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Abstract. The non-local block is a popular module for strengthening
the context modeling ability of a regular convolutional neural network.
This paper first studies the non-local block in depth, where we find
that its attention computation can be split into two terms, a whitened
pairwise term accounting for the relationship between two pixels and a
unary term representing the saliency of every pixel. We also observe that
the two terms trained alone tend to model di↵erent visual clues, e.g.
the whitened pairwise term learns within-region relationships while the
unary term learns salient boundaries. However, the two terms are tightly
coupled in the non-local block, which hinders the learning of each. Based
on these findings, we present the disentangled non-local block, where the
two terms are decoupled to facilitate learning for both terms. We demon-
strate the e↵ectiveness of the decoupled design on various tasks, such as
semantic segmentation on Cityscapes, ADE20K and PASCAL Context,
object detection on COCO, and action recognition on Kinetics. The code
will be made publicly available.

1 Introduction

The non-local block [31], which models long-range dependency between pixels,
has been widely used for numerous visual recognition tasks, such as object de-
tection, semantic segmentation, and video action recognition. Towards better
understanding the non-local block’s e�cacy, we observe that it can be viewed
as a self-attention mechanism for pixel-to-pixel modeling. This self-attention is
modeled as the dot-product between the features of two pixels in the embedding
space. At first glance, this dot-product formulation represents pairwise relation-
ships. After further consideration, we find that it may encode unary information
as well, in the sense that a pixel may have its own independent impact on all
other pixels. Based on this perspective, we split the dot-product based attention
into two terms: a whitened pairwise term that accounts for the impact of one
pixel specifically on another pixel, and a unary term that represents the influence
of one pixel generally over all the pixels.
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Fig. 1. Visualization of attention maps in the non-local block and our disentangled non-
local block. With the disentanglement of our non-local block, the whitened pairwise
term learns clear within-region clues while the unary term learns salient boundaries,
which cannot be observed with the original non-local block

We investigate the visual properties of each term without interference from
the other. Specifically, we train two individual networks, with either the whitened
pairwise term or the unary term removed in the standard attention formula of
the non-local block. It is found that the non-local variant using the whitened
pairwise term alone generally learns within-region relationships (the 2nd row
of Fig. 3), while the variant using the unary term alone tends to model salient
boundaries (the 3rd row of Fig. 3). However, the two terms do not learn such clear
visual clues when they are both present within a non-local block, as illustrated
in the top row of Fig. 1. This observation is verified via statistical analysis on
the whole validation set. Also, the standard non-local block combining both
terms performs even worse than the variant that includes only the unary term
(shown in Table 2). This indicates that coupling the two terms together may be
detrimental to the learning of these visual clues, and consequently a↵ects the
learning of discriminative features.

To address this problem, we present the disentangled non-local (DNL) block,
where the whitened pairwise and unary terms are cleanly decoupled by using
independent Softmax functions and embedding matrices. With this disentangled
design, the di�culty in joint learning of the whitened pairwise and unary terms is
greatly diminished. As shown in second row of Fig. 1, the whitened pairwise term
learns clear within-region clues while the unary term learns salient boundaries,
even more clearly than what is learned when each term is trained alone.

The disentangled non-local block is validated through various vision tasks. On
semantic segmentation benchmarks, by replacing the standard non-local block
with the proposed DNL block with all other settings unchanged, significantly
greater accuracy is achieved, with a 2.0% mIoU gain on the Cityscapes validation
set, 1.3% mIoU gain on ADE20k, and 3.4% on PASCAL-Context using a ResNet-
101 backbone. With few bells and whistles, our DNL obtains state-of-the-art
performance on the challenging ADE20K dataset. Also, with a task-specific DNL
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block, noticeable accuracy improvements are observed on both COCO object
detection and Kinetics action recognition.

2 Related Works

Non-local/self-attention. These terms may appear in di↵erent application
domains, but they refer to the same modeling mechanism. This mechanism was
first proposed and widely used in natural language processing [1, 30] and physical
system modeling [32, 18, 27]. The self-attention / relation module a↵ects an indi-
vidual element (e.g. a word in a sentence) by aggregating features from a set of
elements (e.g. all the words in the sentence), where the aggregation weights are
usually determined on embedded feature similarities among the elements. They
are powerful in capturing long-range dependencies and contextual information.

In the computer vision, two pioneering works [19, 31] first applied this kind of
modeling mechanism to capture the relations between objects and pixels, respec-
tively. Since then, such modeling methods have demonstrated great e↵ectiveness
in many vision tasks, such as image classification [20], object detection [19, 13],
semantic segmentation [35], video object detection [9, 33, 14, 6] and tracking [34],
and action recognition [31]. There are also works that propose improvements to
self-attention modeling, e.g. an additional relative position term [19, 20], an ad-
ditional channel attention [11], simplification [2], and speed-up [21].

This paper also presents an improvement over the basic self-attention / non-
local neural networks. However, our work goes beyond straightforward applica-
tion or technical modification of non-local networks in that it also brings a new
perspective for understanding this module.
Understanding non-local/self-attention mechanisms. Our work is also re-
lated to several approaches that analyze the non-local/self-attention mechanism
in depth, including the performance of individual terms [19, 29, 42] on various
tasks. Also, there are studies which seek to uncover what is actually learnt by
the non-local/self-attention mechanism in di↵erent tasks [2].

This work also targets a deeper understanding of the non-local mechanism, in
a new perspective. Beyond improved understanding, our paper presents a more
e↵ective module, the disentangled non-local block, that is developed from this
new understanding and is shown to be e↵ective on multiple vision tasks.

3 Non-local Networks in Depth

3.1 Dividing Non-local Block into Pairwise and Unary Terms

Non-local block [31] computes pairwise relations between features of two posi-
tions to capture long-range dependencies. With xi representing the input features
at position i, the output features yi of a non-local block are computed as

yi =
X

j2⌦

!(xi,xj)g (xj) , (1)
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Fig. 2. Architectures of non-local block, disentangled non-local block, and other vari-
ants. The shapes of feature maps are indicated in gray, e.g., C⇥H⇥W. “⌦” denotes
matrix multiplication and “�” denotes element-wise addition. Blue boxes represent
1⇥1 convolution. Softmax is performed on the first dimension of feature maps

where ⌦ denotes the set of all pixels on a feature map of size H ⇥W ; g(·) is the
value transformation function with parameter Wv; !(xi,xj) is the embedded
similarity function from pixel j (referred to as a key pixel) to pixel i (referred
to as a query pixel), typically instantiated by an Embedded Gaussian as

!(xi,xj) = �

⇣
qT
i kj

⌘
=

exp
�
qT
i kj

�
P

t2⌦ exp (qT
i kt)

, (2)

where qi = Wqxi and kj = Wkxj denote the query and key embedding of pixel
i and j, respectively, and �(·) denotes the softmax function.

At first glance, !(xi,xj) (defined in Eq. 2) appears to represent only a pair-
wise relationship in the non-local block, through a dot product operation. How-
ever, we find that it may encode some unary meaning as well. Considering a
special case where the query vector is a constant over all image pixels, a key pixel
will have global impact on all query pixels. In [2], it was found that non-local
blocks frequently degenerate into a pure unary term in several image recognition
tasks where each key pixel in the image has the same similarity with all query
pixels. These findings indicate that the unary term does exist in the non-local
block formulation. It also raises a question of how to divide Eq. (2) into pairwise
and unary terms, which account for the impact of one key pixel specifically on
another query pixel and the influence of one key pixel generally over all the query
pixels, respectively.

To answer this question, we first present a whitened dot product between key

and query to represent the pure pairwise term:
�
qi � µq

�T
(kj � µk), where µq =

1
|⌦|

P
i2⌦ qi and µk = 1

|⌦|
P

j2⌦ kj are the averaged query and key embedding
over all pixels, respectively.

To remove the unary/global component of key pixels, the whitened dot prod-
uct is determined by maximizing the normalized di↵erences between query and
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Fig. 3. Visualization of attention maps for all variants of the NL block mentioned in
this paper. Column 1: image, ground truth and edges of ground truth. Columns 2-5:
attention maps of pairwise terms. Column 6: attention maps of unary terms. As NLu

has no pairwise attention map, and NLp has no unary attention map, we leave the
corresponding spaces empty

key pixels. In following proposition, we show how this can be achieved via an
optimization objective, which allows for the whitened dot product to be com-
puted.
Proposition 1: ↵⇤ = 1

|⌦|
P

i2⌦ qi, �⇤ = 1
|⌦|

P
m2⌦ km is the optimal solution

of the following optimization objective:

argmax
↵,�

P
i,m,n2⌦

�
(qi � ↵)T (km � �)� (qi � ↵)T (kn � �)

�2
P

m,n2⌦ ((km � kn)T (km � kn))

+

P
m,i,j2⌦

�
(km � �)T (qi � ↵)� (km � �)T (qj � ↵)

�2
P

i,j2⌦ ((qi � qj)T (qi � qj))

�
X

i2⌦

⇣
(qi � ↵)T (qi � ↵)

⌘
�

X

m2⌦

⇣
(km � �)T (km � �)

⌘

(3)

Proof sketch: The Hessian of the objective function O with respect to ↵ and �
is a non-positive definite matrix. The optimal ↵⇤ and �⇤ are thus the solutions of
the following equations: @O

@↵ = 0, @O
@� = 0. Solving this yields ↵⇤ = 1

|⌦|
P

i2⌦ qi,

�⇤ = 1
|⌦|

P
m2⌦ km. Please see the appendix for a detailed proof.

By extracting the whitened dot product as the pure pairwise term, we can
divide the dot product computation of the standard non-local block as

qT
i kj =

�
qi � µq

�T
(kj � µk) + µT

q kj + qT
i µk + µT

q µk. (4)

Note that the last two terms (qT
i µk and µT

q µk) are factors that appear in
both the numerator and denominator of Eq. (2). Hence, these two terms can
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Table 1. Consistency statistics between attention maps of the non-local variants and
the ground-truth within-category and boundary maps on the Cityscapes validation set

method pair \ within-category pair \ boundary unary \ boundary
random 0.259 0.132 0.135
pairwise NL (Eq. 6) 0.635 0.141 -
unary NL (Eq. 7) - - 0.460
NL (Eq. 2) 0.318 0.160 0.172
DNL⇤ (Eq. 13) 0.446 0.146 0.305
DNL† (Eq. 14) 0.679 0.137 0.657
DNL (Eq. 12) 0.759 0.130 0.696

be eliminated (see proof in the Appendix). After this elimination, we reach the
following pairwise and unary split of a standard non-local block:

!(xi,xj) = �(qT
i kj) = �(

�
qi � µq

�T
(kj � µk)| {z }

pairwise

+µT
q kj

| {z }
unary

), (5)

where the first whitened dot product term represents the pure pairwise relation
between a query pixel i and a key pixel j, and the second term represents the
unary relation where a key pixel j has the same impact on all query pixels i.

3.2 What Visual Clues are Expected to be Learnt by Pairwise and

Unary Terms?

To study what visual clues are expected to be learnt by the pairwise and unary
terms, respectively, we construct two variants of the non-local block by using
either the pairwise or unary term alone, such that the influence of the other
term is eliminated. The two variants use the following similarity computation
functions instead of the one in Eq. (2):

!p (xi,xj) = �

⇣�
qi � µq

�T
(kj � µk)

⌘
, (6)

!u (xi,xj) = �(µT
q kj). (7)

The two variants are denoted as “pairwise NL” and “unary NL”, and illustrated
in Fig. 2(b) and 2(c), respectively. We apply these two variants of non-local
block to the Cityscapes semantic segmentation [7] (see Section 5.1 for detailed
settings), and visualize their learnt attention (similarity) maps on several ran-
domly selected validation images in Cityscapes, as shown in Fig. 3 (please see
more examples in the Appendix). It can be seen that the pairwise NL block tends
to learn pixel relationships within the same category region, while the unary NL
block tends to learn the impact from boundary pixels to all image pixels.

This observation is further verified by quantitative analysis using the ground-
truth region and boundary annotations in Cityscapes. Denote P (i)={!p(xi,xj)|
j 2 ⌦} 2 RH⇥W as the attention map of pixel i according to the pairwise term
of Eq. (6), U={!u(xi,xj)|j 2 ⌦} 2 RH⇥W as the attention map for all query
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pixels according to the unary term of Eq. (7), C(i)
2 RH⇥W as the binary within-

category region map of pixel i, and E 2 RH⇥W as the binary boundary map
indicating pixels with distance to ground truth contour of less than 5 pixels.

We evaluate the consistency between attention maps A 2 {P (i), U} and
ground-truth boundary/same-category region G 2 {C(i), E} by their overlaps:

A \G =
X

j2⌦

Aj �Gj , (8)

where Aj , Gj are the element values of the corresponding attention map and
binary map at pixel j, respectively.

Table 1 shows the averaged consistency measures of the attention maps in
Eq. (6) and Eq. (7) to ground-truth region maps (denoted as pairwise NL and
unary NL) using all 500 validation images in the Cityscapes datasets. We also re-
port the consistency measures by a random attention map for reference (denoted
as random). The following can be seen:

– The attention map by the pairwise NL block of Eq. (6) has significantly
larger overlap with the ground-truth same-category region than the random
attention map (0.635 vs. 0.259), but has similar overlap with the ground-
truth boundary region (0.141 vs. 0.132), indicating that the pure pairwise
term tends to learn relationship between pixels within same-category regions.

– The attention map by the unary NL block of Eq. (7) has significantly larger
overlap with the ground-truth boundary region than the random attention
map (0.460 vs. 0.135), indicating that the unary term tends to learn the
impact of boundary pixels on all image pixels. This is likely because the
image boundary area provides the most informative cues when considering
the general e↵ect on all pixels.

3.3 Does the Non-local Block Learn Visual Clues Well?

We then study the learnt pairwise and unary terms by the non-local block. We
follow Eq. (5) to split the standard similarity computation into the pairwise
and unary terms, and normalize them by a softmax operation separately. After
splitting and normalization, we can compute their overlaps with the ground-truth
within-category region map and boundary region map, as shown in Table 1.

It can be seen that the pairwise term in the standard NL block which is
jointly learnt with the unary term has significantly smaller overlap with the
ground-truth within-category region than in the pairwise NL block where the
pairwise term is learnt alone (0.318 vs. 0.635). It can be also seen that the unary
term in the standard NL block which is jointly learnt with the pairwise term has
significantly smaller overlap with the ground-truth boundary region than in the
unary NL block where the unary term is learnt alone (0.172 vs. 0.460). These
results indicate that neither of the pairwise and unary terms learn the visual
clues of within-category regions and boundaries well, as also demonstrated in
Fig. 1 (top).
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3.4 Why the Non-Local Block Does Not Learn Visual Clues Well?

To understand why the non-local block does not learn the two visual clues well,
while the two terms alone can clearly learn them, we rewrite Eq. (5) as:

�(qi · kj) = �

⇣�
qi � µq

�T
(kj � µk) + µT

q kj

⌘

=
1
�i

�

⇣�
qi � µq

�T
(kj � µk)

⌘
· �(µT

q kj) =
1
�i

!p(xi,xj) · !u(xi,xj), (9)

where �i is a normalization scalar such that the sum of attention map values
over ⌦ is 1.

Consider the back-propagation of loss L to the pairwise and unary terms:

@L

@�(!p)
=

@L

@�(!)
· @�(!)
@�(!p)

=
@L

@�(!)
· �(!u),

@L

@�(!u)
=

@L

@�(!)
· @�(!)
@�(!u)

=
@L

@�(!)
· �(!p).

It can be seen that both gradients are determined by the value of the other
term. When the value of the other term becomes very small (close to 0), the
gradient of this term will be also very small, thus inhibiting the learning of this
term. For example, if we learn the unary term to well represent the boundary
area, the unary attention weights on the non-boundary area will be close to 0
and the pairwise term at the non-boundary area would thus be hard to learn well
due to the vanishing gradient issue. On the other hand, if we learn the pairwise
term to well represent the within-category area, the unary attention weights on
the boundary area will be close to 0 and the pairwise term at the non-boundary
area would also be hard to learn well due to the same vanishing gradient issue.

Another problem is the shared key transformation Wk used in both the pair-
wise and unary terms, causing the computation of the two terms to be coupled.
Such coupling may introduce additional di�culties in learning the two terms.

4 Disentangled Non-local Neural Networks

In this section, we present a new non-local block, named disentangled non-local
(DNL) block, which e↵ectively disentangles the learning of pairwise and unary
terms. In the following sections, we first describe how we modify the standard
non-local (NL) block into a disentangled non-local (NL) block, such that the
two visual clues described above can be learnt well. Then we analyze its actual
behavior in learning visual clues using the method in Section 3.2.

4.1 Formulation

Our first modification is to change the multiplication in Eq. (9) to addition:

!(xi,xj) = !p(xi,xj) · !u(xi,xj) ) !(xi,xj) = !p(xi,xj) + !u(xi,xj). (10)
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The gradients of these two terms are

@L

@�(!p)
=

@L

@�(!)
,

@L

@�(!u)
=

@L

@�(!)
.

So the gradients of each term will not be impacted by the other.
The second modification is to change the transformation Wk in unary term

to be an independent linear transformation Wm with output dimension of 1:

µT
q kj = µT

q Wkxj ) mj = Wmxj . (11)

After this modification, the pairwise and unary terms will no longer share the
Wk transformation, which further decouples them.
DNL formulation. With these two modifications, we obtain the following sim-
ilarity computation for the disentangled non-local (DNL) block:

!
D(xi,xj) = �

⇣�
qi � µq

�T
(kj � µk)

⌘
+ �(mj). (12)

The resulting DNL block is illustrated in Fig. 2 (d). Note that we adopt a single
value transform for both pairwise and unary terms, which is similarly e↵ective on
benchmarks as using independent value transform but with reduced complexity.
Complexity. For an input feature map of C ⇥ H ⇥ W , we follow [31] by using
C/2 dimensional key and query vectors. The space and time complexities are
O

D(space) = (2C+1)C and O
D(time) =

�
(2C + 1)C + ( 32C + 2)HW

�
HW , re-

spectively. For reference, the space and time complexity of a standard non-local
block are O(space) = 2C2 and O(time) =

�
2C2 + ( 32C + 1)HW

�
HW , respec-

tively. The additional space and computational overhead of the disentangled
non-local block over a standard non-local block is marginal, specifically 0.1%
and 0.15% for C = 512 in our semantic segmentation experiments.
DNL variants for diagnostic purposes. To diagnose the e↵ects of the two
decoupling modifications alone, we consider the following two variants:

!
D⇤(xi,xj) = �

⇣�
qi � µq

�T
(kj � µk) +mj

⌘
, (13)

!
D†(xi,xj) = �

⇣�
qi � µq

�T
(kj � µk)

⌘
+ �(µT

q kj), (14)

which each involves only one of the two modifications.

4.2 Behavior of DNL on Learning Visual Clues

We compute the overlaps of the pairwise and unary attention maps in DNL
(Eq. 12) with the ground-truth within-category region map and boundary region
map, as shown in Table 1.

It can be seen that the pairwise term in DNL has significantly larger overlap
with the ground-truth within-category region than the one in the standard NL
block (0.759 vs. 0.318), and the unary term has significantly larger overlap with
the boundary region than that in the standard NL block (0.696 vs. 0.172). These
results indicate better learning of the two visual clues by the DNL block in
comparison to the standard NL block.
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Fig. 4. Visualization of attention maps in NL and our DNL block on COCO object
detection and Kinetics action recognition. The query points are marked in red. Please
refer to appendix for more examples

Compared with the blocks which learn the pairwise or unary terms alone (see
the “pairwise NL” and “unary NL” rows), such measures are surprisingly 0.124
and 0.236 higher with DNL. We hypothesize that when one term is learned alone,
it may encode some portion of the other clue, as it is also useful for inference. By
explicitly learning both terms, our disentangling design can separate one from
the other, allowing it to better extract these visual clues.

We then verify the e↵ects of each disentangling modification by these mea-
sures. By incorporating the “disentangled transformation” modification alone
(!⇤) as in Eq. (13), it achieves 0.446 and 0.305 on within-category modeling and
boundary modeling, respectively, which is marginally better than the standard
non-local block. By incorporating the “‘multiplication to addition” modification
alone (!†) as in Eq. (14), it achieves 0.679 and 0.657 on within-category modeling
and boundary modeling, respectively.

The results indicate that the two modifications both benefit the learning
of two visual clues and work better if combined together. The improvements in
visual clue modeling by two disentangling strategies are also illustrated in Fig. 3.

Note such disentangling strategies also e↵ect on other tasks beyond semantic
segmentation. In object detection and action recognition tasks, we also observe
clearer learnt visual clues by the DNL block than by the standard NL. As shown
in Fig. 4, while in NL the pairwise term is almost hindered by the unary term
(also observed by [2]), the pariwise term in DNL shows clear within-region mean-
ing and appears significant in the final overall attention maps. The unary term in
DNL also shows more focus to salient regions (not limited to boundaries which
is di↵erent from that observed in the semantic segmentation task) than the one
in an NL block. More examples will be shown in appendix.
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Table 2. Ablation study on the validation set of Cityscapes

(a) Decoupling strategy

mul ! add non-shared Wk mIoU
Baseline - - 75.8
NL ⇥ ⇥ 78.5
DNL†(14)

p
⇥ 79.2

DNL*(13) ⇥
p

79.0
DNL

p p
80.5

(b) Pairwise and unary terms

pairwise term unary term mIoU
Baseline - - 75.8
NL

p p
78.5

NLp
p

⇥ 77.5
NLu ⇥

p
79.3

DNL
p p

80.5

5 Experiments

We evaluate the proposed DNL method on the recognition tasks of semantic
segmentation, object detection/instance segmentation, and action recognition.

5.1 Semantic Segmentation

Datasets. We use three benchmarks for semantic segmentation evaluation.
Cityscapes [7] focuses on semantic understanding of urban street scenes. It

provides a total of 5,000 finely annotated images, which is divided into 2,975/500/
1,525 images for training, validation and testing. Additional 20,000 coarsely an-
notated images are also provided. The dataset contains annotations for over 30
classes, of which 19 classes are used in evaluation.

ADE20K [41] was used in the ImageNet Scene Parsing Challenge 2016 and
covers a wide range of scenes and object categories. It contains 20K images for
training, 2K images for validation, and another 3K images for testing. It includes
150 semantic categories for evaluation.

PASCAL-Context [26] is a set of additional annotations for PASCAL VOC
2010, which label more than 400 categories of 4,998 images for training and
5,105 images for validation. For semantic segmentation, 59 semantic classes and
1 background class are used in training and validation.
Architecture. We follow recent practice [21] by using dilated FCN [25] and a
ResNet101 [17] backbone for our major segmentation experiments. The strides
and dilations of 3 ⇥ 3 convolutions are set to 1 and 2 for stage4, and 1 and 4
for stage5. The baseline model uses a segmentation head consisting of a 3 ⇥ 3
convolution layer to reduce the channels to 512 and a subsequent classifier to
predict the final segmentation results. For experiments with a non-local or a
disentangled non-local block, the block is inserted right before the final classifier.
The implementation and hyper-parameters mostly follow [21]. More details can
be seen in appendix D.
Ablation Study. We ablate several design components in the proposed disen-
tangled non-local block on the Cityscapes validation set. A ResNet-101 backbone
is adopted for all ablations.

DNL variants. The disentangled non-local block has two decoupling modifi-
cations on the standard non-local block: multiplication to addition, and separate
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Table 3. Comparisons with state-of-the-art approaches on the Cityscapes test set

Method Backbone ASPP Coarse mIoU (%)
DANet [11] ResNet-101 81.5
HRNet [28] HRNetV2-W48 81.9
CCNet [21] ResNet-101 81.4
ANN [43] ResNet-101 81.3
OCNet [35] ResNet-101

p
81.7

ACFNet [36] ResNet-101
p

81.8
PSPNet [39] ResNet-101

p
81.2

PSANet [40] ResNet-101
p

81.4
DeepLabv3 [5] ResNet-101

p p
81.3

NL ResNet-101
p

80.8
DNL (ours) ResNet-101

p
82.0

NL HRNetV2-W48
p

82.5
DNL (ours) HRNetV2-W48

p
83.0

key transformations. In addition to comparing the full DNL model with the stan-
dard non-local model, we also conduct experiments for these two variants which
include only one of the decoupling modifications. The results are shown in Ta-
ble 2(a). While the standard non-local model brings 2.7% mIoU gains over a
plain ResNet-101 model (78.5% vs. 75.8%), by replacing the standard non-local
block by our disentangled non-local block, we achieve an additional 2.0% mIoU
gain over the standard non-local block (80.5% vs. 78.5%), with almost no com-
plexity increase. The variants that use each decoupling strategy alone achieve
0.5% and 0.7% mIoU gains over the standard non-local block (79.0 vs. 78.5 and
79.2 vs. 78.5), showing that both strategies are beneficial alone. They are also
both crucial, as combining them leads to significantly better performance than
using each alone.

E↵ects of pairwise and unary term alone. Table 2(b) compares the meth-
ods using the pairwise term or unary term alone. Using the pairwise term alone
achieves 77.5% mIoU, which is 1.7% better than the baseline plain network with-
out it. Using the unary term alone achieves 79.3% mIoU, which is 3.5% better
than the baseline plain network and even 0.8% mIoU better than the standard
non-local network which models both pairwise and unary terms. These results
indicate that the standard non-local block hinders the e↵ect of the unary term,
probably due to the coupling of two kinds of relationships. Our disentangled
non-local networks e↵ectively disentangle the two terms, and thus can better
exploit their e↵ects to achieve a higher accuracy of 80.5% mIoU.

Complexities. As discussed in Section 4.1, the time and space complexity of
the DNL model over the NL model is tiny. Table 5 show the FLOPs and actual
latency (single-scale inference using a single GPU) on semantic segmentation,
using a ResNet-101 backbone and input resolution of 769⇥ 769.

Comparison with other methods.

Results on Cityscapes. Table 3 shows comparison results for the proposed
disentangled non-local network on the Cityscapes test set. Using a ResNet-101
backbone, the disentangled non-local network achieves 82.0% mIoU, 1.2% better
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Table 4. Comparisons with state-of-the-art approaches on the validation set and test
set of ADE20K, and test set of PASCAL-Context

Method Backbone
ADE20K PASCAL-Context

val mIoU (%) test mIoU (%) test mIoU (%)
CCNet [21] ResNet-101 45.22 - -
OCNet [35] ResNet-101 45.45 - -
EMANet [23] ResNet-101 - - 53.1
HRNetV2 [28] HRNetV2-W48 42.99 - 54.0
EncNet [37] ResNet-101 44.65 55.67 52.6
DANet [11] ResNet-101 45.22 - 52.6
CFNet [38] ResNet-101 44.89 - 54.0
ANN [43] ResNet-101 45.24 - 52.8
DMNet [15] ResNet-101 45.50 - 54.4
ACNet [12] ResNet-101 45.90 55.84 54.1
NL ResNet-101 44.67 55.58 50.6
DNL (ours) ResNet-101 45.97 56.23 54.8
NL HRNetV2-W48 44.82 55.60 54.2
DNL (ours) HRNetV2-W48 45.82 55.98 55.3

than that of a standard non-local network. On a stronger backbone of HRNetV2-
W48, the disentangled non-local network achieves 0.5% better accuracy than a
standard non-local network. Considering that the standard non-local network has
0.6% mIoU improvement over a plain HRNetV2-W48 network, such additional
gains are significant.

Results on ADE20K. Table 4 shows comparison results of the proposed dis-
entangled non-local network on the ADE20k benchmark. Using a ResNet-101
backbone, the disentangled non-local block achieves 45.97% and 56.23% on the
validation and test sets, respectively, which are 1.30% and 0.65% better than
the counterpart networks using a standard non-local block. Our result reveals a
new SOTA on this benchmark. On a HRNetV2-W48 backbone, the DNL block
is 1.0% and 0.38% better than a standard non-local block. Note on ADE20K,
HRNetV2-W48 backbone does not perform better than a ResNet-101 backbone,
which is di↵erent with the other datasets.

Results on PASCAL-Context. Table 3 shows comparison results of the pro-
posed disentangled non-local network on the PASCAL-Context test set. On
ResNet-101, our method improves the standard non-local method significantly,
by 3.4% mIoU (53.7 vs. 50.3). On HRNetV2-W48, our DNL method is 1.1%
mIoU better, which is significant considering that the NL method has 0.2% im-
provements over the plain counterpart.

Table 5. Complexity comparisons

#param(M) FLOPs(G) latency(s/img)
baseline 70.960 691.06 0.177
NL 71.484 765.07 0.192
DNL 71.485 765.16 0.194
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Table 6. Results based on Mask R-CNN, using R50
as backbone with FPN, for object detection and in-
stance segmentation on COCO 2017 validation set

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

baseline 38.8 59.3 42.5 35.1 56.2 37.9
NL 39.6 60.3 43.2 35.8 57.1 38.5
NLp 39.8 60.4 43.7 35.9 57.3 38.4
NLu 40.1 60.9 43.8 36.1 57.6 38.7
DNL 40.3 61.2 44.1 36.4 58.0 39.1

Table 7. Results based on Slow-
only baseline using R50 as back-
bone on Kinetics validation set

Top-1 Acc Top-5 Acc
baseline 74.94 91.90

NL 75.95 92.29
NLp 76.01 92.28
NLu 75.76 92.44
DNL 76.31 92.69

5.2 Object Detection/Segmentation and Action Recognition

Object Detection and Instance Segmentation on COCO. We adopt the
open source mmdetection [4] codebase for experiments. Following [31], the non-
local variants are inserted right before the last residual block of c4. More details
can be seen in appendix D.

Table 6 shows comparisons of di↵erent methods. While the standard non-
local block outperforms the baseline counterpart by 0.8% bbox mAP and 0.7%
mask mAP, the proposed disentangled non-local block brings an additional 0.7%
bbox mAP and 0.6% mask mAP in gains.
Action Recognition on Kinetics. We adopt the Kinetics [22] dataset for
experiments, which includes ⇠240k training videos and 20k validation videos in
400 human action categories. We report the top-1 (%) and top-5 (%) accuracy
on the validation set. More details can be seen in appendix D.

Table 7 shows the comparison of di↵erent blocks. It can be seen that the
disentangled design performs 0.36% better than using standard non-local block.
Discussion. For object detection and action recognition, similar to the semantic
segmentation task, we observe that significantly clearer learnt visual clues by
the proposed DNL model than by a standard NL model as shown in Fig. 4.
But the accuracy improvement is not as large as in semantic segmentation. We
hypothesize that it is probably because the semantic segmentation task aims
at dense pixel-level prediction and may require more fine-grained relationship
modeling of image pixels. In object detection and action recognition, the benefit
of more fine-grained relationship modeling ability may not be as significant.

6 Conclusion

In this paper, we first study the non-local block in depth, where we find that
its attention computation can be split into two terms, a whitened pairwise term
and a unary term. Via both intuitive and statistical analysis, we find that the
two terms are tightly coupled in the non-local block, which hinders the learning
of each. Based on these findings, we present the disentangled non-local block,
where the two terms are decoupled to facilitate learning for both terms. We
demonstrate the e↵ectiveness of the decoupled design for learning visual clues
on various vision tasks, such as semantic segmentation, object detection and
action recognition.
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