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In this supplementary, we provide additional details, discussions, and experi-
ments to support the original submission. We first discuss how to use the learned
reconstruction model to improve the SCOPS [5] method in Section 1 and provide
more implementation details of our model in Section 2. Then, we visualize the
contribution of each module via ablation studies in Section 3. We further present
more quantitative and qualitative results in Section 4 and Section 5.

Input Shape SCOPS Predicted Cam Other Views

Fig. 1: Results of applying our reconstruction model on bird paintings.

1 Improving SCOPS by 3D Reconstruction

The proposed 3D reconstruction model can also be used to improve the learn-
ing of the self-supervised part segmentation model [5] (see Figure 5). The key
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Fig. 2: Visualization of the vertex-
based semantic consistency con-
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Fig. 3: Visualization of the effec-
tiveness of the texture cycle con-
sistency constraint.

intuition behind this is that the category-level canonical semantic UV map P̄uv

learned in Section 3.1 in the submission largely reduces noise in instance-based
semantic UV maps. When combined with instance mesh reconstruction and the
camera view, it provides reliable supervision for the SCOPS method.

By mapping the canonical UV map to the surface of each reconstructed mesh
and rendering it from the predicted camera view, we obtain psuedo “ground
truth” segmentation maps as supervision for training SCOPS. We use the seman-
tic consistency constraint in Section 3.1 in the submission as a measurement to
select the reliable reconstructions with high semantic consistency (i.e., with low
probability and vertex-based semantic consistency loss values) to train SCOPS
with. The improved SCOPS can, in turn, provide better regularization for our
mesh reconstruction network, forming an iterative and collaborative learning
loop.

In Figure 5, we visualize the results of improving SCOPS [5] with our 3D
reconstruction network. Thanks to our learned canonical semantic UV map, the
improved SCOPS method is able to predict the correct parts and accurately
localizes them with a more precise size (head and neck parts in column 1,2,3).

Quantifying the improved SCOPS method numerically is non-trivial as the
ground-truth segmentation labels for the parts are not available in all the dataset
that we use [14, 16, 1, 11]. Instead, we indirectly measure its improvement by
training two models, each of which uses the semantic part segmentation predicted
either by the original or the improved SCOPS method. As shown in Table 2 (b)
vs.(e) in the main paper, our keypoint transfer performance drops by 5.3% and
2.5% via texture flow and camera pose if we use the original SCOPS model.
More qualitative visualizations of the improvement of SCOPS can be found in
the appendix.

2 Implementation Details

2.1 Selective Aggregation in the M-step

Computing Category-level Template In the M-step (Section 3.2 of the sub-
mission), we update the template by decoding the averaged shape feature via
the shape decoder. Instead of using all training samples to obtain the averaged
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Fig. 4: Qualitative visualization of
keypoint transfer. We show compar-
isons against the ground truth keypoints
in each column.
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Fig. 5: Improvements to the
SCOPS [5] method. Notice the more
consistent size and shape of part segments
with the improved method.

feature, we select a subset of the training samples to form a set Q and compute
the averaged feature for the samples in this set. In the following, we explain why
and how to form this set Q used in Eq.(4) of the submission. Empirically we
found that for several categories, there exist ambiguities that produce inconsis-
tent mesh reconstructions, e.g., side-view images of horses could be reconstructed
with their heads on either the left or the right side. Aggregating such instance
meshes leads to incorrect estimation of the category-level template. To resolve
this, we select a subset of the reconstructed meshes whose viewpoints roughly
match (e.g., horses with heads on the left side). To do so, from the meshes
reconstructed for all the training images, we first choose an instance with the
most “reliable” reconstruction results, i.e., the instance whose rendered silhou-
ette have the largest intersection over union (IoU) with its corresponding ground
truth silhouette, as an exemplar (e.g., a horse shape with its head on the left).
We then use the top k training samples with meshes that are most similar to
that of the exemplar mesh to form the subset Q in Eq.(4) (e.g., all chosen horse
samples have heads on the left). We measure the similarity between an individ-
ual instance mesh and the exemplar mesh by computing the IoU between their
rendered silhouettes.

Computing Canonical Semantic UV Map Similarly, when we update the
canonical semantic UV map using Eq.(1) (see Section 3.2 in the submission),
to avoid using training samples with outliers, e.g., those caused by inaccurate
prediction of Iiflow, we choose an exemplar training example with the smallest
perceptual distance objective (see Section 3.2 in the submission), and form the
set U of the top k training samples that have the most similar semantic UV
maps (as measured by the L2 norm) to the exemplar.

2.2 Network Architecture and Other Objectives

Network Architecture We present the details of our network architecture as
well as training objectives in Figure 6. We use the same network as in CMR [7],
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Fig. 6: Network Architecture and Objectives.

where: (i) The encoder is the ResNet18 network [4] with four residual blocks
and is pretrained on the ImageNet [1] dataset. (ii) The shape decoder consists
of one fully connected layer to decode shape deformation ∆V . (iii) The texture
decoder contains two fully-connected layers followed by eleven upsampling and
convolution layers to predict the texture flow Iflow. (iv) The camera pose decoder
contains three parallel fully connected layers to predict the scale, translation and
rotation, and these three parameters together compose the camera pose θ. Note
that we use the one camera hypothesis in the first EM training round and use
multiple camera hypotheses (eight camera hypotheses) as in [10, 6, 13] to avoid
local minima in the subsequent rounds. To render the reconstructed meshes, we
utilize the Soft Rasterizer [12] instead of the Neural Mesh Renderer [9] used
in the CMR [7]. This is because it provides the probability map described in
Section 3.3 for the texture cycle consistency constraint.

Smoothness Term In addition to the objectives discussed in Section 3.2 of
the submission, we further utilize a graph Laplacian constraint to encourage the
reconstructed mesh surface to be smooth [7, 12], and adopt an edge regularization
to penalize irregularly-sized faces as in [15, 2]. More details can be found in
[7, 12, 15, 2].

Adversarial Training To constrain the reconstructed meshes to look plausible
from all views, we also introduce adversarial training [3] into the mesh recon-
struction framework [8]. We render the reconstructed mesh from a randomly
sampled camera pose to obtain an image Ird, and pass it together with a ran-
dom real image Irl into a discriminator. By learning to discriminate between
the real and rendered images, the discriminator learns shape priors and con-
strains the reconstruction model to generate meshes that are plausible from all
viewpoints. The adversarial loss is:

Ladv(R,D) = EIrl [logD(Irl)] + EIrd [log (1−D(Ird))], (1)

where R and D are the reconstruction and discriminator networks, respectively.
Figure 6 illustrates the adversarial objective.
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Table 1: Settings of each baseline models in Section 3.1.

Module category-level template semantic consistency adversarial training

baseline (a) × × ×
baseline (b) X × ×
baseline (c) X X ×

Ours X X X

2.3 Network Training

We train the reconstruction network with an initial learning rate of 1e − 4 and
gradually decay it by a factor of 0.5 every 2000 iterations. The network is trained
for two EM training rounds (each training round contains one E and one M-step)
on four NVIDIA Tesla V100 GPUs for two days. We found that two rounds of
EM training are sufficient to generate high-quality reconstruction results. During
the inference stage, the model takes 0.022 seconds to reconstruct a 3D mesh from
a 256 × 256 sized single-view image on a single NVIDIA Tesla V100 GPU. In
Figure 7, we show the learned template shape as well as the semantic parts after
the first (left figure) and second M-steps (right figure), where both the template
shape and the semantic parts after the second M-step are better than the first.

(a) Template with semantic parts after first EM 
training round

(b) Template with semantic parts after second
EM training round

Fig. 7: Visualization of the learned template and semantic parts. Notice the improve-
ments of the template after the second M-step compared to the first, i.e., better feet
shape in the red and yellow circles, and a part of the head (blue circle) that was mistak-
enly assigned to the background (colored in black) in the first step is corrected (colored
in red) in the second M-step.

3 Ablation Studies

3.1 Ablation Studies for Different Objectives

We show the results of three baselines in Figure 10. The experimental settings for
each are illustrated in Table 1 and are the following: (a) a basic model trained
with only the texture cycle consistency constraint described in Section 3.3 of
the submission, but without any other proposed modules, i.e., the category-level
template, the semantic consistency constraint and the adversarial training; (b)



6 Li et al.

learning the model in (a) together with the category-level template; and (c)
learning the model in (b) with the additional semantic consistency constraint.

As shown in Figure 10, the basic model (a) reconstructs meshes that only
appear plausible from the observed view to match the 2D supervision (images
and silhouettes). It fails to generate plausible results for unobserved views, e.g.,
for all the 3 examples. On adding template shape learning (Section 3.2 in the
submission) to (a), the model in (b) learns more plausible reconstruction results
across different views. This is because it is easier for the model to learn residuals
w.r.t a category-level template compared to w.r.t a sphere, to match the 2D ob-
servations. However, without semantic part information, the model still suffers
from the “camera-shape ambiguity” discussed in Section 1 of the manuscript.
For instance, the head of the template is deformed to form the tail and the wing’s
tip in the first and second examples, respectively in Figure 10. By additionally
including the semantic consistency constraint in the model (c), the network is
able to reduce the “camera-shape ambiguity” and predict the correct camera
pose as well as the correct shape. Furthermore, adding adversarial training in-
troduces better reconstruction details, as shown in Figure 10 (d). For instance,
the bird may have more than two feet without the adversarial training constraint
as demonstrated in the third example in Figure 10.

In addition, we demonstrate the effectiveness of the texture flow consistency
constraint by visualizing the keypoint transfer results in Figure 11. The model
trained without this constraint performs worse than our full model, especially
when the bird has a uniform color, e.g., the second and the last examples in
Figure 11. Figure 11 also shows that the proposed method performs favourably
against the baseline CSM [10] method.

(a) (b) (c) (d)

Fig. 8: Failure cases. (a) Input images. (b)
Semantic part segmentations predicted by
the SCOPS method. (c) Reconstructed
meshes. (d) Reconstructed meshes with
the canonical semantic UV map.
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Fig. 9: Keypoint Transfer PR Curves.
The legend of the plot represents the area
under the curve, our method achieves an
APK of 25.0, which is better than the
baseline method [10].
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Table 2: Ablation studies of the probability and vertex-based semantic consistency
constraints by evaluating the mask IoU and the keypoint transfer (KT) task on the
CUB-200-2011 dataset [14].

(a) Metric (b) Ours (c) w/o Lsv (d) w/o Lsp original [5]

Mask IoU ↑ 0.734 0.6069 0.6418
KT (Camera) ↑ 51.2 30.7 51.0

KT (Texture Flow) ↑ 58.2 29.5 53.3

3.2 Ablation Studies on Semantic Consistency Constraints

We show an ablation study of the probability and vertex-based semantic con-
sistency constraints in Table 2, where both constraints contribute to the recon-
struction network.

4 More Quantitative Evaluations

4.1 APK Evaluation

For the keypoint transfer task, in Figure 9, we demonstrate the precision versus
recall curves of our method (via texture flow) and of the CSM [10] method on the
CUB-200-2011 [14] test dataset. Our method, even without the template prior,
outperforms the baseline CSM [10] method in terms of the Keypoint Transfer
AP metric (APK, α = 0.1).

5 More Qualitative Evaluations

We show more qualitative results for birds in Figure 12. We also show one appli-
cation of our model to reconstruct 3D meshes of 2D bird paintings in Figure 1.
Reconstruction of rigid objects (cars and motorbikes) is demonstrated in Fig-
ure 14, horses and cows in Figure 13, and penguins and zebras in Figure 15. Note
that we use six semantic parts for the car category to encourage the SCOPS
method [5] to differentiate between the front and side of cars. For other objects,
we use four semantic parts.
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Fig. 10: Visualization of the contribution of each module. The settings of base-
lines (a), (b), (c) can be found in Table 1



Self-supervised Single-view 3D Reconstruction via Semantic Consistency 9

source image ground truth CSM [20]−"#$%$ours

Fig. 11: Visualization of keypoint transfer using texture flow.
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Fig. 12: More qualitative results of birds.
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Input Shape SCOPS Predicted Cam Other Views

Fig. 13: More qualitative results of horses and cows.
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Input Shape SCOPS Predicted Cam Other Views

Fig. 14: More qualitative results of motorbikes and cars.
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Fig. 15: More qualitative results of zebras and penguins.
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