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Abstract. This paper targets at discovering what a deep uncalibrated
photometric stereo network learns to resolve the problem’s inherent am-
biguity, and designing an effective network architecture based on the
new insight to improve the performance. The recently proposed deep
uncalibrated photometric stereo method achieved promising results in
estimating directional lightings. However, what specifically inside the
network contributes to its success remains a mystery. In this paper, we
analyze the features learned by this method and find that they strikingly
resemble attached shadows, shadings, and specular highlights, which
are known to provide useful clues in resolving the generalized bas-relief
(GBR) ambiguity. Based on this insight, we propose a guided calibra-
tion network, named GCNet, that explicitly leverages object shape and
shading information for improved lighting estimation. Experiments on
synthetic and real datasets show that GCNet achieves improved results
in lighting estimation for photometric stereo, which echoes the findings
of our analysis. We further demonstrate that GCNet can be directly in-
tegrated with existing calibrated methods to achieve improved results
on surface normal estimation. Our code and model can be found at
https://guanyingc.github.io/UPS-GCNet.

Keywords: Uncalibrated photometric stereo, generalized bas-relief am-
biguity, deep neural network

1 Introduction

Photometric stereo aims at recovering the surface normals of a scene from single-
viewpoint imagery captured under varying light directions [50, 47]. In contrast
to multi-view stereo [41], photometric stereo works well for textureless surfaces
and can recover highly detailed surface geometry.

Following the conventional assumption, this paper assumes the scene is
illuminated by a single light direction in each image. Most existing photo-
metric stereo methods [46, 23, 22] require calibrated light directions as input.
Uncalibrated photometric stereo, on the other hand, simultaneously estimates
light directions and surface normals. In multi-view stereo, this problem of
auto-calibration (i.e., calibration from images of the scene without the use
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of any explicit calibration targets) has been solved satisfactorily on “wild”
imagery such as those from Internet photo sharing sites [3]. Auto-calibration
for photometric stereo is without a doubt an important goal since it makes
photometric stereo applicable to wild data [43] and useful for amateurs who
know nothing about tedious calibration procedures [42, 1, 39]. Existing methods
for uncalibrated photometric stereo [4, 35] often assume a Lambertian re-
flectance model and their focus has been on resolving the generalized bas-relief
(GBR) ambiguity [6]. Manifold embedding based methods [40, 29] can deal with
surfaces with general isotropic reflectances, but they rely on a roughly uniform
lighting distribution which is usually not satisfied in real-world datasets.

Despite the impressive results on complex reflectances reported by recent
deep learning methods for calibrated photometric stereo [38, 49, 10, 22, 27, 53],
not much work has been done on learning-based uncalibrated photometric stereo.
Recently, Chen et al. [8] introduced a deep uncalibrated photometric stereo net-
work, called Lighting Calibration Network (LCNet), to estimate light directions
and intensities from input images, and a normal estimation network to predict
surface normals. Compared with UPS-FCN [10] which directly estimates surface
normals from images, Chen et al.’s two-stage approach achieves considerably
better results. However, the features learned by LCNet to resolve the ambiguity
in lighting estimation remain unknown.

This paper focuses on demystifying the problem of how deep uncalibrated
photometric stereo learns to resolve the GBR ambiguity, and how to improve it
for higher accuracy in lighting estimation. Our contributions are:
– We discuss the differences between the learning-based LCNet [8] and tradi-

tional uncalibrated methods, and analyze the features learned by LCNet to
resolve the GBR ambiguity.

– We find that attached shadows, shadings, and specular highlights are key
elements for lighting estimation, and that LCNet extracts features indepen-
dently from each input image without exploiting any inter-image information
(“inter-image” means information shared by all images).

– Based on our findings, we propose a guided calibration network (GCNet)
that explicitly utilizes object shape and shading information as guidances
for better lighting estimation.

2 Related Work

In this section, we briefly review recent deep learning methods for calibrated
photometric stereo and existing methods for uncalibrated photometric stereo.
Readers are referred to [20, 2, 45] for more comprehensive surveys of photometric
stereo algorithms. In the rest of this paper, we will use “lighting” to refer to light
direction and light intensity.
Deep calibrated photometric stereo Recently, deep learning methods have
been proposed in the context of photometric stereo. Compared with traditional
methods that often adopt a simplified reflectance model, learning-based meth-
ods can directly learn the mapping from observations to surface normals and
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achieve state-of-the-art results on a real-world benchmark [45] with complex re-
flectances. Santo et al. [38] first introduced a fully-connected deep photometric
stereo network to estimate pixel-wise surface normals from a fixed number of
observations. To handle a variable number of input images in an order-agnostic
manner, Ikehata [22] proposed a fixed shape observation map representation,
while Chen et al. [9] adopted an element-wise max-pooling operation to fuse fea-
tures stemming from multiple inputs. Li et al. [27] and Zheng et al. [53] focused
on reducing the number of required images while maintaining similar accuracy
under the framework proposed by Ikehata [22]. Different from the above super-
vised methods that require a synthetic dataset for training, Taniai and Mae-
hara [49] proposed an unsupervised framework to estimate surface normals via
an on-line optimization process.

Uncalibrated photometric stereo Most existing uncalibrated photometric
stereo methods are based on matrix factorization (e.g., singular value decom-
position) and assume a Lambertian reflectance model. A Lambertian surface’s
normals can be recovered up to a 3 × 3 linear ambiguity when light directions
are unknown [19]. By considering the surface integrability constraint, this lin-
ear ambiguity can be reduced to a 3-parameter generalized bas-relief (GBR)
ambiguity [15, 6, 52, 26]. To further resolve the GBR ambiguity, many methods
make use of additional clues like inter-reflections [7], specularities [13, 16, 12],
albedo priors [4, 44], isotropic reflectance symmetry [48, 51], special light source
distributions [54], or Lambertian diffuse reflectance maxima [35].

Manifold embedding methods [40, 34, 29, 30] can handle surfaces with general
isotropic reflectance based on the observation that the distance between two sur-
face points’ intensity profiles is closely related to their surface normals’ angular
difference. However, these methods often assume a uniform lighting distribution.
Other methods related to uncalibrated photometric stereo include exemplar-
based methods [21], regression-based methods [32], semi-calibrated photometric
stereo [11], inaccurate lighting refinement [37], and photometric stereo under
general lighting [5, 33, 18].

Recently, Chen et al. [8] introduced a Lighting Calibration Network (LCNet)
to estimate lightings from images and then estimate surface normals based on
the lightings. This two-stage method achieves considerably better results than
the single-stage method [10]. It also has slightly better interpretability because
the lightings estimated in the first stage can be visualized. However, the features
learned by LCNet to estimate lightings remain unknown.

3 Learning for Lighting Calibration

In this section, we discuss the inherent ambiguity in uncalibrated photometric
stereo of Lambertian surfaces, the fact that it can be resolved for non-Lambertian
surfaces, and the features learned by LCNet [8] to resolve such ambiguity.

Lambertian surfaces and the GBR ambiguity When ignoring shadows
(i.e., attached and cast shadows) and inter-reflections, the image formation of a
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Fig. 1. Row 1 is the true shape of a Sphere, while rows 2 and 3 are shapes under
two different GBR transformations. In column (c), the points’ positions and
colors indicate light direction and relative intensity, respectively. Columns (e)
and (f) show the lightings estimated by PF14 [35] and LCNet [8].

Lambertian surface with P pixels captured under F lightings can be written as

M = N>L, (1)

where M ∈ RP×F is the measurement matrix. N ∈ R3×P is the surface normal
matrix whose columns are albedo scaled normals N:,p = ρpnp, where ρp and np

are the albedo and unit-length surface normal of pixel p. L ∈ R3×F is the lighting
matrix whose columns are intensity scaled light directions L:,f = ef lf , where ef
and lf are the light intensity and unit-length light direction of image f .

By matrix factorization and applying the surface integrability constraint, N
and L can be recovered up to an unknown 3-parameter GBR transformation
G [6] such that M = (G−>N)>(GL). This GBR ambiguity indicates that there
are infinitely many combinations of albedo ρ, normal n, light direction l, and
light intensity e that produce the same appearance M (see Fig. 1 (a)-(d)):

ρ̂=ρ|G−>n|, n̂=
G−>n

|G−>n|
, l̂=

Gl

|Gl|
, ê=e|Gl|. (2)

Although the surface’s appearance remains the same after GBR transforma-
tion (i.e., ρ̂n̂>l̂ê=ρn>le, see Fig. 1 (d)), a surface point’s albedo will be scaled
by |G−>n|. As a result, the albedo of an object will change gradually and be-
come spatially-varying. Because this kind of spatially-varying albedo distribution
resulting from GBR transformations rarely occurs on real world objects, some
previous methods make explicit assumptions on the albedo distribution (e.g.,
constant albedo [6, 35] or low entropy [4]) to resolve the ambiguity.

PF14 [35], a state-of-the-art non-learning uncalibrated method [45], detects
Lambertian diffuse reflectance maxima (i.e., image points satisfying n>l = 1)
to estimate G’s 3 parameters. We will later use it as a non-learning benchmark
in our comparative experiments.
LCNet and the GBR ambiguity LCNet [8] is a state-of-the-art lighting cali-
bration network for uncalibrated photometric stereo (see Fig. 2). Figure 1 (e)-(f)
compare the results of LCNet and PF14 on surfaces that differ by GBR transfor-
mations. Since the input images are the same in all cases, LCNet estimates the
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Fig. 2. Network architecture of LCNet [8]. Each layer’s value indicates its output
channel number. LCNet first extracts a local feature for each input with a shared-
weight feature extractor. All local features are aggregated by element-wise max-
pooling to produce the global feature, each local feature is concatenated with the
global feature, and is fed into a shared-weight lighting estimation sub-network
to estimate a 3D light direction l and a scalar light intensity e for each image.

Table 1. Light direction estimation
results of PF14 [35] and LCNet [8]
on a Sphere rendered with different
BRDF types. Non-Lambertian BRDFs
are taken from the MERL dataset [31].

model Lambertian fabric plastic phenolic metallic avg.

PF14 7.19 14.26 28.04 47.96 31.12 25.7
LCNet 5.38 4.07 3.08 3.05 4.09 3.93

Table 2. Light direction estimation re-
sults of LCNet [8] trained with differ-
ent inputs. Values indicate mean an-
gular error in degree.
model input Sphere Bunny Dragon Armadillo

images 3.03 4.88 6.30 6.37

(a) attached shadows 3.50 5.07 9.78 5.22
(b) specular component 2.53 6.18 7.33 4.08
(c) shading 2.29 3.95 4.64 3.76

(a) + (b) + (c) 1.87 2.06 2.34 2.12

same lightings in all cases, namely the most likely lightings for the input images.
The same also applies to PF14. Although LCNet’s result does not exactly equal
the lightings for uniform albedo, we note that it learned from the training data
that GBR-transformed surfaces are unlikely.

Although uncalibrated photometric stereo has an intrinsic GBR ambiguity
for Lambertian surfaces, it was shown that GBR transformations do not pre-
serve specularities [6, 16, 12]. Hence, specularities are helpful for ambiguity-free
lighting estimation. However, traditional methods often treat non-Lambertian
observations as outliers, and thus fail to make full use of specularities for dis-
ambiguation [35]. In contrast, learning-based methods can learn the relation
between specular highlights and light directions through end-to-end learning.
As shown in Table 1, LCNet achieves good results for non-Lambertian surfaces
while PF14 completely fails when non-Lambertian observations dominate.
Feature analysis for LCNet To analyze the features learned by LCNet, we
first visualize the learned local and global features. Figure 3 shows 3 representa-
tive features selected from 256 feature maps extracted by LCNet from images of
a non-Lambertian Sphere dataset1. Comparing Fig. 3’s Column 2 with Column

1 Please refer to our supplemental material for more visualizations.
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Fig. 3. Feature visualization of
LCNet on a non-Lambertian
Sphere. Column 1: 5 of the 96 in-
put images; Columns 2–4: Spec-
ular highlight centers, attached
shadows, and shading rendered
from ground truth; Columns 5–
7: 3 of LCNet’s 256 features
maps. The last row shows the
global features produced by fus-
ing local features with max-
pooling. All features are normal-
ized to [0, 1] and color coded.

(a) input (b) highlight, shadow, shading (c) extracted local features

fused features

1

0

5, Column 3 with Column 6, and Column 4 with Column 7, we can see that
some feature maps are highly correlated with attached shadows (regions where
the angle ](n, l)≥90◦), shadings (n>l), and specular highlights (regions where
n is close to the half angle h= l+v

|l+v| of l and viewing direction v). As discussed

earlier, these provide strong clues for resolving the ambiguity.
To further verify our observations, we did the following. We computed (a) at-

tached shadows, (b) the “specular components” (with a bit of concept abuse,
we denote h>n as specular component), and (c) shadings for the publicly avail-
able synthetic Blobby and Sculpture datasets [10] from their ground-truth light
directions and normals. We then trained 4 variants of the LCNet, taking (a),
(b), (c), and (a) + (b) + (c), respectively, as input instead of regular images.
We compared these 4 variant networks with LCNet (i.e., the network trained
with Blobby and Sculpture images) on a synthetic test dataset introduced in
Sec. 5.1. Similar to LCNet, the variant networks also took the object mask as
input. Table 2 shows that the variant models achieve results comparable to or
even better than the model trained on regular images.

We can see that shadings contribute more than attached shadows and specu-
lar components for lighting estimation. This is because shading information ac-
tually includes attached shadows (i.e., pixels with a zero value in the shading for
synthetic data), and can be considered as an image with a uniform albedo. The
uniform albedo constraint is a well-known clue for resolving the GBR ambigu-
ity [6, 35]. In practice, attached shadows, shadings, and the specular components
are not directly available as input, but this confirms our assumption that they
provide strong clues for accurate lighting estimation.

4 Guided Calibration Network

In this section, we present the motivations for our guided calibration network
(GCNet) and detail its structure.
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4.1 Guided feature extraction

As we have seen, features like attached shadows, shadings, and specularities are
important for lighting estimation, and a lighting estimation network may bene-
fit greatly from being able to estimate them accurately. We further know that
these features are completely determined by the light direction for each image as
well as the inter-image shape information derived from the surface normal map.
However, LCNet extracts features independently from each input image and
thus cannot exploit any inter-image information during feature extraction. This
observation also indicates that simply increasing the layer number of LCNet’s
shared-weight feature extractor cannot produce significant improvement.
Surface normal as inter-image guidance Intuitively, if we can provide such
inter-image shape information as input to the network to guide the feature ex-
traction process, it should be able to perform better. This, however, constitutes
a chicken-and-egg problem where we require normals and lightings for accurate
feature extraction but at the same time we require these features for estimating
accurate lightings. We therefore suggest a cyclic network structure in which we
first estimate initial lightings, and then use them to estimate normals as inter-
image information to guide the extraction of local (i.e., per-image) features to
ultimately estimate final lightings. An alternative idea might be directly esti-
mating surface normals from images. However, previous work (UPS-FCN [10])
shows that surface normals estimated directly from images are not accurate.
Shading as intra-image guidance Another advantage of first estimating ini-
tial lighting and surface normals is that we can easily compute coarse attached
shadows, shadings, or specular components as intra-image guidance for the fea-
ture extraction process (intra-image means the information is different for each
image). As shading information already includes attached shadows, and not all
materials exhibit specular highlights, we only compute the shading for each im-
age as the dot-product of the estimated lighting with the surface normals, and
use it as intra-image guidance. We experimentally verified that additionally in-
cluding the specular component as network input does not improve results. The
computed shading, on the other hand, does improve results and can assist the
network to extract better features.

4.2 Network architecture

As shown in Fig. 4, the proposed GCNet consists of two lighting estimation
sub-networks (L-Net) and a normal estimation sub-network (N-Net). The first
L-Net, “L-Net1”, estimates initial lightings given the input images and object
masks. The N-Net then estimates surface normals from the lightings estimated
by L-Net1 and the input images. Finally, the second L-Net, “L-Net2”, estimates
more accurate lightings based on the input images, object masks, the estimated
normals, and the computed shadings.
L-Net The L-Net is designed based on LCNet [8] but has less channels in
the convolutional layers to reduce the model size (see Fig. 4 (a)). Compared to
LCNet’s 4.4× 106 parameters, each L-Net has only 1.78× 106 parameters.
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Fig. 4. Structure of (a) the lighting estimation sub-network L-Net, (b) the nor-
mal estimation sub-network N-Net, and (c) the entire GCNet. Values in layers
indicate the output channel number.

Following LCNet, we discretize the lighting space and treat lighting estima-
tion as a classification problem. Specifically, L-Net’s output light direction and
intensity are in the form of softmax probability vectors (a 32-vector for elevation,
a 32-vector for azimuth, and a 20-vector for intensity). Given F images, the loss
function for L-Net is

Llight =
1

F

∑
f

(Lf
la

+ Lf
le

+ Lf
e ), (3)

where Lf
la
,Lf

le
, and Lf

e are the cross-entropy loss for light azimuth, elevation,

and intensity classifications for the f th input image, respectively. For example,

Lf
la = −

32∑
i=1

{yfi = 1} log(pfi ), (4)

where {·} is a binary indicator (0 or 1) function, yfi is the ground-truth label (0

or 1) and pfi is the predicted probability for bin i (32 bins in our case) for the
f th image. The output probability vectors can be converted to a 3-vector light
direction lf and a scalar light intensity ef by taking the probability vector’s
expectation, which is differentiable for later end-to-end fine-tuning.

L-Net1 and L-Net2 differ in that L-Net1 has 4 input channels (3 for the image,
1 for the object mask) while L-Net2 has 8 (3 additional channels for normals, 1
for shading).

N-Net The N-Net is designed based on PS-FCN [10] but with less channels,
resulting in 1.1× 106 parameters compared to PS-FCN’s 2.2× 106 parameters
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(see Fig. 4 (b) for details). Following PS-FCN, the N-Net’s loss function is

Lnormal =
1

P

∑
p

(
1− n>p ñp

)
, (5)

where P is the number of pixels per image, and np and ñp are the predicted
and the ground-truth normal at pixel p, respectively.
End-to-end fine-tuning We train L-Net1, N-Net, and L-Net2 one after an-
other until convergence and then fine-tune the entire network end-to-end using
the following loss

Lfine-tune = Llight1 + Lnormal + Lshading + Llight2 , (6)

where Llight1 and Llight2 denote the lighting estimation loss for L-Net1 and L-

Net2. The shading loss term Lshading = 1
FP

∑
f

∑
p(n>p lf − ñ>p l̃f )2 is included

to encourage better shading estimation, and lf and l̃f denote the light direction
predicted by L-Net1 and ground-truth light direction for the f th image.
Training details Following LCNet [8], we trained the networks on the publicly
available synthetic Blobby and Sculpture Dataset [10] which contains 85, 212
surfaces, each rendered under 64 random light directions.

First, we train L-Net1 from scratch for 20 epochs, halving the learning rate
every 5 epochs. Second, we train N-Net using ground-truth lightings and input
images following PS-FCN’s training procedure [10], and then retrain N-Net given
the lightings estimated by L-Net1 for 5 epochs, halving the learning rate every 2
epochs. Third, we train L-Net2 given the input images, object masks, estimated
normals, and computed shadings for 20 epochs, halving the learning rate every
5 epochs. The initial learning rate is 0.0005 for L-Net1 and L-Net2, and 0.0002
for retraining N-Net. End-to-end training is done for 20 epochs with an initial
learning rate of 0.0001, halving it every 5 epochs.

We implemented our framework in PyTorch [36] and used the Adam opti-
mizer [25] with default parameters. The full network has a total of 4.66× 106

parameters which is comparable to LCNet (4.4× 106). The batch size and the
input image number for each object are fixed to 32 during training. The input
images are resized to 128×128 at both training and test time.

5 Experimental Results

In this section, we evaluate our method on synthetic and real data. For measuring
estimation accuracy, we used mean angular error (MAE) for light directions and
surface normals, and scale-invariant relative error [8] for light intensities.

5.1 Evaluation on synthetic data

To quantitatively analyze the effects of object shapes, biased lighting distri-
butions, and spatially-varying BRDFs (SVRBDFs) on the proposed method,
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Fig. 5. (a) Lighting distribution of the
synthetic test dataset. (b) Normal
maps of Sphere, Bunny, Dragon and
Armadillo.

0

1

(a) lightings (b) normal maps

Table 3. Lighting estimation results on the synthetic test dataset. The results
are averaged over 100 MERL BRDFs (bold fonts indicates the best).

Sphere Bunny Dragon Armadillo
ID model direction intensity direction intensity direction intensity direction intensity

0 LCNet [8] 3.03 0.064 4.88 0.066 6.30 0.072 6.37 0.074

1 L-Net1 + N-Net + L-Net2 + Finetune 2.21 0.042 2.44 0.046 3.88 0.055 3.52 0.060
2 L-Net1 + N-Net + L-Net2 2.52 0.052 2.90 0.054 4.20 0.061 3.92 0.060

3 L-Net1 + N-Net + L-Net
(w/o normal)
2 2.45 0.050 3.35 0.051 5.82 0.070 5.25 0.059

4 L-Net1 3.20 0.053 4.47 0.060 5.80 0.081 5.71 0.079

Table 4. Normal estimation results on
the synthetic test dataset. The esti-
mated normals are predicted by PS-
FCN [10] given the lightings estimated
by LCNet and GCNet.
model Sphere Bunny Dragon Armadillo

LCNet [8] + PS-FCN [10] 2.98 4.06 5.59 6.73
GCNet + PS-FCN [10] 2.93 3.68 4.85 5.01

Table 5. Results on Armadillo under
different lighting distributions. Direc-
tion, intensity, and normal are abbre-
viated to “dir.”, “int.”, and “norm.”.

0

1

near uniform narrow upward-biased
model dir. int. norm. dir. int. norm. dir. int. norm.

LCNet [8] + PS-FCN 6.09 0.072 6.49 5.92 0.059 8.44 7.10 0.065 8.80
GCNet + PS-FCN 3.39 0.059 4.90 4.29 0.048 6.82 5.96 0.054 7.53

we rendered a synthetic test dataset using the physically-based raytracer Mit-
suba [24]. We rendered 4 different shapes (Sphere, Bunny, Dragon and Ar-
madillo) using 100 MERL BRDFs [31], resulting in 400 test objects, each illu-
minated under 82 randomly sampled light directions. At test time, we randomly
generated relative light intensities in the range [0.2, 2.0] to scale the magnitude
of the images (see Fig. 5).

Ablation study To validate the design of the proposed network, we performed
an ablation study and summarized the results in Table 3. The comparison be-
tween experiments with IDs 2-4 verifies that taking both the estimated normals
and shading as input is beneficial for lighting estimation. The comparison be-
tween experiments with IDs 1 & 2 demonstrates that end-to-end fine-tuning
further improves the performance. We can also see that L-Net1 achieves results
comparable to LCNet despite using only half of the network parameters, which
indicates that simply increasing the channel number of the convolutional layers
cannot guarantee better feature extraction. In the rest of the paper, we denote
the results of “L-Net1 + N-Net + L-Net2 + Finetune” as “GCNet”.

Table 4 shows that, as expected, the calibrated photometric stereo method
PS-FCN [10] can estimate more accurate normals given better estimated lighting.

Results on different lighting distributions To analyze the effect of biased
lighting distributions on the proposed method, we evaluated GCNet on the Ar-
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Table 6. Lighting estimation results on Bunny rendered with SVBRDFs. (a)
Bunny with uniform BRDF. (b) and (c) show the “ramp” and “irregular” mate-
rial maps and two sample images of Bunny with the corresponding SVBRDFs.

uniform ramp irregular
model direction intensity direction intensity direction intensity

LCNet [8] 4.88 0.066 6.09 0.066 6.00 0.075
GCNet 2.44 0.046 4.16 0.043 3.68 0.050

(a) uniform (b) ramp (c) irregular

Table 7. Lighting estimation results on surface regions cropped from Bunny.

alumina-oxide beige-fabric
LCNet GCNet LCNet GCNet

input dir. int. dir. int. dir. int. dir. int.

(a) 4.29 0.054 1.35 0.025 4.54 0.051 2.29 0.026
(b) 3.83 0.050 1.71 0.023 4.45 0.044 2.00 0.029
(c) 3.75 0.042 2.46 0.024 4.97 0.044 3.13 0.025
(d) 4.04 0.047 2.84 0.026 4.55 0.051 3.46 0.025

object

mask

surface

normal

(a) (b) (c) (d)

madillo illuminated under three different lighting distributions: a near uniform,
a narrow, and an upward-biased distribution. Table 5 shows that both GCNet
and LCNet have decreased performance under biased lighting distributions (e.g.,
the upward-biased distribution), but GCNet consistently outperforms LCNet.

Results on surfaces with SVBRDFs To analyze the effect of SVBRDFs,
we used two different material maps to generate a synthetic dataset of sur-
faces with SVBRDFs following Goldman et al. [17]. Specifically, we rendered
100 test objects by randomly sampling two MERL BRDFs and blended the
BRDFs for Bunny using “ramp” and “irregular” material maps shown in Ta-
ble 6 (b) and (c). Table 6 shows that although both methods perform worse on
surfaces with SVBRDFs compared to uniform BRDFs, our method is still rea-
sonably good even though it was trained on surfaces with uniform BRDFs. This
might be explained by that although SVBRDFs may affect the feature extrac-
tion of some important clues such as shading, others such as attached shadows
and specular highlights are less affected and can still be extracted to estimate
reliable lightings.

Effect of the object silhouette Object silhouette can provide useful informa-
tion for lighting calibration (e.g., normals at the occluding contour are perpen-
dicular to the viewing direction). To investigate the effect of the silhouette, we
first rendered the Bunny using two different types of BRDFs (alumina-oxide and
beige-fabric) under 100 lightings sampled randomly from the upper hemisphere,
and then cropped surface regions with different sizes for testing. Table 7 shows
that both LCNet and our method perform robustly for surface regions with or
without silhouette, while our method consistently outperforms LCNet. This is
because the training data for both methods was generated by randomly crop-
ping image patches from the Blobby and Sculpture datasets [10], which contains
surface regions without silhouette.

Runtime The runtimes of LCNet and GCNet for processing an object (96
images in total) from the DiLiGenT benchmark are ∼0.25 s and ∼0.5 s including
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Table 8. Lighting estimation results on DiLiGenT benchmark.

Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest average
model dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int.

PF14 [35] 4.90 0.036 5.31 0.059 2.43 0.017 5.24 0.098 13.52 0.044 9.76 0.053 33.22 0.223 21.77 0.122 16.34 0.074 24.99 0.156 13.75 0.088
LCNet [8] 3.27 0.039 4.08 0.095 5.44 0.058 3.47 0.061 2.87 0.048 4.34 0.048 10.36 0.067 4.50 0.105 4.52 0.073 6.32 0.082 4.92 0.068
GCNet 1.75 0.027 4.58 0.075 1.41 0.039 2.44 0.101 2.81 0.059 2.86 0.032 2.98 0.042 5.47 0.048 3.15 0.031 5.74 0.065 3.32 0.052

Table 9. Lighting estimation results on Light Stage Data Gallery.

Helmet Side Plant Fighting KnightKneeling KnightStanding Knight Helmet Front average
model dir. int. dir. int. dir. int. dir. int. dir. int. dir. int. dir. int.

PF14 [35] 25.40 0.576 20.56 0.227 69.50 1.137 46.69 9.805 33.81 1.311 81.60 0.133 46.26 2.198
LCNet [8] 6.57 0.212 16.06 0.170 15.95 0.214 19.84 0.199 11.60 0.286 11.62 0.248 13.61 0.221
GCNet 5.33 0.096 10.49 0.154 13.42 0.168 14.41 0.181 5.31 0.198 6.22 0.183 9.20 0.163

object GT GCNet LCNet PF14 object GT GCNet LCNet PF14

(a) Pot1
1.41
0.039

5.44
0.058

2.43
0.017

(b) Goblet
2.98
0.042

10.36
0.067

33.22
0.223

(c)
Standing
Knight

5.31
0.198

11.60
0.286

33.81
1.311

(d) Plant
10.49
0.154

16.06
0.170

20.56
0.227

0

1

Fig. 6. Visualization of the ground-truth and estimated lighting distribution for
the DiLiGenT benchmark and Light Stage Data Gallery.

data loading and network feed-forward time, measured on a single 1080 Ti GPU.
Even though LCNet runs slightly faster, both methods are very fast and run
within a second.

5.2 Evaluation on real data

To demonstrate the proposed method’s capability to handle real-world non-
Lambertian objects, we evaluated our method on the challenging DiLiGenT
benchmark [45] and the Light Stage Data Gallery [14].
Results on lighting estimation We first compared our method’s lighting
estimation results with the state-of-the-art learning-based method LCNet [8]
and non-learning method PF14 [35]. Table 8 shows that GCNet achieves the
best average results on the DiLiGenT benchmark with an MAE of 3.32 for
light directions and a relative error of 0.052 for light intensities. Although our
method does not achieve the best results for all objects, it exhibits the most
robust performance with a maximum MAE of 5.77 and a maximum relative
error of 0.101 compared with LCNet (MAE: 10.36, relative error: 0.105) and
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Table 10. Normal estimation results on DiLiGenT benchmark. (∗ indicates the
results of the calibrated method using ground-truth lightings as input.)

model Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest average

AM07 [4] 7.3 31.5 18.4 16.8 49.2 32.8 46.5 53.7 54.7 61.7 37.3
SM10 [44] 8.9 19.8 16.7 12.0 50.7 15.5 48.8 26.9 22.7 73.9 29.6
WT13 [51] 4.4 36.6 9.4 6.4 14.5 13.2 20.6 59.0 19.8 55.5 23.9
LM13 [29] 22.4 25.0 32.8 15.4 20.6 25.8 29.2 48.2 22.5 34.5 27.6
PF14 [35] 4.8 9.5 9.5 9.1 15.9 14.9 29.9 24.2 19.5 29.2 16.7
LC18 [28] 9.3 12.6 12.4 10.9 15.7 19.0 18.3 22.3 15.0 28.0 16.3

LCNet + ST14 4.1 8.2 8.8 8.4 9.7 11.6 13.5 15.2 13.4 27.7 12.1
GCNet + ST14 2.0 7.7 7.5 5.7 9.3 10.9 10.0 14.8 13.5 26.9 10.8
ST14∗ [46] 1.7 6.1 6.5 6.1 8.8 10.6 10.1 13.6 13.9 25.4 10.3

LCNet + PS-FCN 3.2 7.6 8.4 11.4 7.0 8.3 11.6 14.6 7.8 17.5 9.7
GCNet + PS-FCN 2.5 7.9 7.2 5.6 7.1 8.6 9.6 14.9 7.8 16.2 8.7
PS-FCN∗ [10] 2.8 6.2 7.1 7.6 7.3 7.9 8.6 13.3 7.3 15.9 8.4

LCNet + IS18 6.4 15.6 10.6 8.5 12.2 13.9 18.5 23.8 29.3 25.7 16.5
GCNet + IS18 3.1 6.9 7.3 5.7 7.1 8.9 7.0 15.9 8.8 15.6 8.6
IS18∗ [22] 2.2 4.6 5.4 8.3 6.0 7.9 7.3 12.6 8.0 14.0 7.6

PF14 (MAE: 33.22, relative error: 0.223). Figures 6 (a)-(b) visualize the light-
ing estimation results for the Pot1 and the Goblet. The non-learning method
PF14 works well for near-diffuse surfaces (e.g., Pot1 ), but quickly degenerates
on highly specular surfaces (e.g., Goblet). Compared with LCNet, our method
is more robust to surfaces with different reflectances and shapes.

Table 9 shows lighting estimation results on the Light Stage Data Gallery.
Our method significantly outperforms LCNet and PF14, and achieves an average
MAE of 9.20 for light directions and a relative error of 0.163 for light intensities,
improving the results of LCNet by 32.4% and 26.4% for light directions and light
intensities respectively. Figures 6 (c)-(d) visualize lighting estimation results for
the Light Stage Data Gallery’s Standing Knight and Plant.
Results on surface normal estimation We then verified that the proposed
GCNet can be seamlessly integrated with existing calibrated methods to han-
dle uncalibrated photometric stereo. Specifically, we integrated the GCNet with
a state-of-the-art non-learning calibrated method ST14 [46] and two learning-
based methods PS-FCN [10] and IS18 [22]. Table 10 shows that these integrations
can outperform existing state-of-the-art uncalibrated methods [4, 44, 51, 29, 35,
28] by a large margin on the DiLiGenT benchmark. We can further see that
ST14, PS-FCN, as well as IS18 perform better with ours instead of LCNet’s pre-
dicted lightings: 10.8 vs. 12.1 for ST14, 8.7 vs. 9.7 for PS-FCN, and 8.6 vs. 16.5
for IS18. Figure 7 presents a visual comparisons on the Goblet from the DiLi-
GenT benchmark. Please refer to our supplemental material for more results.

5.3 Failure cases

As discussed in Sec. 3, LCNet [8] relies on features like attached shadows, shad-
ing, and specular highlights, which is also true for our method. For piecewise
planar surfaces with a sparse normal distribution such as the one in Fig. 8 (a),
few useful features can be extracted and as a result our method cannot predict
reliable lightings for such surfaces. For highly-concave shapes under directional
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GT / object GCNet + IS18 LCNet + IS18 PF14 [35] GT / object GCNet + IS18 LCNet + IS18 PF14 [35]

(a) Pot1 MAE = 7.3 MAE = 10.6 MAE = 9.5 (b) Goblet MAE = 7.0 MAE = 18.5 MAE = 24.2

0

90

Fig. 7. Visual comparisons of normal estimation for Pot1 and Goblet in the DiLi-
GenT benchmark. We compared the normal estimation results of a calibrated
method IS18 [22] given lightings estimated by our method and LCNet [8].

Fig. 8. Failure cases. (a) Results on a
piecewise planar surface with sparse
normal distribution. (b) Results on a
highly-concave bowl. The estimated
normals are predicted by PS-FCN [8]
given our method’s estimated light-
ings.

object GT Normal/Lighting Est. Normal/Lighting

(a)

0

1

(b)

0

1

lightings, strong cast shadows largely affect the extraction of useful features.
Figure 8 (b) shows that GCNet erroneously estimates a highly-concave bowl to
be convex. Note that LCNet [8] and PF14 [35] also have similar problems.

6 Conclusions

This paper targeted discovering what is learned in deep uncalibrated photometric
stereo to resolve the ambiguity. Specifically, we analyzed and discussed the be-
havior of the recent deep uncalibrated photometric stereo method LCNet. Based
on our findings, we then introduced the guided calibration network (GCNet) that
explicitly leverages inter-image information of object shape and intra-image in-
formation of shading to estimate more reliable lightings. Experiments on both
synthetic and real datasets showed that our method significantly outperforms
the state-of-the-art LCNet in lighting estimation, and demonstrated that our
method can be integrated with existing calibrated photometric stereo methods
to handle uncalibrated setups. Since strong cast shadows affect our method’s fea-
ture extraction process and lead to unsatisfactory results, we will explore better
methods to handle cast shadows in the future.
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