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Abstract. Tremendous efforts have been made to improve mask local-
ization accuracy in instance segmentation. Modern instance segmenta-
tion methods relying on fully convolutional networks perform pixel-wise
classification, which ignores object boundaries and shapes, leading coarse
and indistinct mask prediction results and imprecise localization. To
remedy these problems, we propose a conceptually simple yet effective
Boundary-preserving Mask R-CNN (BMask R-CNN) to leverage object
boundary information to improve mask localization accuracy. BMask R-
CNN contains a boundary-preserving mask head in which object bound-
ary and mask are mutually learned via feature fusion blocks. As a result,
the predicted masks are better aligned with object boundaries. With-
out bells and whistles, BMask R-CNN outperforms Mask R-CNN by
a considerable margin on the COCO dataset; in the Cityscapes dataset,
there are more accurate boundary groundtruths available, so that BMask
R-CNN obtains remarkable improvements over Mask R-CNN. Besides,
it is not surprising to observe that BMask R-CNN obtains more obvi-
ous improvement when the evaluation criterion requires better localiza-
tion (e.g ., AP75) as shown in Fig. 1. Code and models are available at
https://github.com/hustvl/BMaskR-CNN.

Keywords: instance segmentation, object detection, boundary-preserving,
boundary detection

1 Introduction

Instance segmentation, a fundamental but challenging task in computer vision,
aims to assign a pixel-level mask to localize and categorize each object in im-
ages, driving numerous vision applications such as autonomous driving, robotics
and image editing. With the rapid development of deep convolutional neural
networks (DCNN), various methods based on DCNN were proposed for instance
segmentation. Prevalent methods for instance segmentation are based on object
detection, which provides box-level localization information for instance-level
segmentation, among which Mask R-CNN [21] is the most successful one. It ex-
tends Faster R-CNN [44] by adding a simple fully convolutional network (FCN)
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Fig. 1: AP curves of Mask R-CNN
and BMask R-CNN under different
mask IoU thresholds on the COCO
val2017 set. The blue line shows the
AP gains of BMask R-CNN over
Mask R-CNN.

Fig. 2: First row: Selected cases
of coarse boundaries appeared in
the instance segmentation results of
Mask R-CNN. Second row: Our
proposed method can predict more
precise boundaries.

to predict the mask of each detected instance. Due to the great effectiveness and
flexibility, Mask R-CNN serves as a state-of-the-art baseline and has facilitated
most recent instance segmentation research, such as [24,37,7,5,28].

In the Mask R-CNN framework, state-of-the-art instance segmentation net-
works [21,24,37] obtain instance masks by performing pixel-level classification
via FCN. It treats all pixels in the proposal equally and ignores the object shape
and boundary information. However, the pixels near boundaries are hard to be
classified. Evidently, it is hard for pixel-level classifier to guarantee precise masks.
We find that fine boundaries can provide better localization performance and
make the object masks more distinct and clear. As illustrated in Fig. 2, Mask R-
CNN (the first row) without consideration about boundaries is prone to output
coarse and indistinct segmentation results with unreasonable overlaps between
objects in comparison with the one that involves boundaries (the second row).

To address this issue, we leverage instance boundary information to enhance
the mask prediction. Instance boundary is a dual representation of instance mask
and it can guide the mask prediction network to output masks that are well-
aligned with their groundtruths. Thus, the masks are more distinct and give
more precise object location. Based on this motivation, we propose a conceptu-
ally simple and novel Boundary-preserving Mask R-CNN (BMask R-CNN) that
unifies instance-level mask prediction and boundary prediction in one network.

Specifically, based on Mask R-CNN, we replace the original mask head with
the proposed boundary-preserving mask head which contains two sub-networks
for jointly learning object masks and boundaries. We insert two feature fusion
blocks to strengthen the connection between boundary feature learning and mask
feature learning. At last, mask prediction is guided by boundary features which
contain abundant shape and localization information. The main purpose of learn-
ing boundaries is to capture features for precise object localization. Nevertheless,
learning boundaries is non-trivial, because boundary groundtruths that gener-
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ated from sparse annotated polygons (i.e., in the COCO dataset [35]) are noisy
and boundary classification has less training pixels than that for mask classifica-
tion. To solve this problem, we further dive into the optimization for boundary
learning by performing studies about boundary loss and exploit a boundary
classification loss by combining binary cross-entropy loss and the dice loss [39].

We perform extensive experiments to evaluate the performance of BMask R-
CNN. On the challenging COCO dataset [35], BMask R-CNN achieves consid-
erably significant improvements compared with Mask R-CNN regardless of the
backbones. Note that our BMask R-CNN provides larger gains if it requires more
precise mask localization, as shown in Fig. 1. On the fine-annotated Cityscapes
dataset [12], BMask R-CNN brings larger improvements with better mask an-
notations.

The main contributions of this paper can be summarized as follows.

– We present a novel Boundary-preserving Mask R-CNN (BMask R-CNN),
which is the first work that explicitly exploits object boundary information
to improve mask-level localization accuracy in the state-of-the-art Mask R-
CNN framework.

– BMask R-CNN is conceptually simple yet effective. Without bells and whit-
tles, BMask R-CNN outperforms Mask R-CNN by 1.7% AP and 2.2% AP on
the COCO val set and the Cityscapes test set respectively. Further, BMask
R-CNN obtains higher AP gains when the mask IoU threshold becomes
higher, as shown in Fig. 1.

– We perform ablation studies on the components of BMask R-CNN, e.g .,
feature fusion blocks, boundary features, boundary losses and the Sobel mask
head, which are helpful to interpret how BMask R-CNN works and provide
some thoughts for further research on instance segmentation.

2 Related Work

Instance Segmentation: Existing methods can be divided into two categories,
i.e. detection-based methods and segmentation-based methods. Detection-based
methods employ object detectors [18,44,15,34] to generate region proposals and
then predict their masks after RoI pooling/align [18,21]. Based on CNN, [42,13,43]
predict masks for object proposals. FCIS [33] extends InstanceFCN [13] by
exploiting position-sensitive inside/outside score maps and fully convolutional
networks for instance segmentation. BAIS [20] uses boundary-based distance
transform to predict mask pixels that are beyond bounding boxes. Mask R-
CNN [21] extends Faster R-CNN [44] by adding a mask prediction branch in par-
allel with the existing box regression and classification branches, demonstrating
competitive performance on both object detection and instance segmentation.
PANet [37] based on Mask R-CNN introduces the bottom-up path augmentation
for FPN [34] to enhance information flow and adaptive feature pooling for better
mask features. Mask scoring R-CNN [24] addresses the misalignment between
mask quality and mask score in Mask R-CNN by explicitly learning the quality of
predicted masks. [7] further improves Cascade Mask R-CNN [5] by interweaving
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box and mask branches in a multi-stage cascade manner and providing spatial
context through semantic segmentation. Huang et al . apply a criss-cross atten-
tion module [25] to capture the full-image contextual information for instance
segmentation. [30] draws on the idea of rendering and adaptively selects key
points to recover fine details for high-quality image segmentation.

Segmentation-based methods first exploit pixel-level segmentation over the
image and then group the pixels together for each object. InstanceCut [29] adopts
boundaries to partition semantic segmentation into instance-level segmentation.
SGN [36] groups pixels along rows and columns by line segments. [47] utilizes
predicted instance centers and pixel-wise directions to group instances. Recently,
several methods [4,17] take the advantage of deep metric learning to learnt the
embedding to group pixels to for instance segmentation.

Boundary, Edge and Segmentation: Deep fully convolutional neural net-
works has achieved great progress in edge detection. Xie et al . propose the fully
convolutional holistically-nested edge detector HED [49] which performs in an
image-to-image manner and end-to-end training. CASENet [52] presents a novel
challenging task semantic boundary detection, aiming to detect category-aware
boundaries. [53,1] investigate the label misalignment problem caused by noisy
labels in semantic boundary detection. [50] proposes geometric aware loss func-
tion for object skeleton detection in nature images. In semantic segmentation,
Chen et al . [10] propose fully connected contditional random field (CRF) [32]
to capture spatial details and refine boundaries. Recent semantic segmentation
methods [8,51,45,3,23] leverage predicted boundaries or edges to facilitate se-
mantic segmentation. [11,54] refine segmentation results with direction fields
learned from predicted boundaries. Zimmermann et al . propose edge agreement
head [55] to focus on boundaries of instances with an auxiliary edge loss. Different
from these previous methods, BMask R-CNN explicitly predicts instance-level
boundaries, from which we obtain instance shape information for better mask
localization. Compared to semantic segmentation, boundaries in instance seg-
mentation have dual relations to the masks. Therefore, we build fusion blocks to
mutually learn boundary and mask features and improve the representations for
mask localization and lead the mask prediction focus more on the boundaries.

3 Boundary-preserving Mask R-CNN

3.1 Motivation

In Mask R-CNN, instance segmentation is performed based on pixel-level predic-
tions. To learn a translation invariant predictor, predictions are made based on
the local information. Though the local features extracted using deep network
have large receptive fields, the shape information of object is ignored. Thus, the
predicted masks often contain coarse and indistinct as well as some false posi-
tive predictions. For better understanding this problem, we analyze and visualize
some raw mask prediction from Mask R-CNN with ResNet-50 [22] and FPN. As
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Fig. 3: Visualization of some predicted masks (in the bottom row) of Mask R-
CNN vs. their groundtruths (in the top row).
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Fig. 4: The Overall architecture of Boundary-preserving Mask R-CNN
(BMask R-CNN). The dotted arrow denotes 3 × 3 convolution and the
solid arrow denotes identity connection unless specified annotation in boundary-
preserving mask head. “×4/×2” denotes a stack of four/two consecutive convs.
The predictor contains a 2×2 deconvolution and a class-specific 1×1 convolution
as the output layer for both boundary and mask prediction.

shown in Fig. 3, some mask predictions are rough and imprecise. Obviously, em-
ploying object boundaries will be helpful to address this issue by providing better
localization and guidance. Therefore, we propose a Boundary-preserving Mask
R-CNN to exploit boundary information to guide more precise mask prediction.

3.2 Boundary-preserving Mask Head

BMask R-CNN improves the mask head in Mask R-CNN with boundary features
and boundary prediction, as illustrated in Fig. 4. The new mask head termed as
boundary-preserving mask head performs RoIAlign [21] to acquire RoI features
for both boundary and mask prediction.

Boundary-preserving mask head jointly learns object boundaries and masks
in an end-to-end manner. Note that object boundary and object mask have a
close relation and we can easily convert either one to another. Features from
the mask sub-network can provide high-level semantic information for learning
boundaries. After obtaining boundaries, the shape information and localization
information in boundary features can guide more precise mask predictions.
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RoI Feature Extraction: We define Rm and Rb as Region of Interest (RoI)
features for mask prediction and boundary prediction respectively. Following [34],
Rm is extracted from the specific feature pyramid level (P2 ∼ P5) according to
the scale of the proposal, while Rb is obtained from the finest-resolution feature
level P2, containing abundant spatial information. To preserve spatial informa-
tion better for boundary prediction, the resolution of Rb is set to be larger than
that of Rm when performing RoIAlgin. Then, it is downsampled by a strided
3 × 3 convolution and the output feature is denoted as R̃b. R̃b has the same
resolution as Rm and is used for feature fusion.

The feature fusion scheme in BMask R-CNN is illustrated in Fig. 4. Mask
RoI features Rm is fed into 4 consecutive 3 × 3 convolutions and the output
feature is denoted as Fm. Boundary features R̃b is fused with Fm and then fed
into two consecutive 3× 3 convolutions.

Mask → Boundary (M2B) Fusion: Mask features Fm contain rich high-level
information, i.e., the pixel-wise object category information, which is beneficial
to predict object boundaries. Hence, we propose a simple fusion block to integrate
boundary features and mask features for boundary prediction. The fusion block
can be formulated as follows.

Fb = f(Fm) + R̃b, (1)

where Fb denotes the boundary features and f means a 1× 1 convolution.

Boundary → Mask (B2M) Fusion: We fuse the final boundary features with
mask features; thus, boundary information can be used to enrich mask features
and guide precise mask prediction. The fusion block is the same as that of M2B.

3.3 Learning and Optimization

Following the common practice in edge detection [49,52], we regard boundary
prediction as a pixel-level classification problem. The learned boundary features
are fused with mask features to provide shape information for mask prediction.

Boundary Groundtruths: We use the Laplacian operator to generate soft
boundaries from the binary mask groundtruths. The Laplacian operator is a
second-order gradient operator and can produce thin boundaries. The produced
boundaries are converted into binary maps by a threshold 0 as the final groundtruths.

Boundary Loss: Most boundary or edge detection methods [49,52,1] take the
advantage of weighted cross-entropy to alleviate the class-imbalance problem
in edge/boundary prediction. However, weighted binary cross-entropy leads to
thick and coarse boundaries [16]. Following [16], we use dice loss [39] and bi-
nary cross-entropy to optimize the boundary learning. Dice loss measures the
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overlap between predictions and groundtruths and is insensitive to the number
of foreground/background pixels, thus alleviating the class-imbalance problem.
Our boundary loss Lb is formulated as follows.

Lb(pb, yb) = LDice(pb, yb) + λLBCE(pb, yb), (2)

where pb ∈ RH×W denotes the predicted boundary for a particular category
and yb ∈ RH×W denotes the corresponding boundary groundtruth. H and W
are height and width of the predicted boundary map respectively. λ is a hyper-
parameter to adjust the weight of dice loss (We set λ = 1 in all experiments).
Dice loss is given as follows.

LDice(pb, yb) = 1−
2
∑H×W

i piby
i
b + ε∑H×W

i (pib)
2 +

∑H×W
i (yib)

2 + ε
, (3)

where i denotes the i-th pixel and ε is a smooth term to avoid zero division (We
set ε = 1.). In ablation experiments, we will analyze and evaluate different loss
functions with quantitative results and qualitative results.

Multi-Task Learning: Multi-task learning has been proved effective in many
works [21,14,45,27,40], which achieves better performance for different tasks com-
paring with separate training. Since boundary and mask are crossed linked by
two fusion blocks, jointly training can enhance the feature representation for
both boundary and mask. We define a multi-task loss for each sample as follows.

L = Lcls + Lbox + Lmask + Lb, (4)

where the classification loss Lcls, regression loss Lbox, and Mask loss Lmask are
inherited from Mask R-CNN.. The boundary loss Lb has been introduced in
detail in Equation (2).

4 Experiments

We perform extensive experiments on the challenging COCO dataset [35] and the
Cityscapes dataset [12] to demonstrate the effectiveness of Boundary-preserving
Mask R-CNN. To better understanding each component of our method, we pro-
vide detailed ablation experiments on COCO.

Dataset and Metrics: COCO contains 115k images for training, 5k images
for validation and 20k images for testing. Our models are trained on the training
set (train2017 ). We report the results on the validation set (val2017 ) for abla-
tion studies and the results on testing set (test-dev2017 ) to compare with other
methods. The Cityscapes dataset is collected in urban scenes which contains 2975
training, 500 validation and 1525 testing images. As for instance segmentation,
Cityscapes involves 8 object categories and provides more precise instance-level
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segmentation annotations than COCO. We train our models on the training set
and report our performance on the validation set and the testing set. For both
COCO and Cityscapes, we use the same evaluation metric (i.e., COCO AP),
which is the average precision over different IoU thresholds (from 0.5 to 0.95).

Implementation: We adopt Mask R-CNN [38] as our baseline and our method
is developed based on it. All hyper-parameters are kept the same. Unless spec-
ified, we use ResNet-50 with FPN as our backbone network. We initialize our
backbone networks with ImageNet pre-trained weights and freeze all BN [26]
layers. The input images are resized such that the shorter side is 800 pixels and
the longer is less than 1333 pixels. As for ablation experiments, we adopt 600
pixels for shorter side (the longer is less than 1000 pixels). Following the stan-
dard practice, we train all models on 4 NVIDIA GPUs using Synchronized SGD
with initial learning rate 0.02 and 16 images per mini-batch for 90,000 iterations
and reduce the learning rate by a factor of 0.1 and 0.01 after 60,000 and 80,000
iterations respectively. For larger backbones, we follow the linear scaling rule [19]
to adjust the learning schedule when decreasing batch size.

4.1 Overall Results

We first evaluate our BMask R-CNN with different backbones on COCO and
compare it with Mask R-CNN. As shown in Table 1, our method outperforms
Mask R-CNN by remarkable APs in spite of different backbones. Compared with
Mask R-CNN, BMask R-CNN significantly achieves 1.4, 1.7 and 1.5 AP improve-
ments using ResNet-50-FPN, ResNet-101-FPN and HRNetV2-W32-FPN [48] re-
spectively. Exploiting boundary information contributes to more precise mask
localization due to the observation that our method yields noteworthy and stable
improvements (≈ 2.3 AP) on AP75. APb shows AP for bounding box, on which
BMask R-CNN very slightly improves over Mask R-CNN.

In Table 2, we compare BMask R-CNN with some state-of-the-art instance
segmentation methods. All models are trained on COCO train2017 and evalu-
ated on COCO test-dev2017. Without bells and whistles, BMask R-CNN with
ResNet-101-FPN can surpass these methods.

Fig. 1 illustrates the AP curves of BMask R-CNN and Mask R-CNN under
different IoU thresholds. Note that our method obtains larger gain when the IoU
threshold increases, showing better localization performance of BMask R-CNN.

4.2 Ablation Experiments

In order to comprehend how BMask R-CNN works, we perform exhaustive exper-
iments to analyze the components in BMask R-CNN. Table 3 shows the results
of gradually adding components to the Mask R-CNN baseline. Each component
of our proposed BMask R-CNN will be investigated in the following sections.
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Table 1: Comparison with Mask R-CNN on COCO val2017

Method Backbone AP AP50 AP75 APb APb
50 APb

75

Mask R-CNN ResNet-50-FPN 34.2 56.0 36.3 37.8 59.2 41.1
BMask R-CNN ResNet-50-FPN 35.6 56.3 38.4 37.8 59.0 41.5

Mask R-CNN ResNet-101-FPN 36.1 58.1 38.3 40.1 61.7 44.0
BMask R-CNN ResNet-101-FPN 37.8 59.1 40.6 40.4 62.0 44.3

Mask R-CNN HRNetV2-W32-FPN 36.6 58.7 38.9 40.8 61.9 44.9
BMask R-CNN HRNetV2-W32-FPN 38.1 59.4 40.7 41.0 61.9 45.1

Table 2: Comparison with state-of-the-art methods for instance segmentation on
COCO test-dev2017 (* denotes our implementation)

Method Backbone AP AP50 AP75 APS APM APL

MNC [14] ResNet-101 24.6 44.3 24.8 4.7 25.9 43.6
FCIS+++ [33] ResNet-101 33.6 54.5 - - - -
Mask R-CNN [21] ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN [21] ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5
MaskLab [9] ResNet-101-FPN 35.4 57.4 37.4 16.9 38.3 49.2
MaskLab+ [9] ResNet-101-FPN 37.3 59.8 39.6 19.1 40.5 50.6
Mask Scoring R-CNN [24] ResNet-50-FPN 35.8 56.5 38.4 16.2 37.4 51.0
Mask Scoring R-CNN [24] ResNet-101-FPN 37.5 58.7 40.2 17.2 39.5 53.0
CondInst [46] ResNet-50-FPN 35.4 56.4 37.6 18.4 37.9 46.9
BlendMask [6] ResNet-50-FPN 34.3 55.4 36.6 14.9 36.4 48.9
PointRend [30] ResNet-50-FPN 36.3 - - - - -

Mask R-CNN* ResNet-50-FPN 34.6 56.5 36.6 15.4 36.3 49.7
BMask R-CNN ResNet-50-FPN 35.9 57.0 38.6 15.8 37.6 52.2

Mask R-CNN* ResNet-101-FPN 36.2 58.6 38.4 16.4 38.4 52.1
BMask R-CNN ResNet-101-FPN 37.7 59.3 40.6 16.8 39.9 54.6
BMask R-CNN w/ Mask Scoring ResNet-101-FPN 38.7 59.1 41.9 17.4 40.7 55.5

Effects of Boundaries: To validate the effect of boundaries for mask predic-
tion, we use mask targets to replace boundary targets and also evaluate the per-
formance without bounadry supervision and loss with the architecture kept the
same. Table 4 indicates that boundary supervision with our proposed boundary-
preserving mask head improves mask results by 0.8 and 0.7 AP compared with
mask supervision and no supervision respectively. Notably, using boundary can
improve the mask localization performance (AP75) by a significant margin.

RoI Feature Extraction: Compared with mask prediction, predicting bound-
aries requires more precise spatial information due to boundaries are spatially
sparse. Therefore, we explore several strategies and present two considerations
to extract better RoI features for boundaries. The first aspect is the source of
RoI features. Lin et al . [34] propose that RoI features are extracted from the
different levels (P2 ∼ P5) in FPN depending on the scales of the corresponding
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Table 3: Experiment results on COCO val2017 of adding components to Mask R-
CNN. We gradually add boundary supervision (BCE loss), fusions between mask
and boundary features, BCE-Dice loss and our RoI feature extraction stategy
for boundary features.

Boundary Fusions BCE-Dice RoI Strategy AP AP50 AP75 APb

- - - - 33.2 54.4 34.9 36.6
X 33.9 54.8 35.8 36.7
X X 34.2 55.4 36.4 36.8
X X X 34.4 55.0 36.6 36.7
X X X X 34.7 55.1 37.2 36.8

Table 4: Experiment results on COCO val2017 of changing groundtruth of the
boundary head. 7 denotes no supervision on the boundary head.

Groundtruth AP AP50 AP75 APb

7 34.0 55.0 36.0 36.3
mask 33.9 54.3 35.9 36.0
boundary 34.7 55.1 37.2 36.8

proposals. Features of high levels in FPN lacks spatial information which are in-
appropriate for boundaries. Fig. 5 illustrates different sources for mask features
Rm and boundary features Rb. Fig. 5(a) shows that boundary features are di-
rectly extracted from P2 while mask features are from from P2 ∼ P5 according
to the scale of the proposal. Fig. 5(b) shows that both boundary features and
mask features are extracted from the same feature level from P2 ∼ P5. The other
aspect is the feature resolution. Higher-resolution features preserve more spatial
information which is beneficial to boundaries. Therefore, we explore the effects
of 28×28 resolution and 14×14 resolution RoI features for learning boundaries.
As Table 5 shows, directly extracting boundary RoI features from P2 is more
effective with larger resolution. We employ boundary features extracted from P2
with 28× 28 resolution in other experiments.

Feature Fusion: In Section 3.2, we have emphasized the relation between
boundary features and mask features. Fusion blocks in our boundary-preserving
mask head build explicit links to enrich both feature representation. Table 6
shows more results: if there is no fusion, it improves Mask R-CNN by 0.5 AP,
which is the gain of multi-task learning; with both M2B and B2M fusion blocks,
BMask R-CNN has 1.5 AP improvement over Mask R-CNN. We further investi-
gate the influence of adding more subsequent fusion blocks. Keeping the overall
computation cost substantially unchanged, adding more B2M or M2B fusions
brings negligible improvements.
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Table 5: Experiment results on
COCO val2017 for different RoI
feature extraction strategies.

Source Size AP AP50 AP75 APb

P2 ∼ P5 14 34.4 55.1 36.5 36.8
P2 14 34.5 55.0 36.7 36.7

P2 ∼ P5 28 34.4 55.1 36.8 36.6
P2 28 34.7 55.1 37.2 36.8
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Fig. 5: Different RoI feature extraction strategies for Boundary-preserving Mask
Head.

Table 6: Experiment results on COCO val2017 for the impacts of fusion blocks,
i.e., mask → boundary (M2B) fusion and boundary → mask (B2M) fusion.

M2B Fusion B2M Fusion AP AP50 AP75 APb

7 7 33.7 55.0 35.7 36.8
X 7 34.2 54.9 36.5 36.8
7 X 33.9 54.7 36.1 36.6
X X 34.7 55.1 37.2 36.8

Loss Functions: We evaluate the impacts of different loss functions for opti-
mizing boundary learning. Table 7 shows that the combination of BCE and Dice
loss leads to better performance compared with individual BCE or Dice loss.
Weighted BCE brings less gain than BCE in boundary prediction.

To investigate how the Dice-BCE combined loss provides such competitive
improvements, we present detailed analysis on the visualization results of these
experiments. As shown in Fig. 6, different loss functions have different impacts
on learning boundaries. BCE loss provides considerably precisely-localized but
unclear boundaries due to the class-imbalance problem. Weighted BCE solves
this problem by applying balancing weights but this hard balancing leads to thick
and coarse boundaries which exceed their corresponding masks. Dice loss also
solves the class-imbalance problem without thick boundaries but lacks precise
localization. Consequently, combining Dice loss and BCE can provide better-
localized boundaries and avoid the class-imbalance problem.

Computation Cost: Compared with Mask R-CNN, our method involves four
3 × 3 and two 1 × 1 convolutional layers for boundary prediction and two fu-
sion blocks which increase the computation cost. To clarify the improvements
of BMask R-CNN are not from extra computation cost, we form a larger mask
head by adding 4 more 3×3 convolutional layers as a comparison. Table 8 shows
that BMask R-CNN still achieves a significant gain compared with Mask R-CNN
with equal computation cost.
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Table 7: Experiment results on
COCO val2017 for evaluating differ-
ent loss functions.

Loss type AP AP50 AP75 APb

BCE 34.3 54.9 36.3 36.7
Weighted BCE 34.1 55.0 36.2 36.7
Dice 34.3 55.0 36.5 36.5

Dice-BCE 34.7 55.1 37.2 36.8

BC
E

W
-B
CE

D
ic
e

D
-B
CE

G
T

Fig. 6: Visualization results for analyzing the impacts of different loss functions.
GT denotes groundtruth. W-BCE and D-BCE denote Weighted BCE and
Dice-BCE respectively.

Table 8: Experiment results on COCO val2017 for evaluating the impacts of
computation cost. MRCNN and LMH denote Mask R-CNN and the larger mask
head respectively. FLOPs are counted only for mask head without the final
predictors. Inference time is tested on one NVIDIA RTX 2080Ti with the input
size 600*1000

Method FLOPs Time(ms/img.) AP AP50 AP75 APb

MRCNN 0.46G 59.0 33.2 54.4 34.9 36.6
MRCNN w/ LMH 0.93G 61.3 33.7 54.6 35.8 36.7

BMask R-CNN 0.95G 63.7 34.7 55.1 37.2 36.8

4.3 Experiments on Cityscapes

To further explore the effects of BMask R-CNN on the fine-annotated Cityscapes
dataset, we only use images with fine annotations to train and evaluate our
models. For fair comparisons, we use ResNet-50-FPN as our backbone and resize
images with shorter edge randomly selected from [800, 1024] for training. For
inference, input images are kept the original size 1024×2048. Models are trained
by SGD on 4 GPUs with mini-batch size 4 for 48,000 iterations. The learning
rate is 0.005 at the beginning and reduced to 0.0005 after 36,000 iterations.
Other settings are the same with experiments on COCO.

We report the results evaluated on Cityscapes val and test in Table 9.
BMask R-CNN achieves 29.4 AP on test and obtains a remarkable 2.2 AP gain
compared with the baseline Mask R-CNN. BMask R-CNN outperforms previous
methods without extra data.

4.4 Discussions

Coarse boundary annotation vs. precise boundary prediction: When
datasets become larger and larger, obtaining precise mask annotations is un-
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Table 9: Experiment results on Cityscapes val (AP[val]) and test.(* denotes
our implementation)

AP [val] AP75 [val] AP AP50 person rider car truck bus train mcycle bicycle

BAIS [20] - - 17.4 36.7 - - - - - - - -
DIN [2] - - 20.0 38.8 16.5 16.7 25.7 20.6 30.0 23.4 17.1 10.1
SGN [36] 29.2 - 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4
Mask R-CNN [21] 31.5 - 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0
BshapeNet [28] - - 27.1 50.3 29.6 23.3 46.8 25.8 32.9 24.6 20.3 14.0
BshapeNet+ [28] - - 27.3 50.5 30.7 23.4 47.2 26.1 33.3 24.8 21.5 14.1
Neven et al. [41] - - 27.6 50.9 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9
Mask R-CNN* 32.0 30.1 27.2 53.0 31.4 23.7 49.1 22.9 33.7 21.9 19.4 15.4
BMask R-CNN 35.0 33.6 29.4 54.7 34.3 25.6 52.6 24.2 35.1 24.5 21.4 17.1

(a)

2 ConvSobel28x28
x1

28x28
x2

28x28
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Boundary Mask 

RoIAlign 14x14
x256

(b)

Fig. 7: (a): Qualitative comparison between COCO val annotations (left) and
our instance boundary predictions (right). (b): Sobel Mask Head: We use
Sobel operator to obtain 2-channel boundary features indicate X direction and Y
direction and then apply two 3×3 convolutions to output boundary predictions.

avoidably time-consuming. Though the COCO dataset provides abundant instance-
level annotations, the mask and boundary annotations (represented by sparse
polygons) are coarse, which limits the performance of our method BMask R-
CNN. Nevertheless, BMask R-CNN can output more precise and smooth bound-
aries with fewer mask overlap between instances; some selected examples are
shown in Fig. 7(a).

Sobel mask head: Instead of predicting boundaries using an extra branch, we
also design a simple Sobel mask head to predict boundaries from masks, which is
a improved version of [55]. As illustrated in Fig. 7(b), it has a Sobel operator [31]
and two 3× 3 convolutions following the mask predictions. We adopt the same
Dice-BCE loss function for training. Using ResNet-50-FPN backbone and keep
the rest settings the same, this Sobel mask head method obtains 34.0 AP which
improves Mask R-CNN by 0.8 AP but is 0.7 AP worse than our main method.

4.5 Qualitative Results

We provide representative visualization results on COCO to compare our method
with Mask R-CNN and further prove the effectiveness of our method. Fig. 8(a)
shows the qualitative results on COCO val. Mask R-CNN is more prone to gen-
erate masks with coarse boundaries which contain much background along with
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Fig. 8: (a): Qualitative results on COCO dataset generated by Mask R-CNN and
BMask R-CNN with ResNet-101-FPN. MRCNN and BMRCNN denotes Mask R-
CNN and BMask R-CNN respectively. (b): Raw mask prediction and boundary
prediction from boundary-preserving mask head. GT: the groundtruth segmen-
tation. MRCNN: mask predicted by Mask R-CNN. BMRCNN: mask predicted
by BMask R-CNN. Boundary: boundary predicted by BMask R-CNN. Results
are obtained with ResNet-101-FPN backbone.

some false positive areas. Our proposed BMask R-CNN can alleviate this issue
with the help of preserving boundaries. We further visualize our raw boundary
and mask results in Fig. 8(b). It can be easily observed that predicted masks
are more clear and highly coincident with their boundaries. Furthermore, uti-
lizing predicted boundaries to refine masks brings minor improvement and the
refinement is vulnerable to the noises.

5 Conclusion

We address the issue that coarse boundaries and imprecise localization in in-
stance segmentation and propose a novel Boundary-preserving Mask R-CNN. It
incorporates boundary information to guide the mask learning for better bound-
aries and localization. Our experiments demonstrate that our method achieves
remarkable and stable improvements on both COCO and Cityscapes especially
in terms of localization performance. Extensive studies and visualization results
provide a deep understanding of how our method BMask R-CNN works. Our
method could also be plugged into Cascade Mask R-CNN and etc. for higher
performance. We hope it can be a strong baseline and sheds light on this funda-
mental research topic.
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