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Abstract. Video propagation is a fundamental problem in video pro-
cessing where guidance frame predictions are propagated to guide predic-
tions of the target frame. Previous research mainly treats the previous
adjacent frame as guidance, which, however, could make the propaga-
tion vulnerable to occlusion, large motion and inaccurate information
in the previous adjacent frame. To tackle this challenge, we propose a
memory selection network, which learns to select suitable guidance from
all previous frames for effective and robust propagation. Experimental
results on video object segmentation and video colorization tasks show
that our method consistently improves performance and can robustly
handle challenging scenarios in video propagation.

1 Introduction

Video propagation is a fundamental technique in video processing tasks, includ-
ing video colorization [18, 46, 47], video semantic segmentation [27, 14], video
object segmentation [29, 5, 20, 21, 16], to name a few. It aims at propagating in-
formation from an annotated or intermediate guidance frame to the entire video.

Prior work [29, 5, 20, 21, 16] mainly focused on propagating information in
a frame-by-frame fashion as illustrated in Figure 1(a) where adjacent frames
are utilized to update the target one. This propagation pipeline is fragile due to
accumulation of errors, since inaccurate predictions in previous frames inevitably
influence target frame prediction. The influence is magnified especially when the
target object disappears or is misclassified.

To address the error accumulation caused by frame-by-frame propagation,
one feasible solution is to utilize the information from all previous frames to
propagate them to the current one, as illustrated in Figure 1(b). Albeit reason-
able, these frames contain a lot of redundant and cluttered information, and the
problem becomes more serious as the number of previous frames increases. Thus,
selecting the best frame for propagating information effectively and robustly in
videos is a critical issue.

? Equal Contribution.
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Fig. 1. Illustration of different strategies for propagating segmentation masks. (a)
Frame-by-frame propagation. (b) Propagation with all previous frames. (c) Our pro-
posed strategy for selecting the proper guidance frames for propagation.

In this paper, we propose a memory selection network (MSN) to vastly benefit
generic video propagation. To update information in the current frame, shown in
Figure 1(c), our MSN selects the most informative frames from a memory pool,
which caches all previous frames as features. We note that this seemingly simple
idea produces promising results. It effectively reduces error accumulation while
not affecting computation cost much.

Our selection network serves as a generic and efficient component for video
propagation to complement any propagation methods. Specifically, we apply our
proposed memory selection network to different video propagation based ap-
proaches, including a classical temporal propagation network (TPN) built by us,
and recent state-of-the-art propagation framework STM [28]. Their performance
is boosted with incorporation of the memory selection network. Moreover, to
further demonstrate the generality and usefulness, we conduct experiments on
both video object segmentation and video colorization tasks. Our overall contri-
butions are summarized below.

– We propose a memory selection network (MSN) to select suitable guidance
frames for video propagation.

– MSN is generic to be integrated into any video propagation framework.

– Experimental results on video object segmentation and video colorization
demonstrate that our approach boosts video propagation with limited com-
putational cost.
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2 Related Work

Video Propagation Propagation across image and video pixels is a common
technique in various computer vision tasks, such as image/video colorization [18,
46, 47], matting [19], object segmentation [28, 39, 29, 14], and semantic segmen-
tation [14]. Traditional priors for propagation are mainly optimization-based [18,
19], which minimize the energy function on a graph. In addition, filtering-based
approaches [10, 32] propagate information using image or video filters, faster
than the optimization-based method.

Recently, several methods model spatial or temporal pixel-pixel relationship
with convolutional neural networks. Jampani et al. [14] used bilateral CNN to
model the relationship between neighborhood pixels. Liu et al. [23, 24] developed
an affinity map for pixel propagation with CNN. In addition, there are a lot
of object-level propagation approaches [28, 39, 14, 29, 21, 4] using deep neural
networks specifically designed for video object segmentation.

Most of the above propagation approaches treat adjacent previous frame as
the guidance for propagation, allowing the system to easily accumulate errors
through different propagation steps. Oh et al. [28] utilizes information from mul-
tiple previous frames and adaptively fuses them for propagation to the target.

In this paper, we design a generic module to select suitable frames for video
propagation. It can be seamlessly inserted into these propagation approaches to
improve stability, robustness and quality.

Semi-Supervised Video Object Segmentation Semi-supervised object seg-
mentation refers to the problem of segmenting all corresponding objects anno-
tated in the first frame. A group of frameworks were proposed to tackle this
problem [2, 29, 28, 35, 6, 39, 40, 3, 7, 9]. Some of them [2, 29, 21] rely on the online
learning technique, which requires time-consuming fine-tuning on the annotated
frame for each testing sequence.

Among these approaches, one major stream contains propagation-based meth-
ods. MaskTrack [29] provides a classical propagation baseline method using the
last frame mask or optical flow as guidance. Many following methods [39, 20, 16,
43, 28] are based on it and improve it with more components or better strate-
gies. LucidTracker [16] incorporated additional data augmentation during online
training. Li et al. [20] fixed long-term propagation errors by introducing a re-
identification module to complement frame-by-frame propagation. The reference
image is introduced as guidance for better propagation in the work of [43, 39].
The network design is also improved correspondingly. These approaches utilize
the previous adjacent frame for propagation, which makes the system easily fail
in long-term propagation. STM [28] utilizes more previous frames in an effective
way. Based on these propagation approaches, we propose a selection strategy for
the guidance frame to improve performance from another perspective.

For high-quality long-term propagation, ConvGRU or ConvLSTM structures
[41, 34] were utilized to build an implicit memory module for long-term propa-
gation. Such approaches may suffer from memory and optimization issues when
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capturing long-range dependency during the training stage. Our method differs
from these RNN-based methods in that we build an external memory pool to
select the appropriate guidance frame without memory constraints.

Apparently similar work to ours is BubbleNet [9] since both BubbleNet and
our work design an additional network to help boost performance. The difference
is also clear and fundamental: the BubbleNet network aims to find the best frame
to be annotated by a human before applying any propagation methods, while
our work determines which of the previous predictions would be most helpful for
prediction of the current frame.

Video Colorization Video colorization can also be addressed using video prop-
agation approaches. Interactive colorization [44] propagates annotated strokes
spatially across frames. The propagation procedure is guided by the matting
Laplacian matrix and manually defined similarities. CNN-based methods [46,
47] achieved colorization with fully-automatic or sparsely annotated color. Re-
cently, Liu et al. [24] proposed a switchable temporal propagation network to
colorize all frames in a video using a few color key-frames. Additionally, meth-
ods of [14, 38] colorize the video sequence with the annotated first frame. To
propagate annotated color information to the whole video, VPN [14] utilized a
bilateral space to retrieve the pixel color and Vondrick et al. [38] leveraged pixel
embedding for soft aggregation.

3 Proposed Method

3.1 Overview

We propose a generic memory selection network to select the appropriate guid-
ance frame for general video propagation. In the following, we use the video
object segmentation task as an example to illustrate our approach.

Formulation We denote a video sequence with T frames as {xt|t ∈ [0, T − 1]},
where xt refers to the raw frame at time step t. Given the annotation informa-
tion y0 of the first frame x0, the goal of video propagation is to propagate the
information to the whole video, i.e. to produce {yt|t ∈ [1, T − 1]} from time step
1 to T − 1 via a propagation module P. For each target frame xt, P utilizes the
guidance image xg, and the corresponding prediction result or annotation yg, to
obtain yt. This can be formulated as

yt = P(xt, xg, yg). (1)

Previous frame-by-frame propagation is derived as yt = P (xt, xt−1, yt−1), where
xt−1 serves as the guidance frame for frame xt. In contrast, our approach aims
to select the suitable guidance frame xg ∈ {x0, x1, ..., xt−1} for propagation.
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Fig. 2. Illustration of our framework. For each frame xt in a video sequence, we first (1)
extract feature ft by a feature extractor F , then we (2) loop for extracted features fp
in the memory poolM, which is constructed from previous frames. At the same time,
we also (3) store ft back intoM for later frames. For all fp inM, we (4) predict the
selection score for each with the input of fa, fp and ft, where fa is the feature of the
first frame masked with annotated objects. We then (5) select the frame xg with the
highest score S as guidance. Finally, xg is utilized as the guidance frame for xt to (6)
propagate and obtain yt. ‘FlowCorr’ is developed in FlowNet [13].

Workflow The overall workflow of our framework is shown in Figure 2. Our
system builds a memory poolM = {fp|p = 0, 1, ..., T−1} by sequentially caching
features of previous frames, where fp represents the extracted representation of
frames xp with the feature extractor network F . We also extract feature of the
first frame masked with the annotated objects as fa for subsequent selection score
prediction. To select a proper guidance frame for xt, we extract its feature ft at
first and estimate the selection score for all features {fp|p = 0, 1, ..., t−1} cached
in the memory pool via a light-weight selection network. It takes ft, fp and
the feature of the annotated frame fa as input, and outputs the corresponding
selection scores. The frame with the highest score is selected as guidance for
propagation, denoted as xg. The propagation network P takes xt, xg and yg as
input to produce the final prediction yt. ft is cached back intoM for subsequent
frames.

It is worth noting that the feature extraction step takes much more time
than the selection score estimation step, since the former is accomplished by a
complicated network (i.e. VGG16 [33]) while the latter only uses a light-weight
selection network consisting of only a few convolutional layers. Thus construction
of the memory pool saves a lot of time by eliminating the feature extraction step
of previous frames.

3.2 Memory Pool Construction

Representation The memory pool M is a set of features {fp}, where fp ∈
R512×H

32×
W
32 , where H and W are the original spatial sizes. fp is extracted from
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the corresponding frame xp ∈ RH×W×3. We use a 2-D feature map instead of a
vector to represent the memory because the spatial information is important in
dense video propagation, e.g. video object segmentation and video colorization.

Construction Pipeline To construct the memory poolM, the feature extrac-
tor F first takes the first frame x0 as input and obtains the feature f0. Then f0
is cached to initialize M. Additionally, we need the feature fa concerning only
the annotated object to make the selection operation aware of the target object.
To this end, fa is extracted from the annotated object xa, which is obtained
from x0, whose background is masked by the annotated mask y0. For each time
step of the video sequence, the extracted feature of the target frame ft is also
cached into M, which guarantees the efficiency that each frame only needs to
be processed once by F .

3.3 Memory Selection Network

Observation In frame-by-frame propagation, we have yt = P(xt, xt−1, yt−1).
Thus we can empirically infer that error accumulation of yt stems from the
prediction quality of yt−1 (the first factor) and the similarity between xt and xt−1
(the second factor). We conduct experiments on YouTube-VOS [42] validation
set 4 to verify the effect of these two factors (described below). For clarity,
lt indicates the ground-truth label of the tth frame and IoU(·, ·) indicates the
intersection over union between two masks in the following description.

The influence of the prediction quality of yt−1 is illustrated in Figure 3(a).
IoU(yt, lt) and IoU(yt−1, lt−1) indicate the prediction quality of the last and
target frames. As shown in Figure 3 (a), prediction quality of the (t− 1)th and
tth frames is positively related, i.e. low quality yt−1 degrades yt.

As for the other factor, the relation of yt and similarity between xt and xt−1
are plotted in Figure 3(b), where we use IoU(lt, lt−1→t) to represent similarity
between the two frames, where lt−1→t denotes the label warped from previous
frame using optical flow [8]. It clearly draws the conclusion that the high simi-
larity between xt and xt−1 generally improves the propagation result yt.

Selection Criterion According to the observations above, error accumulation
in the frame-by-frame propagation pipeline is mainly influenced by two factors,
i.e., the prediction quality of the guidance frame and its similarity with the
target frame. Intuitively, if segmentation of the previous frame prediction is
erroneous, the inaccurate information can be propagated to the target frame and
accumulate dramatically across frames. Moreover, frames with high similarity
reduce errors in the propagation stage and can help robust propagation.

Our selection network is designed to capture the above two factors. First,
since the annotated frame is manually labeled by humans and is free of network

4 YouTube-VOS online server returns a TEXT file containing the per frame IoU for
each submission.
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(b) Similarity between Adjacent Frames

Fig. 3. Influence of two factors regarding error accumulation. Curves are plotted using
TPN (Sec. 3.4).

prediction error, we adopt the feature map of the annotated frame fa to help
model the prediction quality of the guidance frame. We combine features from
the annotated frame fa and the guidance frame fp with the FlowCorr operation
FlowCorr(fp, fa). The “FlowCorr” operation is developed in [13], which combines
two feature maps by calculating the feature similarity between pixels. Next,
to model similarity between fp and target ft, we further adopt the FlowCorr
operation to combine their representation as FlowCorr(fp, ft). The FlowCorr
operation does not require computation of optical flow and is thus efficient.

Selection Network Design The selection module is designed as a binary clas-
sification network with ‘good’ and ‘bad’ categories. Specifically, for each feature
fp in the memory pool M, the goal of the selection network is to calculate a
score to measure utility for selecting it as the guidance frame regarding the tar-
get frame t. To this end, the selection network takes fp, the annotated object’s
feature fa, and target feature ft as input and outputs a selection score. The
highest-score one is selected as the guidance frame.

Based on the two key factors above, our selection network shown in Figure 2
adopts a two-stream structure. First, we use FlowCorr(fp, fa), FlowCorr(fp, ft)
and FlowCorr(ft, fa) to measure the relationship between guidance and anno-
tated frames, guidance and target frames, and target and annotated frames,
respectively. Then, a two stream network separately takes concatenation of
{FlowCorr(fp, fa), FlowCorr(fp, ft), FlowCorr(ft, fa)}, and concatenation of {fp, fa, ft}
as input and produces two feature vectors, which are further concatenated fol-
lowed by a fully connected layer to generate the selection score. The detailed
network structure is included in the supplementary material.

The memory selection network is light-weighted with only several convolution
layers and fully-connected layers. The selection process can also be parallel for
acceleration.
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3.4 Video Propagation Frameworks

We select several video propagation based frameworks as baselines to verify the
effectiveness of MSN.

Temporal Propagation Network (TPN) To verify the effectiveness of our
proposed memory selection network, we build a classical temporal propagation
network (TPN) as one baseline model. The design of TPN is similar to exist-
ing propagation-based frameworks [29, 21, 16]. It takes target frame xt, selected
guidance frame xg, and corresponding predicted or annotated label yg as input,
and outputs the prediction label for the target frame yt (i.e., Eq. (1)).

TPN consists of an appearance branch and a motion branch. The appearance
branch takes xt and yg as input, while the motion branch takes optical flow
Ot→g (between xt and xg) and yg as input. Their output is further concatenated
to obtain the final result. The detailed structure of TPN is described in our
supplementary material. For each frame xt, MSN selects proper xg for TPN as
input.

STM [28] STM is a state-of-the-art semi-supervised video object segmentation
network. It is composed of three modules: 1) memory encoder, 2) query encoder,
and 3) query decoder. The memory encoder encodes previous masks as well as
corresponding frames into the memorized features. The target frame is encoded
by the query encoder into a new feature and is further fused with the propa-
gated memorized features. The fused feature is utilized to decode the mask for
the target frame. We also incorporate MSN into STM by selecting the suitable
memorized feature for propagating mask information.

3.5 Training Pipeline

Two Stage Training Since the argmax operation is non-differentiable, the
whole system adopts two-stage training. In the first stage, different video propa-
gation frameworks are trained to converge. For training TPN, we adopt IoU loss
[22] for video object segmentation and L1 regression loss for video colorization.
For STM, we adopt their official pre-trained model in our experiments.

In the second stage, video propagation networks are fixed. They are used
to generate the training samples to train the memory selection network. MSN
is a binary classification network to estimate the quality of the guidance frame
for the current frame in propagation. We adopt binary cross-entropy loss for
MSN training. The method to generate positive ( ‘good’ guidance frames) and
negative ( ‘bad’ guidance frames) training samples is elaborated below.

Generating Training Samples for MSN In the process of generating train-
ing samples for MSN, for each frame xt in training sequences, we utilize the
trained video propagation networks to propagate all previous frames {xp|p =
0, 1, ..., t − 1} to xt to obtain t − 1 propagation results, denoted as {yp→t|p =
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0, 1, ..., t − 1}. With the label lt of current frame, we obtain the IoU score of
propagation results, i.e., {IoU(yp→t, lt)|p = 0, 1, ..., t− 1]}.

To split {xp|p = 0, 1, ..., t − 1} into positive and negative samples, we first
compute the highest IoU score IoUmax and the lowest score IoUmin among all
these frames, and we set two thresholds σpos and σneg as hyper-parameters.
The samples with IoU score in [IoUmax − IoUmax ∗ σpos, IoUmax] are split into
positive samples, while those with score in [IoUmin, IoUmin + IoUmin ∗ σneg]
are regarded as negative ones. The frames not belonging to either positive or
negative samples are abandoned to avoid harming the classifier. These positive
and negative samples are then used to train our memory selection network with
binary cross-entropy loss. In our experiments, we empirically set the positive and
negative thresholds as 0.05(σpose) and 0.15(σneg) respectively.

Implementation Details We use Adam [17] stochastic optimization, with the
initial learning rate as 1e-5 and polynomial learning policy. The input image
is resized to a fixed-size 640 × 320. TPN/MSN are trained on YouTube-VOS
for 30/6 epochs and fine-tuned on DAVIS for 50/10 epochs. TPN is trained by
randomly sampling two frames in a video as the guidance and target frames.

4 Experiments

We evaluate our proposed memory selection network on two different video prop-
agation tasks: video object segmentation and grayscale video colorization. We
focus on their semi-supervised setting where only the first frame is annotated
with segmented mask or color. For the video object segmentation task, we eval-
uate our method on YouTube-VOS [42], and DAVIS 2016 and 2017 datasets [30,
31]. As for the video colorization dataset, following the work of [14], we conduct
experiments on DAVIS 2016 dataset for evaluation.

The performance of the video object segmentation task is measured by region
similarity J and contour accuracy F defined in [30]. Besides, For YouTube-VOS
validation dataset, since there are ‘seen’ and ‘unseen’ categories, we provide J
seen, F seen, J unseen and F unseen as corresponding metrics and Overall
refers to the average score of them.

For grayscale video colorization, we evaluate the results with PSNR score and
L1 distance between the generated results and its corresponding ground-truth.

4.1 Comparison with State-of-the-arts

Video Object Segmentation (VOS)

YouTube-VOS Dataset YouTube-VOS [42] dataset is the largest video object seg-
mentation dataset with diverse objects, which contains 3471 training videos and
474 validation ones. The validation videos contain totally 91 object categories,
with 65 seen categories and 26 unseen ones.



10 R. Wu et al.

Table 1. Results of Video Object Segmentation on YouTube-VOS validation set. ‘OL’
denotes online training. ‘*’ denotes using pre-trained weights on DAIVS Dataset [30,
31]. For all propagation based methods, we consider one-frame propagation.

Methods
Seen Unseen

J (%) F(%) J (%) F(%) Overall(%) OL

OSVOS [2] 59.8 60.5 54.2 60.7 58.8 X
MaskTrack [29] 59.9 59.5 45.0 47.9 53.1 X
OnAVOS [37] 60.1 62.7 46.6 51.4 55.2 X

S2S [41] 71.0 70.0 55.5 61.2 64.4 X
PReMVOS [25] 71.4 75.9 56.5 63.7 66.9 X

OSMN [43] 60.0 60.1 40.6 44.0 51.2
RVOS [35] 63.6 45.5 67.2 51.0 56.8
DMM [45] 60.3 63.5 50.6 57.4 58.0
RGMP [39] 59.5 - 45.2 - 53.8

A-GAME [15] 66.9 - 61.2 - 66.0

TPN 64.0 65.9 57.0 65.4 63.0
TPN + MSN 65.7 68.0 58.0 66.3 64.5 (+1.5)

*STM-1 71.1 74.4 64.0 69.7 69.9
*STM-1 + MSN 72.4 75.2 65.4 71.4 71.1 (+1.2)

We compare our method with state-of-the-art methods. The quantitative
results are presented in Table 1. We utilize STM with only one previous frame
for propagation as baseline, denoted as ‘STM-1’, and we apply MSN to select
one frame to replace the previous frame (‘STM-1 + MSN’). We provide results
with TPN and STM-1 as baseline video propagation frameworks, and incorporate
our memory selection module (MSN) into them as ‘TPN + MSN’ and ‘STM-1 +
MSN’. For both video propagation networks, we achieve consistent improvement,
in terms of Overall score, of 1.5% and 1.2% respectively. We note since the pre-
trained model of STM on YouTube-VOS dataset is not provided, we here adopt
their pre-trained model on DAVIS for inference.

DAVIS 2016 and 2017 Datasets We further conduct experiments on DAVIS
2016 and 2017 datasets. DAVIS-2016 [30] is a popular single object segmentation
benchmark, consisting of 30 training and 20 validation videos. DAVIS-2017 [31]
is an extended version of DAVIS-2016 with multiple objects in a video sequence,
consisting of 60 training and 30 validation videos.

We evaluate MSN with two baselines of TPN and STM [28] on the validation
sets. Our memory selection module consistently benefits the baseline methods by
choosing one suitable reference frame on both single-object- and multi-object-
segmentation. MSN improves the baselines by 0.6% to 1.6% on both datasets,
proving its effectiveness.

Visual Quality Results A selected sequence is visualized in Figure 4. For the
results in TPN, the prediction error in the segmented mask accumulates and
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Table 2. Comparison of video object segmentation methods on DAVIS 2016 and 2017
validation sets, where ‘OL’ indicates online learning techniques. For all propagation
based methods, we consider one-frame propagation.

Methods
DAVIS-2016 DAVIS-2017

J (%) F(%) J (%) F(%) Runtime (s) OL

OSVOS [2] 79.8 80.6 56.6 63.9 10 X
PReMVOS [25] 84.9 88.6 73.9 81.7 - X
OSVOS-S [26] 85.6 86.4 64.7 71.3 4.5 X
OnAVOS [37] 86.1 84.9 64.5 71.2 13 X

CINM [1] 83.4 85.0 67.2 74.2 - X
MaskRNN [11] 80.7 80.9 60.5 - - X

FAVOS [4] 82.4 79.5 54.6 61.8 1.8 X

OSMN [43] 74.0 - 52.5 57.1 0.14
VidMatch [12] 81.0 - 56.5 68.2 0.32
FEELVOS [36] 81.1 82.2 69.1 74.0 0.51

RGMP [39] 81.5 82.0 64.8 68.8 0.13
A-GAME [15] 82.0 82.2 67.2 72.7 0.07

DMM [45] - - 68.1 73.3 0.08

TPN 75.8 74.2 58.9 62.7 0.17
TPN+MSN 76.8 74.6 59.5 63.3 0.21

STM-1 [28] 83.2 83.3 69.6 74.6 0.06
STM-1 + MSN 83.8 84.9 71.4 76.8 0.10

propagates along with the naive frame-by-frame propagation strategy. However,
by selecting a proper guidance frame, we alleviate error accumulated and thus
support high-quality long-term propagation.

Grayscale Video Colorization

Quantitative Results We also evaluate our proposed memory selection network
on the grayscale video colorization task using the same training and inference
strategies as the video object segmentation task. To quantify the effectiveness of
our memory selection network, following VPN [14], we evaluate our algorithm
on DAVIS-2016 dataset. For each video sequence, we take the first frame as
the annotated color frame and propagate color to the rest of grayscale frames.
PSNR and L1 between predicted target frame and ground-truth one in RGB
color space are adopted as the evaluation metrics. Table 3 gives comparison
among our framework and others. ‘TPN + MSN’ achieves the best performance
in terms of both PSNR and L1, and MSN improves results a lot on this task.

Visual Quality Results Figure 5 shows visual results of a sample sequence. The
color information reduces gradually by naive frame-by-frame propagation in
TPN. TPN equipped with MSN preserves color information well since a bet-
ter guidance frame is selected from the memory pool and propagated to each
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Fig. 4. Visualization of video object segmentation on YouTube-VOS validation set. For
each target frame, (·,·) denotes the index of selected guidance frame and the Overall
score of propagated mask.

Table 3. Quantitative comparison of grayscale video colorization. ↑ means ‘the higher
the better’. ↓ means the opposite: ‘the lower the better’.

Methods PSNR ↑ L1 ↓ Runtime (s)

BNN-Identity [14] 27.89 13.51 0.29
VPN-Stage1 [14] 28.15 13.29 0.9
Levin et al [18] 27.11 - 19

TPN 28.25 11.06 0.23
TPN+MSN 28.57 10.76 0.27

target frame. The whole framework propagates color information much longer
than the baseline propagation network, which greatly helps colorization for its
final quality.

4.2 Ablation Study

Comparison of Selection Strategies In this section, we explore whether our
designed selection network can be replaced by other simpler selection strategies.

– V GG select : The guidance frame is selected by comparing its feature space
distance with the target frame. The feature is extracted from pre-trained
VGG [33] without fine-tuning.

– V GG mask select : To compare the distance, VGG feature distance of both
the guidance frame and masked guidance frame with VGG feature of the
target frame are separately computed and then added up.

– Time step gap k : The guidance frame is selected by a fixed time-step gap
k with the target frame. For each frame xt, the prediction is calculated by
yt = P(xt, xmax(0,t−k), ymax(0,t−k)).
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Fig. 5. Visualization of grayscale video colorization. (·,·) below each frame denotes the
index of selected guidance frame and the corresponding PSNR score with regard to
ground-truth color image.

We test the above selection strategies as well as our trained memory se-
lection network for video object segmentation on YouTube-VOS validation set.
The performance is demonstrated in Table 4. Simply selecting the most similar
guidance frames in VGG feature space is insufficient for propagation since pre-
trained VGG features are not aware of the propagation quality between frames.
Moreover, the performance of simply selecting the frames with fixed time step
gaps can be greatly erroneous since two frames far away may be significantly
different in appearance. They increase difficulty of generating accurate motion
information.

Table 4. Performance of different se-
lection strategies on YouTube-VOS val-
idation set. ‘Overall’ metric defined in
[42] measures the performance of dif-
ferent strategies.

Selection strategies Overall

V GG select 63.03
V GG mask select 63.08

T ime step gap 1 63.04
T ime step gap 5 63.13
T ime step gap 10 59.67
T ime step gap 20 55.61

MSN 64.5

Table 5. Performance and runtime for en-
semble strategies. ‘TPN-K’ indicates en-
sembling predictions from the last K
frames. ‘+MSN-K’ indicates that the en-
sembled predictions are selected with the
K highest selection scores.

Ensembles Overall Runtime

TPN-1 63.04 0.09
+MSN-1 64.54 0.13

TPN-3 65.27 0.29
+MSN-3 65.8 0.33

TPN-5 65.6 0.49
+MSN-5 66.1 0.53
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Prediction Ensemble Ensemble is an important means to improve propaga-
tion accuracy in the inference stage. In frame-by-frame propagation, the predic-
tions from the last K frames are ensembled to produce the tth frame prediction.
It is intriguing to investigate how to ensemble the predictions of selected guid-
ance frames. Since MSN is trained as a binary classifier, the prediction score can
be considered as the confidence of ‘positive’ for a guidance frame.

To ensemble of propagation for the memory selection network, the frames in
the selection pool are ranked according to the scores obtained by the selection
network. The top-K highest scoring frames are ensembled for the tth frame. We
conduct experiments on K and test its performance and runtime. As shown in
Table 5, ensembling multiple guidance frames consistently increases the accuracy
on different K.

Oracle Results We investigate the potential of MSN by applying ground-truth
labels to select guidance frames. Specifically, for each target frame t with ground-
truth label lt, we compute the propagation results from all preceding frames,
represented as {yp→t|p ∈ [0, t − 1]}. The propagation mask with the highest
accuracy IoU(yp→t, lt) is selected as the prediction mask for the tth frame. As
illustrated in Table 6, ‘Oracle-MSN’ achieves much better results than ‘TPN’ and
‘TPN+MSN’. The results demonstrate that there is still much space to improve
memory selection results.

Table 6. Oracle results in video object segmentation. ‘+MSN-Oracle’ denotes selecting
the guidance frame with the highest propagation accuracy. We report Overall and J
scores for YouTube-VOS and DAVIS-2016, respectively.

Method YouTube-VOS DAVIS-2016

TPN 63.0 75.7
+MSN 64.5 76.4

+MSN-Oracle 75.3 82.4

5 Conclusion

We have presented a memory selection network for the robust video propagation
by dynamically selecting the guidance frame to update information about the
target frame. The memory selection network can select suitable guidance frames
based on the quality of the guidance frame and its relationship with the target
frame. Experimental results on video object segmentation and video coloriza-
tion demonstrate that our method improves robustness of video propagation
consistently.
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Gool, L.: The 2017 davis challenge on video object segmentation. arXiv:1704.00675
(2017)

32. Rick Chang, J.H., Frank Wang, Y.C.: Propagated image filtering. In: CVPR (2015)
33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv:1409.1556 (2014)
34. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with

visual memory. In: ICCV (2017)
35. Ventura, C., Bellver, M., Girbau, A., Salvador, A., Marques, F., Giro-i Nieto,

X.: Rvos: End-to-end recurrent network for video object segmentation. In: CVPR
(2019)

36. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: Feelvos:
Fast end-to-end embedding learning for video object segmentation. In: CVPR
(2019)

37. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for
video object segmentation. arXiv:1706.09364 (2017)

38. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking
emerges by colorizing videos. In: ECCV (2018)

39. Wug Oh, S., Lee, J.Y., Sunkavalli, K., Joo Kim, S.: Fast video object segmentation
by reference-guided mask propagation. In: CVPR (2018)

40. Xu, K., Wen, L., Li, G., Bo, L., Huang, Q.: Spatiotemporal cnn for video object
segmentation. In: CVPR (2019)

41. Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y., Price, B., Cohen, S.,
Huang, T.: Youtube-vos: Sequence-to-sequence video object segmentation. In:
ECCV (2018)

42. Xu, N., Yang, L., Fan, Y., Yue, D., Liang, Y., Yang, J., Huang, T.: Youtube-vos:
A large-scale video object segmentation benchmark. arXiv:1809.03327 (2018)

43. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object
segmentation via network modulation. In: CVPR (2018)

44. Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blend-
ing. TIP (2006)

45. Zeng, X., Liao, R., Gu, L., Xiong, Y., Fidler, S., Urtasun, R.: Dmm-net: Differen-
tiable mask-matching network for video object segmentation. In: ICCV (2019)

46. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV (2016)
47. Zhang, R., Zhu, J.Y., Isola, P., Geng, X., Lin, A.S., Yu, T., Efros, A.A.: Real-time

user-guided image colorization with learned deep priors. TOG (2017)


