes is relatively large. We
randomly pick 2,000 source samples and 2,000 target samples respectively, and



Classes Matter: A Fine-grained Adversarial Approach 13

Table 4: Ablation studies of each component. F-Adv refers to fine-grained adver-
sarial training; SD refers to self distillation; MST refers to multi-scale testing.

F-Adv SD MST mIoU

36.8
X 46.9
X X 49.2
X X X 50.1

compare the CCD values with other state-of-the-art methods: AdaptSegNet for
global alignment and CLAN for class-wise alignment without explicitly model-
ing the class relationship. As shown in the Figure 4, FADA achieves a much
lower CCD on most classes and get the lowest mean CCD value 1.1 compared to
other algorithms. With FADA, we can achieve better class-level alignment and
preserve consistent class structures between domains.

4.6 Ablation studies

Analysis of different components. Table 4 presents the impact of each
component on DeeplabV2 with ResNet-101 on GTA5 → Cityscapes task. The
fine-grained adversarial training brings an improvement of 10.1%, which already
makes it the new state of the art. To further explore the potential of the model,
the self distillation strategy leads to an improvement of 2.3% and multi-scale
testing further boosts the performance by 0.7%.
Hard labels vs. Soft labels. As discussed in Section 3.3, the knowledge
extracted from the classifier C could be produced from hard labels or soft labels.
Here we compare these two forms of label on GTA5 → Cityscapes and SYN-
THIA → Cityscapes tasks with DeeplabV2 ResNet-101. For soft labels, we use
”confidence clipping“ with threhold 0.9 as regularization. For hard labels, we
only keep high-confidence samples, while ignoring the samples with confidence
lower than 0.9. The results are reported in Table 5. Both choices give great boost
to the baseline global feature alignment model. We observe that soft label is a
more flexible choice and present more superior performance.
Impact of Confidence Clipping. In our experiments, we use ”confidence
clipping” as a regularizer to prevent overfitting on noisy soft labels. The val-
ues of the confidence are truncated by a given threshold, therefore the values
are not encouraged to heavily fit to a certain class. We test several thresholds
and the results are shown in Table 6. Note that when the threshold is 1.0, it
means no regularization is used. We observe constant performance gain using
the confidence clipping. The best result is found when the threshold is 0.9.

5 Conclusion

In this paper, we address the problem of domain adaptive semantic segmenta-
tion by proposing a fine-grained adversarial training framework. A novel fine-
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Table 5: Comparison of different strategies for extracting class-level knowledge
on GTA5 → Cityscapes and SYNTHIA → Cityscapes tasks.

GTA5 SYNTHIA

baseline [30] 39.4 35.4
hard labels 45.7 40.8
soft labels 46.9 41.5

Table 6: Influence of threshold for confidence clipping.
GTA5 → Cityscapes

threshold 0.7 0.8 0.9 1.0
mIoU 46.2 46.3 46.9 45.7

grained discriminator is designed to not only distinguish domains, but also cap-
ture category-level information to guide a fine-grained feature alignment. The bi-
nary domain labels used to supervise the discriminator are generalized to domain
encodings correspondingly to incorporate class information. Comprehensive ex-
periments and analysis validate the effectiveness of our method. Our method
achieves new state-of-the-art results on three popular tasks, outperforming other
methods by a large margin.

Image Before adaptation After adaptation Ground-truth

Fig. 5: Qualitative segmentation results for GTA5 → Cityscapes.
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