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Table 1. Results with more NL and DNL blocks based on Mask R-CNN, using R50 as
backbone with FPN, for object detection and instance segmentation on COCO 2017
validation set

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

baseline 38.8 59.3 42.5 35.1 56.2 37.9

NL (c4 one) 39.6 60.3 43.2 35.8 57.1 38.5
NL (c5 all) 40.0 62.1 43.5 36.1 58.6 38.6

NL (c4c5 all) 40.1 62.3 43.5 36.0 58.9 38.3

DNL (c4 one) 40.3 61.2 44.1 36.4 58.0 39.1
DNL (c5 all) 41.2 62.7 44.7 37.0 59.5 39.5

DNL (c4c5 all) 41.4 63.2 45.3 37.3 59.8 39.8

1 More NL/DNL blocks for COCO Object Detection

In section 5.2 of the main paper, we follow the settings in [8] where 1 non-local
(NL) or disentangled non-local (DNL) block is inserted right before the last
residual block of c4. In this section, we investigate the performance of NL and
DNL when more attention blocks are inserted into the backbone, as shown in
Table 1.

While the proposed DNL method outperforms NL method by 0.7% bbox
mAP and 0.6% mask mAP when 1 attention block is inserted into the backbone
(denoted as “c4 one”), the gains brought by the proposed DNL method over the
NL method are enlarged to 1.2% bbox mAP and 0.9% mask mAP, respectively,
when every residual block of stage c5 is followed by 1 attention block (denoted
as “c4 all”). The gains are further enlarged to 1.3% bbox mAP and 1.3% mask
mAP when additionally every residual block of stage c4 is followed by 1 attention
block (denoted as “c4 c5 all”). These results indicate that the DNL method can
benefit more from increasing block number than the NL method.
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2 Detailed Proof of Proposition 1

The object function O(α, β) in Eq. (3) of the main paper can be rewritten as

O(α, β) =
∑
i∈Ω

(qi − α)TA(qi − α) +
∑
m∈Ω

(km − β)TB(km − β)

−
∑
i∈Ω

(
(qi − α)T (qi − α)

)
−
∑
m∈Ω

(
(km − β)T (km − β)

) (1)

where

A =

∑
m,n∈Ω(km − kn)(km − kn)T∑
m,n∈Ω(km − kn)T (km − kn)

B =

∑
i,j∈Ω(qi − qj)(qi − qj)

T∑
i,j∈Ω(qi − qj)T (qi − qj)

(2)

We first prove that all eigenvalues of matrix A and B are smaller or equal than
1. Denote the eigenvalues of matrix A as λ1, ..., λd. According to Cauchy–Schwarz
inequality, we have∑

16i6d

λ2
i = tr(ATA)

= tr

(∑
m,n∈Ω(km − kn)(km − kn)T ·

∑
s,t∈Ω(ks − kt)(ks − kt)

T∑
m,n∈Ω(km − kn)T (km − kn) ·

∑
s,t∈Ω(ks − kTt )(ks − kt)

)

=

∑
m,n,s,t∈Ω(km − kn)T (ks − kt) · tr

(
(km − kn)(ks − kt)

T
)(∑

m,n∈Ω(km − kn)T (km − kn)
)2

=

∑
m,n,s,t∈Ω

(
(km − kn)T (ks − kt)

)2(∑
m,n∈Ω(km − kn)T (km − kn)

)2 ≤ 1

(3)

Given Eq. (3), we have: ∀1 ≤ i ≤ d, λi ≤ 1. Similarly, we can prove all
eigenvalues of matrix B are smaller or equal than 1. The hessian matrix of
Eq. (1) with respect to α and β are non-positive definite matrix. The optimalα∗

and β∗ are thus the solutions of the following equations: ∂O∂α = 0, ∂O∂β = 0.

For α∗, we have

∂O

∂α∗
=

Np∑
i=1

2

(∑
m,n(km − kn)(km − kn)T∑
m,n(km − kn)T (km − kn)

− 1

)
(qi − α∗) = 0,

⇔

(∑
m,n(km − kn)(km − kn)T∑
m,n(km − kn)T (km − kn)

− 1

) Np∑
i=1

2(qi − α∗) = 0.

(4)

To satisfy Eqn. 4, we have:

Np∑
i=1

(qi − α∗) = 0. (5)

The optimal α∗ is thus

α∗ =
1

Np

Np∑
i=1

qi. (6)
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Similarly, the optimal β∗ is computed as

β∗ =
1

Np

Np∑
i=1

ki. (7)

3 Proof for Eqn. 4 in the main paper

Here, we provide a proof for Eqn. 4 in Section 3.1. The dot product of query qi
and key kj can be split into several terms by introducing a whitening operation
on the key and query:

qTi kj =
(
qi − µq

)T
(kj − µk) + µTq kj + qTi µk + µTq µk, (8)

where µq and µk denote 1
Np

∑Np

i=1 qi and 1
Np

∑Np

i=1 kj , respectively.

Note that the last two terms (qTi µk and µTq µk) are factors in common with
both the numerator and denominator of the correlation function f and the nor-
malization factor C, so they can be eliminated as follows:

exp
(
qTi kj

)∑Np

t=1 exp (qTi kt)

=
exp

((
qi − µq

)T
(kj − µk) + µTq kj + qTi µk + µTq µk

)
∑Np

t=1 exp
((

qi − µq
)T

(kt − µk) + µTq kt + qTi µk + µTq µk

)
=

exp
((

qi−µq
)T

(kj−µk)+µTq kj
)

exp
(
qTi µk+µTq µk

)
∑Np

t=1 exp
((

qi−µq
)T

(kt−µk)+µTq kt
)

exp
(
qTi µk+µTq µk

)
=

exp
((

qi − µq
)T

(kj − µk) + µTq kj
)

∑Np

t=1 exp
((

qi − µq
)T

(kt − µk) + µTq kt
) . (9)

Finally, we obtain

σ(qTi kj) = σ(
(
qi − µq

)T
(kj − µk)︸ ︷︷ ︸

pairwise

+µTq kj︸ ︷︷ ︸
unary

). (10)

4 Experiment settings

Semantic Segmentation. We mostly follow [6] in training and inference.
Trainng. The SGD optimizer with poly learning rate policy (1− ( iter

itermax
)0.9) is

employed. For Cityscapes, the networks are trained on 4 GPUs with 2 images
per GPU for 60K iterations. The initial learning rate is 0.01, the weight decay
is 0.0005. Input images are cropped to 769 × 769. For ADE20K, the networks
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are trained on 8 GPUs with 2 images per GPU for 150K iterations. The initial
learning rate is 0.02, and the weight decay is 0.0001. Input images are cropped to
520×520. For PASCAL-Context, the network is trained on 4 GPUs with 4 images
per GPU for 30K iterations. We initialize backbone models by the ImageNet-
pretrained weights, and randomly initialize new layers in the segmentation head,
including the attention module and the classification layer. The initial learning
rate is 0.001, and the weight decay is 0.0001. Input images are cropped to 520×
520. For all datasets, the data is augmented with random horizontal flipping,
random scaling within [0.5, 2.0], and random brightness jittering of [−10, 10].
Following [9], online hard example mining (OHEM) and an auxiliary loss on the
output of conv4 with a weight of 0.5 are employed for Cityscapes and ADE20K,
only auxiliary loss is employed for PASCAL-Context.
Inference. For Cityscapes, we sample 769× 769 windows for inference and their
results are fused to generate the prediction of an entire image. For other datasets,
we resize the image resolution to be the same as in training and a multi-scale
test is adopted.
Object Detection. We use the standard configuration of Mask R-CNN [5]
with FPN and ResNet-50 as the backbone architecture, and report the mean
average-precision scores at different boxes and the mask IoUs on the COCO2017
validation set. The input images are resized such that their shorter side is 800
pixels [7]. We trained on 4 GPUs with 4 images per GPU (effective mini batch
size of 16). The backbones of all models are pretrained on ImageNet classification
[3], then all layers except for stage1 and stage2 are jointly fine-tuned.

In training, synchronized BatchNorm is adopted, and the learning rate sched-
uler follows the 1× settings of 12 epochs in [5] where the initial learning rate is
0.02 and decayed by a factor of 10 at the 8th and 11th epoch. The weight decay
is 0.0001 and momentum is 0.9.
Action Recognition. We adopt the slow-only baseline in [4], the best single
model to date that can utilize weights inflated [2] from the ImageNet pretrained
model. All the experiment settings follow the slow-only baseline in [4], where 8
frames (8×8) are used as input, and 30-clip validation is adopted. Following [8],
we insert (disentangled) non-local blocks after every two residual blocks.

5 Statistic results on COCO dataset

In this section, we measure the averaged consistency measures of the attention
maps to ground-truth region maps on COCO dataset. On COCO object detec-
tion dataset, the pairwise and unary terms alone are also learnt to have clearly
separate visual meanings: the former one shows some within-region meaning
while the latter one mostly focuses on salient area, but not limited to bound-
aries. Quantitatively, we have statistical results in Table 2. The results indicate
NL module performs no better than random baseline in learning these two clues,
while DNL learns two clues to some extent.

Another issue of NL on COCO is that the pairwise term is almost hindered
by the unary, which is also observed by [1]). Following [1], we we count the
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Table 2. Statistics results between attention maps of the non-local variants and the
ground-truth within-category and boundary maps on COCO dataset

method pair ∩ within-category pair ∩ boundary unary ∩ boundary

random 0.231 0.140 0.153

NL (Eq. 2) 0.297 0.135 0.170
DNL (Eq. 12) 0.483 0.141 0.323

Table 3. Average cosine distance between attention maps of queries on COCO dataset.

method input output attention

NL (Eq. 2) 0.397 0.0008 0.0017
DNL (Eq. 12) 0.403 0.163 0.245

average cosine distance between attention maps of queries. It is close to 0 (the
right column) by NL, indicating the degeneration to a unary term. DNL well
addresses this issue as show in Table 3

6 More Examples of Learnt Attention Maps by NL/DNL
Methods

In this section, we show more examples of the learnt attention maps by the
NL/DNL methods on the Cityscapes semantic segmentation, COCO object de-
tection/instance segmentation and Kinetics action recognition tasks.

Fig. 1 show more examples of the learnt attention maps by NL/DNL on
Cityscapes. With DNL block, the whitened pairwise term learns clear within-
region clues while the unary term learns salient boundaries, which cannot be
observed in that of the original NL block.

Fig. 2 show more examples of the learnt attention maps by NL/DNL on
COCO object detection/instance segmentation. It can be seen that the attention
maps of NL block are mainly dominated by the unary term that different query
points (marked in red) have similar overall attention maps. In DNL, the pariwise
term in DNL shows clear within-region meaning and appears significant in the
final overall attention maps, that different query points have different overall
attention maps. DNL also shows more focus to salient regions than the one in
an NL block.

Fig. 3 show more examples of the learnt attention maps by NL/DNL on
Kinetics action recognition task. 4 frames in a video clip are visualized. The
unary term of DNL shows better focus to salient regions than the one in an NL
block. The pairwise term in DNL also shows clearer within-region meaning than
that in an NL block.
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Fig. 1. Visualization of attention maps of NL block and our DNL block on Cityscapes
Dataset. The query points are marked in white cross
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Fig. 2. Visualization of attention maps of NL block and our DNL block on COCO
object detection task. The query points are marked in red.
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Fig. 3. Visualization of attention maps of NL block and our DNL block on Kinetics
action recognition. 4 frames of a video clip are visualized. For each sample of each
block, two different queries are chosen as the top and bottom rows. The query points
are marked in red
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