
Generalizing Person Re-Identification by
Camera-Aware Invariance Learning and

Cross-Domain Mixup
— Supplementary Material —

Chuanchen Luo1,2, Chunfeng Song1,2, and Zhaoxiang Zhang1,2,3

1 University of Chinese Academy of Sciences
2 Center for Research on Intelligent Perception and Computing, NLPR, CASIA

3 Center for Excellence in Brain Science and Intelligence Technology, CAS
{luochuanchen2017,chunfeng.song,zhaoxiang.zhang}@ia.ac.cn

In the supplementary material, we provide additional discussions and exper-
imental results to validate the superiority of our method further.

1 Discussions

1.1 Sensitivity to Neighborhood Range ε

We adopt the relative similarity ratio ε rather than the number of neighbors k
to define the range of neighborhood. The feasible scope shrinks from (0, N) for
k to (0, 1) for ε, where N denotes the size of the dataset. In this case, a small
change of ε corresponds to a drastic change of k. Thus, sensitivity is magnified.
However, the optimal setting for ε is generalizable, which frees us from tuning
separate hyper-parameters for intra-camera matching and inter-camera match-
ing. In preliminary experiments, we find that the optimal setting of k is quite
different between intra-camera matching (k = 5) and inter-camera matching
(k = 15). While the performance reaches the optimum around ε = 0.8 for both
matching cases.

1.2 Insights of the Virtual Classifier in Cross-Domain Mixup

The proposed design of classifier in cross-domain mixup is based on the following
insights: 1. According to the setup of cross-domain re-ID, the label space of
the target domain is disjoint with that of the source domain. For this reason,
we should differentiate target instances from source identities. Otherwise, the
learned identity embedding could be corrupted irrationally. 2. Without access to
identity annotations, it is infeasible to define a complete classifier for the target
domain. By introducing a dynamic virtual prototype, we can bypass this issue
and meanwhile ensure the separation between source and target instances. As for
the constraint between target instances, we leave it to Neighborhood Invariance
component to impose.
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2 Quantitative Results

2.1 Ablation studies on MSMT17 and CUHK03

We have reported ablation studies on Market-1501 [6] and DukeMTMC-reID [7,4]
in the paper. Here, we further validate the effectiveness of each proposed compo-
nent by ablation studies on MSMT17 [5] and CUHK03 [3]. In terms of CUHK03,
we use labeled annotations and follow the protocol proposed in [8]. From Tab. A,
we observe a similar phenomenon on MSMT17 and CUHK03. Both camera-
aware invariance learning and cross-domain mixup improve the transfer perfor-
mance significantly. Interestingly, our final variant even outperforms the fully-
supervised counterpart on CUHK03. This indicates that our method can take
full advantage of the knowledge learned in the source domain to benefit the
learning in the target domain.

Methods
MSMT17 CUHK03

Src. R-1 R-5 mAP Src. R-1 R-5 mAP

Supervised Learning MS 72.2 84.4 43.7 C 44.0 64.7 39.7

Direct Transfer M 10.2 17.6 3.08 M 6.36 12.4 5.4
Ls + Lag M 16.2 23.7 6.8 M 10.7 19.6 11.2
Ls + Lintra M 28.3 41.4 11.3 M 22.6 37.1 21.5
Lm + Lintra M 36.0 49.9 16.4 M 26.2 44.0 26.0
Ls + Lintra + Linter M 33.3 46.5 13.2 M 42.7 61.7 39.1
Lm + Lintra + Linter M 43.7 56.1 20.4 M 55.2 73.6 51.9

Direct Transfer D 18.2 28.3 5.7 D 7.5 17.4 7.2
Ls + Lag D 21.1 30.1 8.6 D 8.6 15.7 9.4
Ls + Lintra D 32.4 46.6 13.2 D 20.8 35.0 20.0
Lm + Lintra D 41.6 55.7 18.9 D 21.6 36.4 21.3
Ls + Lintra + Linter D 38.0 51.9 15.2 D 39.0 57.1 35.7
Lm + Lintra + Linter D 51.7 64.0 24.3 D 53.3 71.2 49.9

Table A. Ablation studies on MSMT17 and CUHK03. Supervised Learning: Model
trained with labeled target data. Direct Transfer: Model trained with only labeled
source data. M: Market-1501. D: DukeMTMC-reID. MS: MSMT17. C: CUHK03.

2.2 Design Choices of the Classification for Target Images

In addition to assigning each target instance a dynamic virtual class, we also
explore other design choices. To be more specific, we assign a random source
class or the closest source class to each target instance. As shown in Tab. B,
the two designs degrade rank-1 accuracy by 5.7% and 13.5% on Market-1501,
respectively. The reason behind such a degradation is straightforward. According
to the open-set setup of the cross-domain re-ID, the label space of the target
domain is disjoint with that of source domain. Direct assigning target instances
to one of the source classes confuses the learning of discriminative features.
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Methods
Duke→Market Market→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-1 mAP

Ours 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2

Closest 74.6 85.3 89.0 50.8 75.9 86.7 89.0 60.5
Random 82.4 91.5 94.3 63.1 77.2 87.1 90.2 61.3

Table B. Ablation study of classification supervision for target images. Closest: we
label the target images with their closest source classes. Random: random labels are
assigned to the target images.

2.3 Variants with Source Loss

As we have stated in the paper, the proposed cross-domain mixup constraint
Lm includes moderate supervision for the source domain. Thereby, we replace
Ls with Lm while incorporating cross-domain mixup into the training. Such a
practice brings two advantages: First, we omit the feature extraction of source
images. In this case, the introduction of Lm only leads to negligible growth
in computational overhead. Second, we prevent the excessive bias towards the
source domain. Imposing too strong constraints on the source data is detrimental
to the transfer ability. As reported in Tab. C, appending Ls to the variants
with Lm degrades the performance. On the basis of the variant Lt + Lm, the
involvement of Ls degrades the rank-1 accuracy by 2.9% and 1.2% on Market-
1501 and DukeMTMC-reID, respectively. This confirms our argument about the
source constraints.

Methods
Duke→Market Market→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-1 mAP

Lintra + Lm 76.8 89.0 92.4 54.9 73.7 84.2 88.1 57.3
Lintra + Lm + Ls 75.1 88.0 91.8 51.1 72.8 83.6 86.7 55.2

Lt + Lm 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2
Lt + Lm + Ls 85.2 92.8 95.1 64.2 78.3 88.0 90.8 62.7

Table C. Ablation study of employing Lm and Ls simultaneously. Lt = Lintra+Linter.

2.4 Derivation of Virtual Prototype

In our final implementation, the virtual prototype is derived from the feature
stored in the memory bank rather than the up-to-date feature. The former can be
deemed as a temporal ensemble [2] of the model prediction, which is more stable
and representative than the latter. To verify the effectiveness of our practice,
we evaluate the variants that use the up-to-date feature to derive the virtual
prototype. As shown in Tab. D, such variants lead to inferior performance. To
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be more specific, the rank-1 accuracy degrades by 6.2% and 2.3% on Market-1501
and DukeMTMC-reID, respectively.

Methods
Duke→Market Market→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-1 mAP

Memory 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2
Feature 81.9 91.6 94.3 62.0 77.2 86.8 89.8 60.7

Table D. Ablation study of the virtual prototype. Feature: the variant that computes
the virtual prototype using the up-to-date feature. Memory: our final variant that
computes the virtual prototype using the stored feature in the memory bank.

2.5 Comparison with Style Transfer

We formulate the proposed cross-domain mixup (CDM) as a transition state be-
tween the source domain and the target domain, which borrows the insight from
cross-domain style transfer. Different from style transfer, cross-domain mixup
interpolates the samples continuously and can benefit from smooth transition
across domains. Besides, it does not require extra generative models. To com-
pare the two techniques, we translate the source images to the target style using
SPGAN [1]. As shown in the first two rows of Tab. E, the model trained with
stylized source data performs favorably against the variant without any cross-
domain bridge components. Especially on Market-1501, the rank-1 accuracy im-
proves by 2.0%. Nevertheless, it still lags behind the variant with cross-domain
mixup. Combining the two techniques can further improve performance.

Methods
Duke→Market Market→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-1 mAP

ours w/o CDM 81.2 91.7 94.2 59.2 76.2 87.5 90.4 59.6
ours w/o CDM + ST 83.2 92.9 94.7 60.8 76.7 86.6 89.8 60.0
ours 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2
ours + ST 88.6 94.8 96.6 58.5 79.6 89.4 92.2 65.9

Table E. The effect of style transfer. ST: the style of source images is transfered to
the target style. CDM: cross-domain mixup.

2.6 Necessity of Interpolation

As expressed in Eq. (10), the virtual prototype for the target instance is exclusive
from the label space of the source domain. Thus, the proposed cross-domain
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mixup has an effect to separate source data and target data. Someone may
suspect that the improvement is mainly brought by such a separation effect,
since prior research [1] has validated the effectiveness of such a dissimilarity
constraint in style transfer. To verify the necessity of interpolation, we sample
the mixing coefficient λ from {0, 1} rather than Beta distribution. In this case,
only the dissimilarity constraint is preserved. As reported in Tab. F, the variant
without interpolation is far inferior to our method. The rank-1 accuracy degrades
from 88.1% to 81.4% and 79.5% to 75.6% on Market-1501 and DukeMTMC-reID,
respectively. Therefore, the interpolation is essential for the promising transfer
performance.

Methods
Duke→Market Market→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-1 mAP

w/ interpolation 88.1 94.4 96.2 71.5 79.5 88.3 91.4 65.2
w/o interpolation 81.4 91.3 94.0 58.5 75.6 86.3 89.3 59.1

Table F. Ablation study of the interpolation.

3 Qualitative Results

In addition to quantitative results, we also show the ranking lists produced by
different variants. As shown in Fig. A, the quality of the ranking list improves
step by step.
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Probe

Fig.A. The visualization of the ranking lists on Market-1501. The green frame indi-
cates positive matches, while the red frame indicates negative matches. The text at the
end of each line indicates the variant that produces the ranking list.
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