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In this appendix, we further provide both quantitative and qualitative results
in the following order.

– Section 1 shows the performance of Vanilla CAM with different combination
of the proposed methods applied on other backbone structures.

– Section 2 illustrates how we choose the hyperparameters.
– Section 3 further exhibits the effect of each proposed method through qual-

itative results.
– Section 4 elaborates the relationship between the proposed negative weight

clamping method and the number of objects in a dataset.
– Section 5 presents more qualitative results that demonstrate the robustness

of the proposed methods on other backbones.

1 Quantitative Results with Different Components

In addition to the quantitative results with different components on VGG16 [4]
as provided in Table 3 of the main draft, we further provide the experiment
results on other backbone structures: ResNet50-SE [1, 3], MobileNetV1 [2] and
GoogleNet [5].

Table 5, 6 and 7 show the performance of ResNet50-SE, MobileNetV1 and
GoogleNet with different combination of the proposed methods applied, respec-
tively. Regardless of different backbones, the performance of Top-1 Loc improves
on both CUB-200-2011 and ImageNet-1K: ResNet50-SE (CUB: 43.29 → 58.39,
ImageNet: 46.64 → 51.96), MobileNetV1 (CUB: 44.46 → 57.63, ImageNet:
43.29 → 45.55) and GoogleNet (CUB: 46.86 → 51.05, ImageNet 46.98 → 47.70).

From the experiment results with MobileNetV1 in Table 6, we can see that
applying all of the proposed methods does not necessarily lead to the highest
performance: the performance of TAP + NWC is slightly higher than TAP +
NWC + PaS for Top-1 Loc by 0.41. It is because some of the three problems
are not as clear on some backbones as on the other backbones. For example,
the overall activations of the features from MobileNetV1 are much smaller than
those from the other backbones. Because of small activations, the problem of
the overlap of high activations is less severe on MobileNetV1 than the other

? Equal contribution.
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backbones. Therefore, the combination of two solutions can be better than that
of all the solutions due to the characteristics of different backbones.

Table 5. Performance of ResNet50-SE with different components applied.

Method TAP NWC PaS
CUB-200-2011 ImageNet-1K

Top-1 Cls GT Loc Top-1 Loc Top-1 Cls GT Loc Top-1 Loc

Baseline 78.62 56.49 43.29 77.22 58.21 46.64

+ Ours

X 77.42 59.54 47.13 77.25 60.96 49.02
X 78.62 64.43 49.31 77.22 62.94 50.47

X 78.62 59.96 47.00 77.22 63.47 51.26
X X 77.42 68.97 53.30 77.25 62.84 50.49
X X 77.42 65.98 53.16 77.25 63.15 51.06

X X 78.62 66.85 51.69 77.22 64.28 51.73
X X X 77.42 74.51 58.39 77.25 64.40 51.96

Table 6. Performance of MobileNetV1 with different components applied.

Method TAP NWC PaS
CUB-200-2011 ImageNet-1K

Top-1 Cls GT Loc Top-1 Loc Top-1 Cls GT Loc Top-1 Loc

Baseline 72.09 58.92 44.46 67.34 59.45 43.29

+ Ours

X 75.82 67.76 52.97 68.07 60.69 44.71
X 72.09 60.58 45.43 67.34 58.72 42.63

X 72.09 59.75 44.94 67.34 60.57 44.04
X X 75.82 74.44 58.04 68.07 59.28 43.67
X X 75.82 67.03 52.11 68.07 61.66 45.51

X X 72.09 62.89 46.95 67.34 60.85 44.15
X X X 75.82 74.28 57.63 68.07 61.85 45.55

Table 7. Performance of GoogleNet with different components applied.

Method TAP NWC PaS
CUB-200-2011 ImageNet-1K

Top-1 Cls GT Loc Top-1 Loc Top-1 Cls GT Loc Top-1 Loc

Baseline 74.35 61.67 46.86 70.50 62.32 46.98

+ Ours

X 75.04 62.17 49.00 71.09 62.17 47.24
X 74.35 64.69 49.14 70.50 62.39 47.11

X 74.35 60.10 45.75 70.50 62.63 47.30
X X 75.04 65.14 50.66 71.09 62.04 47.12
X X 75.04 61.51 48.53 71.09 62.46 47.45

X X 74.35 64.48 48.62 70.50 63.04 47.57
X X X 75.04 65.10 51.05 71.09 62.76 47.70

2 Hyperparameter Tuning

In this section, we describe how the hyperparameters for TAP and PaS are tuned
in detail. For the threshold τtap of TAP layer defined in Eq.(4), as specified in
section 4.1 of the main draft, we set θtap = 0.1 for VGG16 and MobileNetV1 and
θtap = 0.0 for ResNet50-SE and GoogleNet through hyperparameter tuning on
the validation set randomly drawn 20% of CUB-200-2011 training set. However,
i and θloc introduced in Eq.(6) are hyperparameters for localization where no
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label is available in the training. Previous studies set such coefficients by either
(i) using the threshold used in the original CAM paper (e.g . ADL, ACoL) or
(ii) analyzing a few qualitative results (e.g . HaS, SPG, DANet). We employed
(ii) by observing 20 qualitative results from VGG16 randomly drawn from CUB-
200-2011 training set, and chose θloc = 0.35, i = 90. They are fixed regardless of
the backbones or datasets.

3 Qualitative Results by Proposed Methods

We illustrate some qualitative results by different proposed method. The follow-
ing results empirically show the problems raised in the main draft and effective-
ness of our proposed solutions.

3.1 Qualitative Results about Thresholded Average Pooling (TAP)

As stated in the section 2.2 of the main draft, the TAP layer decreases the
bias introduced by the different size of the activated area per channel. Fig. 7
demonstrates the effectiveness of the TAP layer compared to the GAP layer.
Given an image (1st column), the model with the GAP layer and the TAP layer
generates CAMs in 2nd and 3rd columns, from which the bounding boxes are
generated as shown in 4th and 5th columns, respectively. We can clearly see that
with the TAP layer, the activations of a CAM are distributed throughout the
object region, which is often not the case for the GAP layer.
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Fig. 7. Qualitative results comparing between the GAP and TAP layer. The boxes in
red and green represent the GTs and predictions of localization, respectively.
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3.2 Qualitative Results about Negative Weight Clamping (NWC)

Fig. 8 shows the effect of negative weight clamping. Given an image (1st column),
we provide localization results overlaid with CAMs generated using positive (5th
column), negative (6th column) and both (7th column) weights of W. The 2nd–
4th columns show the CAMs corresponding to 5th–7th columns, respectively.
Fig. 8 evidently illustrates the problem of including the features corresponding
to the negative weights as stated in the section 2.3 of the main draft. The CAMs
generated only using the features with negative weights largely abate the acti-
vations of the object region. Using negative weight clamping, we prevent it from
abating the activations in less-discriminative regions inside the objects.
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Fig. 8. Qualitative results comparing between the CAMs with and without negative
weight clamping applied. Positive only (2nd and 5th columns) and both (4th and 7th
columns) correspond to the CAM and localization results with and without negative
weight clamping applied, respectively. The boxes in red and green represent the GTs
and predictions of localization, respectively.
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3.3 Qualitative Results about Percentile as a Standard (PaS)

Lastly, Fig. 9 illustrates the robustness of percentile (PaS) compared to the max-
imum as a standard (MaS) for the localization threshold. Note that replacing
the standard to percentile does not change the activations of CAMs. Although
there are many cases where the maximum standard properly estimates bound-
ing boxes as shown in the first half of the columns, it often extracts too small
bounding boxes as provided in the second half of the columns. On the other
hand, the percentile standard more robustly estimates the locations of objects.
The variance of bounding box sizes extracted using the maximum standard is
much higher than those extracted using the percentile standard, depending on
the distribution of the activations.
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Fig. 9. Qualitative results comparing between maximum and percentile as a standard
for the localization threshold. The first half of columns show the cases where both
standard properly estimate the true bounding boxes whereas the second half of columns
show the cases where only percentile properly estimates the boxes. The boxes in red
and green represent the GTs and predictions of localization, respectively.
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4 Results of Negative Weights in Multiple Object Cases

In section 4.2 of the main draft, we state when multiple objects exist in an image,
the features with negative weights tend to be activated in the object regions of
different classes. To elaborate this phenomenon, we provide some examples where
the features with negative weights are activated in the background region when
there are multiple objects in the given image.

The images in Fig. 10 which contain multiple objects are all from ImageNet-
1K dataset. Given the original images (1st column), we provide localization
results (5th–7th columns) and only CAMs (2nd–4th columns). The CAMs are
generated using the FC weights of either positive only, negative only or both
as specified at the top of Fig. 10. The images in the 3rd and 6th columns show
that when there are multiple objects in the image, the features corresponding
to the negative weights tend to be more activated in the object that is not a
target class for classification. As a result, after negative weight clamping, the
final CAM captures broader regions than the regions of the GT object.
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Fig. 10. Qualitative results illustrating the activations of CAMs with negative weights
for the multiple object cases. The 3rd and 6th columns show that when multiple objects
exist in an image, the feature maps corresponding to the negative weights tend to be
activated in the object that is not a GT class for classification. The boxes in red and
green represent the GTs and predictions of localization, respectively.
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5 More Qualitative Results on Other Backbones

In addition to the qualitative results provided on VGG16 and ResNet50-SE in
Fig. 6 of the main draft, we further provide the qualitative results with the
other backbones: MobileNetV1 and GoogleNet. As with VGG16 and ResNet50-
SE, MobileNetV1 and GoogleNet show similar tendency; the activations from
our methods are largely distributed throughout the object regions compared to
the baselines. One thing to notice from the first three examples of MobileNetV1
is that the proposed methods do not just expand the activations of CAMs.
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Fig. 11. Qualitative results with MobileNetV1 and GoogleNet on CUB-200-2011 and
ImageNet-1K datasets. The boxes in red and green represent the GTs and predictions
of localization, respectively.
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