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Abstract. Recent works have shown that exploiting unlabeled data
through label propagation can substantially reduce the labeling cost,
which has been a critical issue in developing visual recognition models.
Yet, how to propagate labels reliably, especially on a dataset with un-
known outliers, remains an open question. Conventional methods such
as linear diffusion lack the capability of handling complex graph struc-
tures and may perform poorly when the seeds are sparse. Latest methods
based on graph neural networks would face difficulties on performance
drop as they scale out to noisy graphs. To overcome these difficulties, we
propose a new framework that allows labels to be propagated reliably
on large-scale real-world data. This framework incorporates (1) a local
graph neural network to predict accurately on varying local structures
while maintaining high scalability, and (2) a confidence-based path sched-
uler that identifies outliers and moves forward the propagation frontier
in a prudent way. Both components are learnable and closely coupled.
Experiments on both ImageNet and Ms-Celeb-1M show that our confi-
dence guided framework can significantly improve the overall accuracies
of the propagated labels, especially when the graph is very noisy.

1 Introduction

The remarkable advances in visual recognition are built on top of large-scale
annotated training data [6, 34, 33, 11, 12, 46, 7, 41, 13, 17, 15, 42, 29, 41, 16, 28, 40].
However, the ever increasing demand on annotated data has resulted in pro-
hibitive annotation cost. Transductive learning, which aims to propagate labeled
information to unlabeled samples, is a promising way to tackle this issue. Recent
studies [50, 26, 21, 38, 25, 18] show that transductive methods with an appropri-
ate design can infer unknown labels accurately while dramatically reducing the
annotation efforts.

Many transductive methods adopt graph-based propagation [49, 26, 21, 38]
as a core component. Generally, these methods construct a graph among all
samples, propagating labels or other relevant information from labeled samples
to unlabeled ones. Early methods [49, 47, 1] often resort to a linear diffusion
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Fig. 1: In this paper, we propose a framework for transductive learning on noisy graphs,
which contain a large number of outliers, e.g. out-of-class samples. The framework con-
sists of a local predictor and a confidence-based path scheduler. The predictor updates
local patches sequentially following a path driven by the estimated confidences. The
path scheduler leverages both the confident and unconfident samples from the predic-
tor to further calibrate the estimated confidence. The unconfident samples are usually
images with low quality(e.g. the leftmost image is a clock with only top part), hard
examples(e.g. the middle image is a spoon mixed with the background) or out-of-class
samples(e.g. the rightmost image is a lamp but none of the labeled samples belong
to this class). The lower left figure experimentally shows that the proposed method
improves the reliability of propagation. When the distance from unlabeled samples to
labeled ones increases, our method surpasses state-of-the-art by a significant margin

paradigm, where the class probabilities for each unlabeled sample are predicted
as a linear combination of those for its neighbors. Relying on simplistic assump-
tions restricts their capability of dealing with complicated graph structures in
real-world datasets. Recently, graph convolutional networks [21, 38, 39] have re-
vealed its strong expressive power to process complex graph structures. Despite
obtaining encouraging results, these GCN-based methods remain limited in an
important aspect, namely the capability of coping with outliers in the graph.
In real-world applications, unlabeled samples do not necessarily share the same
classes with the labeled ones, leading to a large portion of out-of-class samples,
which becomes the main source of outliers. Existing methods ignore the fact that
the confidences of predictions on different samples can vary significantly, which
may adversely influence the reliability of the predictions.

In this paper, we aim to explore a new framework that can propagate labels
over noisy unlabeled data reliably. This framework is designed based on three
principles: 1) Local update: each updating step can be carried out within a local
part of the graph, such that the algorithm can be easily scaled out to a large-scale
graph with millions of vertices. 2) Learnable: the graph structures over a real-
world dataset are complex, and thus it is difficult to prescribe a rule that works
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well for all cases, especially for various unknown outliers. Hence, it is desirable to
have a core operator with strong expressive power that can be learned from real
data. 3) Reliable path: graph-based propagation is sensitive to noises – a noisy
prediction can mislead other predictions downstream. To propagate reliably, it is
crucial to choose a path such that most inferences are based on reliable sources.

Specifically, we propose a framework comprised of two learnable components,
namely, a local predictor and a path scheduler. The local predictor is a light-
weight graph neural network operating on local sub-graphs, which we refer to
as graph patches, to predict the labels of unknown vertices. The path scheduler
is driven by confidence estimates, ensuring that labels are gradually propagated
from highly confident parts to the rest. The key challenge in designing the path
scheduler is how to estimate the confidences effectively. We tackle this problem
via a two-stage design. First, we adopt a multi-view strategy by exploiting the
fact that a vertex is usually covered by multiple graph patches, where each patch
may project a different prediction on it. Then the confidence can be evaluated
on how consistent and certain the predictions are. Second, with the estimated
confidence, we construct a candidate set by selecting the most confident samples
and the most unconfident ones. As illustrated in Fig. 1, we devise a ConfNet
to learn from the candidate set and calibrate the confidence estimated from the
first stage. Highly confident samples are assumed to be labeled and used in later
propagation, while highly unconfident samples are assumed to be outliers and
excluded in later propagation. Both components work closely together to drive
the propagation process. On one hand, the local predictor follows the scheduled
path to update predictions; on the other hand, the path scheduler estimates
confidences based on local predictions. Note that the training algorithm also
follows the same coupled procedure, where the parameters of the local predictor
and confidence estimator are learned end-to-end.

Our main contributions lie in three aspects: (1) A learnable framework that
involves a local predictor and a path scheduler to drive propagation reliably on
noisy large-scale graphs. (2) A novel scheme of exploiting both confident and
unconfident samples for confidence estimation. (3) Experiments on ImageNet [6]
and Ms-Celeb-1M [9] show that our proposed approach outperforms previous
algorithms, especially when the graphs are noisy and the initial seeds are sparse.

2 Related Work

In this paper, we focus on graph-based transductive learning [49, 26, 21, 38, 14],
which constructs a graph among all samples and propagates information from
labeled samples to unlabeled ones. We summarize existing methods into three
categories and briefly introduce other relevant techniques.

Early Methods. Conventional graph-based transductive learning [49, 47, 1] is
mainly originated from smoothness assumption, which is formulated as a graph
Laplacian regularization. They share the same paradigm to aggregate neighbors’
information through linear combination. While relying on the simple assumption,
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these methods are limited by their capability of coping with complex graph
structures in large-scale real-world datasets.
GCN-based Methods. Graph Convolutional Network (GCN) and its vari-
ants [21, 38, 32, 39] apply filters over the entire graph and achieve impressive
performance on several tasks [48]. To extend the power of GCN to large-scale
graphs, GraphSAGE [10] proposes to sample a fixed number of neighbors and
apply aggregation functions thereon. FastGCN [4] further reduces memory de-
mand by sampling vertices rather than neighbors in each graph convolution layer.
However, they propagate labels in parallel across all vertices, regardless of the
confidence difference among predictions. This ignorance on prediction confidence
may adversely influence the reliability of propagation.
Confidence-based Methods. Previous approaches either model the node label
as a distribution along with uncertainty [31, 2] or re-scale the weight of links by
introducing attention to vertices [38, 37]. Unlike these methods, which mainly fo-
cus on making use of confident samples, our approach learns from both confident
and unconfident data for confidence estimation.
Inductive Learning. Inductive learning is closely related to transductive learn-
ing [36]. The key difference lies in that the former aims to learn a better model
with unlabeled data [35, 25, 45, 44, 43], while the latter focuses on predicting
labels for unlabeled data [49, 50]. One important line of inductive learning is
leveraging the predicted labels of unlabeled data in a supervised manner [23,
19]. In this paper, we focus on transductive learning and show that the obtained
pseudo labels can be applied to inductive learning as a downstream task.
Outlier Detection. Previous methods [3] either rely on crafted unsupervised
rules [24] or employing a supervised method to learn from an extra labeled outlier
dataset [5]. The unsupervised rules lack the capability of handling complex real-
world dataset, while the supervised methods are easy to overfit to the labeled
outliers and do not generalize well. In this paper, we learn to identify outliers
from carefully selected confident and unconfident samples during propagation.

3 Propagation on Noisy Affinity Graphs

Our goal is to develop an effective method to propagate reliably over noisy affin-
ity graphs, e.g. those containing lots of out-of-class samples, while maintaining
reasonable runtime cost. This is challenging especially when the proportion of
outliers are high and initial seeds are sparse. As real-world graphs often have
complex and varying structures, noisy predictions can adversely affect these
downstream along the propagation paths. We propose a novel framework for
graph-based propagation, which copes with the complexity in local graph struc-
tures via a light-weight graph convolutional network while improving the relia-
bility via a confidence-based scheduler that chooses propagation paths prudently.

3.1 Problem Statement

Consider a dataset with N = Nl + Nu samples, where Nl samples are labeled
and Nu are unlabeled, and Nl � Nu. We denote the set of labeled samples as
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Fig. 2: Overview of our framework (better viewed in color). At each iteration, our
approach consists of three steps: (1) Starting from the selected confident vertex, the
patch extractor generates a graph patch. (2) Given the graph patch, the learned lo-
cal predictor updates the predictions of all unlabeled vertices on the patch. (3) Given
the updated predictions, the path scheduler estimates confidence for all unlabeled ver-
tices. Over many iterations, labeled information are gradually propagated from highly
confident parts to the rest

Dl = {(xi, yi)}Nl
i=1, and that of unlabeled ones asDu = {xi}Nl+Nu

i=Nl+1. Here, xi ∈ Rd
is the feature for the i-th sample, which is often derived from a deep network
in vision tasks, and yi ∈ Y is its label, where Y = {1, ...,m}. In our setting, Du
consists of two parts, namely in-class samples and out-of-class samples. For out-
of-class data, their labels do not belong to Y. The labeled set Dl only contains
in-class labeled samples. The goal is to assign a label ŷ ∈ Y

⋃
{−1} to each

unlabeled sample in Du, where ŷ = −1 indicates an unlabeled sample is identified
as an outlier.

To construct an affinity graph G = (V, E) on this dataset, we treat each
sample as a vertex and connect it with its K nearest neighbors. The graph G
can be expressed by an adjacency matrix A ∈ RN×N , where ai,j = A(i, j) is the
cosine similarity between xi and xj if (i, j) ∈ E , and otherwise 0.

For label propagation, we associate each vertex with a probability vector pi,
where pik = pi(k) indicates the probability of the sample xi belonging to the
k-th class, and a confidence score ci ∈ [0, 1]. For labeled samples, pi is fixed
to be a one-hot vector with pik = 1 for k = yi. For unlabeled samples, pi is
initialized to be a uniform distribution over all classes and will be gradually up-
dated as the propagation proceeds. We set a threshold oτ to determine whether
a sample is an outlier. After the propagation is completed, for those with con-
fidence smaller than oτ , the predicted label for each unlabeled sample xi is set
to ŷi = −1. For those with confidence larger than oτ . the predicted label for
each unlabeled sample xi is set to be the class with highest probability in pi, as
ŷi = argmaxk pik.

3.2 Algorithm Overview

As shown in Fig. 2, our proposed propagation scheme is based on graph patches
as the units for updating. Here, a graph patch is a sub-graph containing both
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labeled and unlabeled vertices. The algorithm performs updates over a graph
patch in each step of propagation.

The propagation proceeds as follows. (1) At each iteration, we first randomly
select a vertex from the high-confidence vertex set S, which contains both the
initially labeled samples and those samples whose confidences are high enough
to be considered as “labeled” as the propagation proceeds. (2) Starting from
the selected confident vertex, we use a patch extractor to expand it into a graph
patch, and then update the predictions on all unlabeled vertices in this patch,
using a local predictor. (3) The path scheduler uses these predictions to re-
estimate confidences for unlabeled vertices. In this work, both the local predictor
and the path scheduler are formulated as a graph convolutional network (GCN)
learned from the training data, in order to cope with the complexity of local
graph structures. All the vertices whose confidence scores go beyond a threshold
cτ will be added into S and their predictions will not be updated again in future
iterations. Note that the updated confidences would influence the choice of the
next confident vertex and thus the propagation path. By iteratively updating
predictions and confidences as above, the algorithm drives the propagation across
the entire graph, gradually from high confident areas to the rest.

This propagation algorithm involves two components: a local predictor that
generates confident graph patches and updates predictions thereon, and a path
scheduler that estimates confidences and schedules the propagation path accord-
ingly. Next, we will elaborate on these components in turn.

3.3 GCN-based Local Predictor

Patch extractor. A graph patch with the following properties is a good candi-
date for the next update. (1) High confidence: We define the confidence of a graph
patch as the sum of its vertex confidences. A patch with high confidence is more
likely to yield reliable predictions due to the availability of reliable information
sources. (2) Large expected confidence gain: We define the estimated confidence
gain of a patch Pi as

∑
vj∈Pi

(1−cj), i.e. the maximum possible improvement on
the total confidence. Performing updates on those patches with large expected
confidence gain can potentially speed up the propagation. To maintain sufficient
confidence gain while avoiding excessive patch sizes, we consider a patch as vi-
able for the next update if the expected gain is above a threshold ∆cτ and the
size is below the maximum size s. Besides, to avoid selecting highly overlapped
patches, once a vertex is taken as the start point, its m-hop neighbors will all
be excluded from selecting as start points in later propagation.

To generate a graph patch P, we start from the most confident vertex and
add its immediate neighbors into a queue. Each vertex in the queue continues
to search its unvisited neighbors until (1) the expected gain is above ∆cτ , which
means that a viable patch is obtained; or (2) the size exceeds s, which means that
no viable patch is found around the selected vertex and the algorithm randomly
selects a new vertex from S to begin with. Note that our propagation can be
parallelized by selecting multiple non-overlapped patches at the same time. We
show the detailed algorithm in supplementary.
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Graph patches are dynamically extracted along with the propagation. In
early iterations, ∆cτ can often be achieved by a small number of unlabeled
vertices, as most vertices are unlabeled and have low confidences. This results in
more conservative exploration at the early stage. As the propagation proceeds,
the number of confident vertices increases while the average expected confidence
gain decreases, the algorithm encourages more aggressive updates over larger
patches. Empirically, we found that on an affinity graph with 10K vertices with
1% of labeled seeds, it takes about 100 iterations to complete the propagation
procedure, where the average size of graph patches is 1K.
Design of local predictor. We introduce a graph convolutional network (GCN)
to predict unknown labels for each graph patch. Given a graph patch Pi centered
at vi ∈ V, the network takes as input the visual features xi, and the affinity
sub-matrix restricted to Pi, denoted as A(Pi). Let F0(Pi) be a matrix of all
vertex data for Pi, where each row represents a vertex feature xi. The GCN
takes F0(Pi) as the input to the bottom layer and carries out the computation
through L blocks as follows:

Fl+1(Pi) = σ
(
D̃(Pi)−1Ã(Pi)Fl(Pi)Wl

)
, (1)

where Ã(Pi) = A(Pi) + I; D̃ =
∑
j Ãij(Pi) is a diagonal degree matrix; Fl(Pi)

contains the embeddings at the l-th layer; Wl is a matrix to transform the
embeddings; σ is a nonlinear activation (ReLU in this work). Intuitively, this
formula expresses a procedure of taking weighted average of the features of each
vertex and its neighbors based on affinity weights, transforming them into a new
space with Wl, and then feeding them through a nonlinear activation. Note that
this GCN operates locally within a graph patch and thus the demand on memory
would not increase as the whole graph grows, which makes it easy to scale out
to massive graphs with millions of vertices.

As the propagation proceeds, each vertex may be covered by multiple patches,
including those constructed in previous steps. Each patch that covers a vertex v
is called a view of v. We leverage the predictions from multiple views for higher
reliability, and update the probability vector for each unlabeled vertex in Pi by
averaging the predictions from all views, as

pi =
1∑
1vi∈Pj

∑
vi∈Pj

FL(vi,j). (2)

3.4 Confidence-based Path Scheduler

Confidence estimation is the core of the path scheduler. A good estimation of
confidences is crucial for reliable propagation, as it allows unreliable sources
to be suppressed. Our confidence estimator involves a Multi-view confidence
estimator and a learnable ConfNet, to form a two-stage procedure. Specifically,
the former generates an initial confidence estimation by aggregating predictions
from multiple patches. Then ConfNet learns from the most confident samples and
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the most unconfident ones from the first stage, to further refine the confidence.
The ultimate confidence is the average confidence of these two stages.

Multi-view confidence estimation. Previous studies [8, 22] have shown that
neural networks usually yield over-confident predictions. In this work, we develop
a simple but effective way to alleviate the over-confidence problem. We leverage
the multiple views for each vertex vi derived along the propagation process.
Particularly, the confidence for vi is defined as

ci =

{
maxk pik, if vi was visited multiple times

ε, if vi was visited only once
(3)

where pi is given in Eq. (2), and ε is a small positive value.

Here, we discuss why we use ci as defined above to measure the confidence.
When a vertex has only been visited once, it is difficult to assess the quality of
the prediction, therefore it is safe to assume a low confidence. When a vertex has
been visited multiple times, a high value of maxk pik suggests that the predictions
from different views are consistent with each other. If not, i.e. different views
vote for different classes, then the average probability for the best class would
be significantly lower. We provide a proof in the supplementary showing that ci
takes a high value only when predictions are consistent and all with low entropy.

ConfNet. Among the initial confidence estimated from previous stage, the most
confident samples are most likely to be genuine members while the most uncon-
fident samples are most likely to be outliers, which can be regarded as positive
samples and negative samples, respectively.

ConfNet is introduced to learn from the “discovered” genuine members and
outliers. It aims to output a probability value for each vertex v to indicate how
likely it is a genuine member instead of an outlier. Similar to the local predictor,
we implement ConfNet as a graph convolutional network, following Eq. (1).
Given a percentage η and sampled graph patches, we take the top-η confident
vertices as the positive samples and the top-η unconfident vertices as the negative
ones. Then we train the ConfNet using the vertex-wise binary cross-entropy as
the loss function. The final confidence of a vertex is estimated as the average of
multi-view confidence and the predicted confidence from the learned ConfNet.

3.5 Training of Local Predictor

Here we introduce how to train the local predictor. The training samples consist
of graph patches with at least one labeled vertex. Instead of selecting graph
patches consecutively during propagation, we sample a set of graph patches
parallel for training. The sampling of graph patches follows the same principle,
i.e., selecting those with high confidence. Based on the sampled subgraphs, the
local predictor predicts labels for all labeled vertices on sampled subgraphs. The
cross-entropy error between predictions and ground-truth is then minimized over
all labeled data to optimize the local predictor.
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4 Experiments

4.1 Experimental Settings

Dataset. We conduct our experiments on two real-world datasets, namely, Im-
ageNet [6] and Ms-Celeb-1M [9]. ImageNet compromises 1M images from 1, 000
classes, which is the most widely used image classification dataset. Ms-Celeb-1M
is a large-scale face recognition dataset consisting of 100K identities, and each
identity has about 100 facial images. Transductive learning in vision tasks con-
siders a practical setting that obtains a pretrained model but its training data
are unavailable. Given only the pretrained model and another unlabeled set with
limited labeled data, it aims to predict labels for the unlabeled set. We simulate
this setting with the following steps: (1) We randomly sample 10% data from
ImageNet to train the feature extractor F . (2) We use F to extract features for
the rest 90% samples to construct Dall. (3) We randomly sample 10 classes from
Dall as D, and randomly split 1% data from D as the labeled set Dl. (4) With a
noise ratio ρ, we construct the outlier set Do by randomly sampling data from
Dall \ D. (5) Du is a union set of D \ Dl and Do. Experiments on Ms-Celeb-1M
follow the same setting except sampling 100 classes. We sample a small valida-
tion set Dv with the same size as Dl, to determine the outlier threshold oτ . To
evaluate performance on graphs with different noise ratio, we set the noise ratio
ρ to 0%, 10%, 30% and 50% .
Metrics. We assess the performance under the noisy transductive learning.
Given the ground-truth of the unlabeled set, where the ground-truth of out-
of-class outliers is set to −1, transductive learning aims to predict the label of
each sample in Du, where the performance is measured by top-1 accuracy.
Implementation Details. We take ResNet-50 [11] as the feature extractor in
our experiments. K = 30 is used to build the KNN affinity graph. cτ is set to 0.9
as the threshold to fix high confident vertices. s and ∆cτ for generating graph
patches is 3000 and 500. We use SGCs [39] for both local predictor and ConfNet.
The depth of SGC is set to 2 and 1 for local predictor and ConfNet, respectively.
The Adam optimizer is used with a start learning rate 0.01 and the training
epoch is set to 200 and 100 for local predictor and ConfNet, respectively.

4.2 Method Comparison

We compare the proposed method with a series of transductive baselines. Since
all these methods are not designed for noisy label propagation, we adapt them
to this setting by adopting the same strategy as our method. Specifically, we
first determine the outlier threshold oτ on a validation set Dv, and then take
the samples whose confidence below the threshold oτ as the noisy samples. The
methods are briefly described below.
(1) LP [49] is the most widely used transductive learning approach, which
aggregates the labels from the neighborhoods by linear combination.
(2) GCN [21] is devised to capture complex graph structure, where each layer
consists of a non-linear transformation and an aggregation function.
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(3) GraphSAGE [10] is originally designed for node embedding, which applies
trainable aggregation functions on sampled neighbors. We adapt it for transduc-
tive learning by replacing the unsupervised loss with the cross-entropy loss.
(4) GAT [38] introduces a self-attention mechanism to GCN, which enables
specifying different weights to different nodes in a neighborhood.
(5) FastGCN [4] addresses the memory issue of GCN by a sampling scheme.
Compared with GraphSAGE, it saves more memory by sampling vertices rather
than neighbors at each layer.
(6) SGC [39] simplifies the non-linear transformation of GCN, which comprises
a linear local smooth filter followed by a standard linear classifier.
(7) Ours incorporates a local predictor and a confidence-based path scheduler.
The two closely coupled components learn to propagate on noisy graphs reliably.

Table 1: Performance comparison of transductive methods on noisy affinity graphs.
GraphSAGE† denotes using GCN as the aggregation function. For both ImageNet
and Ms-Celeb-1M, 1% labeled images are randomly selected as seeds. We randomly
select classes and initial seeds for 5 times and report the average results of 5 runs (see
supplementary for the standard deviation of all experiments)

ImageNet Ms-Celeb-1M

Noise ratio ρ 0% 10% 30% 50% 0% 10% 30% 50%

LP [49] 77.74 70.51 59.47 51.43 95.13 89.01 88.31 87.19
GCN [21] 83.17 75.37 66.28 64.09 99.6 99.6 96.37 96.3
GAT [38] 83.93 75.99 66.3 63.34 99.59 96.48 94.55 94.01
GraphSAGE [10] 82.42 73.42 63.84 59.12 99.57 95.68 92.21 91.06

GraphSAGE† [10] 81.39 73.53 63.42 58.99 99.59 95.62 92.38 91.19
FastGCN [4] 81.34 74.08 63.79 58.81 99.62 95.6 92.08 90.83
SGC [39] 84.78 76.71 67.97 65.63 99.63 97.43 96.71 96.5

Ours 85.16 76.96 69.28 68.25 99.66 97.59 96.93 96.81

Results. Table. 1 shows that: (1) For LP, the performance is inferior to other
learning-based approaches. (2) GCN shows competitive results under different
settings, although it is not designed for the noisy scenario. (3) We employ Graph-
SAGE with GCN aggregation and mean aggregation. Although it achieves a
higher speedup than GCN, not considering the confidence of predictions makes
the sampling-based method very sensitive to outliers. (4) Although GAT yields
promising results when the graph size is 20K, it incurs excessive memory de-
mand when scaling to larger graphs, as shown in Fig. 3. Despite FastGCN is
efficient, it suffers from the similar problem as GraphSAGE. (6) SGC, as a sim-
plified version of GCN, achieves competitive results to GCN and GAT. As it
has less training parameters, it may not easily overfit when the initial seeds are
sparse. Fig. 3 indicates that the performance of SGC becomes inferior to GCN
when the graph size becomes large. (7) Table. 1 illustrates that the noisy set-
ting is very challenging, which deteriorates the performance of all algorithms
marginally. The proposed method improves the accuracy under all noise ratios,
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with more significant improvement as the noise ratio becomes larger. It not only
surpasses the sampling-based approaches by a large margin, but also outper-
forms the GNNs with the entire graph as inputs. Even in the well-learned face
manifold, which is less sensitive to out-of-sample noise, our method still reduces
the error rate from 3.5% to 3.19%. Note that the proposed method can be easily
extended to the iterative scheme by using self-training [30]. As it can effectively
estimate confidence, applying it iteratively can potentially lead to better results.

Fig. 3: Influence of labeled ratio Fig. 4: Influence of graph size

Labeled Ratio. When the noise ratio ρ is 50%, we study the influence of dif-
ferent labeled ratios: 0.2%, 0.5%, 1%, 5% and 10%. Fig. 3 shows that our method
consistently outperforms other methods under all labeled ratios. When the initial
seeds are very sparse, it becomes more challenging for both label propagation
and confidence estimation. As our method learns from the discovered confident
and unconfident samples along with the propagation, our method still performs
well when there are a few initial seeds.
Graph Scale. The local update design makes the proposed method capable of
scaling to large-scale graphs. As Fig. 4 illustrates, LP suffers a severe performance
drop when the graph size increases. GAT exceeds the memory limits when the
number of vertices is beyond 100K. Two sampling-based methods, GraphSAGE
and FastGCN, are inferior to their counterparts operating on the entire graph.
Although our method also operates on subgraphs, the reliable strategy enables
it to perform well on noisy graphs under different scales. Note that when the
graph size is 400K, GCN performs better than ours. As we adopt SGC as the
local predictor in our experiments, without non-linear transformation may limit
its capability when graph scale is large. In real practice, we have the flexibility
to select different local predictors according to the graph scale.

4.3 Ablation Study

We adopt a setting on ImageNet, where the labeled ratio is 1% and the noise
ratio is 50%, to study some important designs in our framework.
Local predictor. In our framework, the local predictor can be flexibly replaced
with different graph-based algorithms. We compare the effectiveness of three
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Table 2: Comparison on local predic-
tors and confidences. ConfNet† com-
putes confidence as the average confi-
dence from Multi-view and ConfNet

Confidence GAT GCN SGC

Random 63.16 62.62 64.84
Multi-view 64.11 63.84 65.81
ConfNet 64.83 63.93 67.79

ConfNet† 65.95 65.21 68.25

GT 83.17 83.93 84.78

Table 3: Comparison on different source of
initial confidence. FNR denotes false noise ra-
tio of positive samples and TNR denotes true
noise ratio of negative samples

Initial Confidence Num FNR TNR Acc

SGC(η=0.05) 973 3.8% 66% 67.44
Multi-view(η=0.01) 194 1.6% 70% 66.78
Multi-view(η=0.05) 973 3.2% 65% 68.79
Multi-view(η=0.1) 1947 4.1% 63% 67.81

GT(η=0.05) 973 0% 100% 76.29

learnable local predictors, namely GAT, GCN, and SGC. All three methods take
the vertex features as input, and predict labels for unlabeled vertices. Comparing
different columns in Table. 2, all three local predictors outperforms LP (see
Table. 1) significantly, even using random confidence. The results demonstrate
the advantage of learning-based approaches in handling complex graph structure.

Path scheduler. As shown in different rows in Table. 2, we study confidence
choices with different local predictors. (1) Random refers to using random score
between 0 and 1 as the confidence, which severely impairs the performance. (2)
Multi-view denotes our first stage confidence estimation, i.e., aggregating pre-
dictions from multiple graph patches, which provides a good initial confidence.
(3) ConfNet indicates using the confidence predicted from ConfNet. Compared
to Multi-view, the significant performance gain demonstrates the effectiveness of
ConfNet. (4) ConfNet† is the ultimate confidence in our approach. It further in-
creases the performance by averaging confidence from two previous stages, which
shows that the confidence from Multi-view and ConfNet may be complementary
to some extent. (5) GT (Ground-truth) denotes knowing all outliers in advance,
which corresponds to the setting that noise ratio is 0 in Table. 1. It indicates
that the performance can be greatly boosted if identifying all outliers correctly.

Confidence estimation Table. 3 analyzes the source of initial confidence for
ConfNet training. η denotes the proportion of the most confident and unconfi-
dent samples, as defined in Sec. 3.4. SGC refers to using the prediction prob-
abilities without Multi-view strategy. It shows that: (1) Comparison between
SGC (η=0.05) and Multi-view (η=0.05) indicates that ConfNet is affected by
the quality of initial confidence set. As Multi-view gives more precise confidence
estimation, it provides more reliable samples for ConfNet training, leading to
a better performance. (2) Comparison between GT (η=0.05) and Multi-view
(η=0.05) further indicates that training on a reliable initial confidence set is a
crucial design. (3) Comparison between Multi-view with three different η shows
that choosing a proper proportion is important to ConfNet training. When η is
small, although the positive and negative samples are more pure, training on a
few samples impairs the final accuracy. When η is large, the introduction of noise
in both positive and negative samples lead to the limited performance gain.
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(a) SGC (b) Multi-view (c) ConfNet (d) ConfNet

Fig. 5: Confidence distribution of outliers and genuine members. Orange represents
the out-of-class noisy samples, while blue denotes the in-class unlabeled ones. Gap is
computed as the difference between the mean of two distributions. It indicates that
the proposed confidence estimation approach can enlarge the confidence gap between
outliers and genuine ones, which is the key to our performance gain

From another perspective, Fig. 5 illustrates that the success of Multi-view
and ConfNet is mainly due to altering the confidence distribution, where the
gap between outliers and genuine members is enlarged and thus outliers can be
identified more easily. Fig. 7 shows that using ConfNet as a post-processing mod-
ule in previous methods can also improve their capability of identifying outliers,
leading to a significant accuracy gain with limited computational budget.

(a) LP (b) Ground Truth (c) Ours

Fig. 6: Two graph patches with predic-
tions from ImageNet, where different col-
ors represent different classes

65

66

67

68
Baseline +ConfNet(M) +ConfNet(G)

GCN 64.09 64.79 65.45
SGC 65.63 66.07 66.94
Ours 65.81 66.55 68.25

64
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SGC

w/CN(M)

w/CN(G)

Ours

w/CN(M)

w/CN(G)

Fig. 7: Apply ConfNet to different GNNs.
CN(M) denotes ConfNet using MLP and
CN(G) denotes ConfNet using GCN

4.4 Further Analysis

Efficiency of Path Extraction. We refer to visited times of a vertex as the
number of patches it belongs to. We conduct experiments on ImageNet with
10K vertices with cτ = 0.9, ∆cτ = 500 and s = 3000. When propagating 100
iterations, the average visited times of vertices are about 6. Most samples are
visited 2 times and only a very few samples are visited more than 10 times.
Conservative Prediction on Hard Cases. Except the out-of-sample noise,
we also visualize the low confident samples when noise ratio is 0. As Fig. 6 shows,
when dealing with a hard case (the green box in the first row), our method gives
the right prediction with very low confidence (small size of vertices) while LP
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gives a wrong prediction and misleads the predictions of downstream vertices.
The second row shows that our confidence can identify inter-class boundaries,
and remain conservative to these predictions, as highlighted in the green box.

Table 4: Two applications of our method in vision tasks. (a) We use the estimated
confidence as indicators in active learning. (b) We apply the predicted labels to face
recognition training in an inductive manner. (see supplementary for more details)

Labeled Baseline Random GCN Ours

1% 65.63 65.71 66.7 68.6

(a)

Test Protocol Baseline CDP GCN Ours

MegaFace [20] 58.21 59.15 59.33 60.02

(b)

4.5 Applications

Active Learning. Active learning desires an effective indicator to select rep-
resentative unlabeled samples. Table. 4(a) shows that our estimated confidence
outperforms two widely used indicators. Specifically, the first one randomly se-
lects unlabeled samples for annotation, while the second one applies a trained
GCN to unlabeled samples and select those with large predicted entropy. Base-
line refers to the accuracy before annotation. The result shows that our method
brings larger accuracy gain by annotating the same number of unlabeled data.
Inductive Learning. The predicted labels from transductive learning can be
used as “pseudo labels” in inductive learning. We randomly selects 1K person
with 120K images from Ms-Celeb-1M, sampling 1% as the labeled data. We
compare with CDP [45] and GCN [21] for generating “pseudo labels”. Compared
to these two methods, Table. 4(b) shows our method brings larger performance
gain on MegaFace [20], which demonstrates that the proposed method generates
pseudo labels with higher quality.

5 Conclusion

In this paper, we propose a reliable label propagation approach to extend the
transductive learning to a practical noisy setting. The proposed method con-
sists of two learnable components, namely a GCN-based local predictor and a
confidence-based path scheduler. Experiments on two real-world datasets show
that the proposed approach outperforms previous state-of-the-art methods with
reasonable computational cost. Ablation study shows that exploiting both con-
fident and unconfident samples is a crucial design in our confidence estimation.
Extending the proposed method to different kinds of noise, such as adversarial
noise [27], is desired to be explored in the future.
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