
18 A. Osokin, D. Sumin, V. Lomakin

Supplementary Material (Appendix)

OS2D: One-Stage One-Shot Object Detection by
Matching Anchor Features

A Data and evaluation

A.1 Retail products

Data. We used the GroZi-3.2k dataset [7] for retail product detection (680 images
collected from 5 different stores) as development data. We could not use the
original annotation of this dataset because it was often grouping multiple similar
objects into a single bounding box and had no strict policy about what objects
are of the same class and what are of different classes. Thus, we created new
annotation where each object has an individual bounding box, and only identical
objects belong to the same class. For each class, we selected a template class
image either from the original annotation (if available) or from the internet by
querying the product names. Importantly, each object was assigned the “difficult”
flag when the human annotator could not assign a class without guessing. We
ended up having 8921 objects of 1063 classes annotated.

Data splits. We created the splits of the dataset by selecting 185 classes
and keeping the images with those classes away from training: 622 objects in
84 images. We will refer to this set as val-new-cl. The selected images also
contained 518 objects of classes that appeared at training. We will refer to this set
as val-old-cl. Throughout our experiments we used val-new-cl as our main
validation set, and val-old-cl as a secondary validation showing performance
on the training classes.

Extra test sets. To assess the generalization ability of our method, we
collected extra test sets containing objects of new classes in the images taken
in different conditions. The dairy set consists of 12 images with 786 objects
of 166 classes of dairy products. The paste-f set consists of 91 images with
4861 objects of 259 classes of toothpaste and accompanying products. However,
the paste-f set contains objects of all orientations, which is different from the
training conditions. We also selected a subset paste-v, where all the objects
with incorrect orientation are masked out with the “difficult” flag.

Table 3 of the main paper contains results of the OS2D methods and baselines
on the test and validation subsets.

A.2 Additional dataset: INSTRE

In addition to the domain of retail products, we applied our methods to the IN-
STRE dataset [41], which was originally collected for large scale instance retrieval
and has bounding box annotation for all objects. The dataset is considered hard
due to occlusions and large variations in scales and rotations [14]. The dataset has



OS2D: One-Stage One-Shot Object Detection by Matching Anchor Features 19

28,543 images and 200 object classes: 100 classes representing physical objects in
the lab of the dataset creators, 100 classes collected on-line representing buildings,
logos and common objects. We refer to the classes of the first and second types
as INSTRE-S1 and INSTRE-S2, respectively.

The INSTRE dataset is used for evaluating retrieval systems, so does not have
splits into train and test. We modify the evaluation protocol of Iscen et al. [14]
who selected 5 images of each class as queries (correspond to class images in our
terminology) by splitting the classes (with the corresponding images) of both
INSTRE-S1 and INSTRE-S2 in the following proportion: 75% for training, 5%
for validation and 20% for testing. In this setting, we can train and evaluate our
method and the baselines. Table 4 of the main paper provides results on the two
versions on the dataset. We report the results on the test sets of INSTRE-S1 and
INSTRE-S2 after training of the training subsets of INSTRE-S1 and INSTRE-S2,
respectively.

A.3 Evaluation metric.

In our experiments, we’ve used the standard Pascal VOC metric [5], which is the
mean average precision at the intersection-over-union (IoU) threshold of 0.5 (we
will refer to it as mAP). Importantly, this metric also supports the “difficult” flag
of the annotation: it is used to exclude ground-truth objects and their detections
when computing both recall and precision, which means that the method is
neither penalized nor rewarded for detecting objects with this flag.

B Implementation details

B.1 TransformNet architecture

We follow Rocco et al. [35–37] and use the same architecture of TransformNet:
ReLU, channelwise L2-normalization, conv2d with the kernel 7× 7× 225× 128,
batch norm, ReLU, conv2d with the kernel 5× 5× 128× 64, batch norm, ReLU,
conv2d with the kernel 5× 5× 64× P . Here P is the number of parameters of
the transformation, which equals 6 for the affine transformation. This network
was designed for aligning two feature maps of size 15× 15, i.e., hT = wT = 15
(corresponds to the image size 240 × 240 if using the features after the fourth
block of ResNet).

Note that the network starts with ReLU, which corresponds to taking only
positive correlations when building transformations (Rocco et al. [35] did not
include this layer into TransformNet but applied it right after computing the
correlations).

B.2 OS2D details

Implementation and hardware. We implemented the OS2D model based
on the PyTorch library [28]. The models were both trained and tested on



20 A. Osokin, D. Sumin, V. Lomakin

GPUs. The hyperparameters for training were selected to fit the process on
Nvidia GTX 1080 Ti. However evaluation of retail test sets required more device
memory because of higher resolution, small objects and a large quantity of classes.
We used Nvidia V100 devices for such runs.

Training. The OS2D models were trained with the SGD optimizer for 200k
steps with the learning rate of 10−4, weight decay of 10−4 and momentum of 0.9.
We decreased the learning rate by a factor of 10 after 100k and 150k training
iterations. We used the input image batch size of 4, cropped patches of size
600 × 600 and used at most 15 different labels per batch. Note that cropping
patches of the correct size is effectively a version of random crop/scale data
augmentation. We tried using more types of data augmentation, but none of
them was effective.

When training all the models, we converted the switched layers of the feature
extractor to the evaluation mode, i.e., did not estimate batch mean and variance.
Keeping batchnorm in the training mode significantly degraded the performance.
When training the V1 and V2 models we kept batchnorm of the transformation
network in the training and evaluation modes, respectively.

We followed Rocco et al. [35–37] and trained TransformNet on only positive
pairs. Technically we achieved this by computing two versions of the transfor-
mations at training – one with the full computational graph, another with the
TransformNet parameters detached from the graph. The first version was used to
train on positives, the second one – to train on negatives. We used this approach
because when training transformations on negatives the networks started to ruin
the transformation model by moving the transformation in random directions.
On top of that, we often have very similar classes, and we still want them to be
aligned properly to better compare the matched features.

When training all V1 models we initialized TransformNet to always output
identity transformation by setting the weights of the last convolutional layer of
TransformNet to 0 and biases to 0 or 1.

For the objective function, we use the margins mpos = 0.6 and mneg = 0.5
when the recognition scores were normalized to the segment [−1, 1]. To train the
V1 models, we used the weight of the localization loss of 0.2. To fine-tune the V2
models, we turned the localization loss completely, i.e., set its weight to zero.

Detection. Before computing the final results, for all the methods we used
the standard non-maximum suppression (NMS) with the IoU threshold of 0.3.
Differently from the maskrcnn-benchmark [24], we did not do joint NMS for all
the classes – it always degraded the performance.

At evaluation, we resized the class images with preserving their aspect ratio
to have their product of dimensions equal to 2402. For the input images, we
used the image pyramid to deal with objects of different scales. We always use
the pyramid of 7 levels: 0.5, 0.625, 0.8, 1, 1.2, 1.4, 1.6 times the dataset scale.
For each dataset, we estimated its scale by computing and rounding the average
object size. The GroZi-3.2k dataset was of scale 1280, the dairy dataset was of
scale 3500, the paste-v dataset were also of scale 3500. However, the paste-v

dataset had too many labels, so the largest image size did not fit into the GPU



OS2D: One-Stage One-Shot Object Detection by Matching Anchor Features 21

memory, thus we reduced its scale to 2000 for all experiments with OS2D (the
baselines were still run on the initial scale). Evaluation of an image at a particular
scale, e.g., 0.5 * 3500 = 1750, means that we resize the input image such that its
largest size equals the scale, e.g., 1750, before feeding it into the feature extractor
(or objects detector for the baselines).

C Details of the baselines

In this section, we describe the details of the baselines that were important to
improve their performance. Note that implementations of both baselines use
open-source code, and we provide all the changes and launching scripts together
with the OS2D code.6

C.1 Main baseline: detector + retrieval

For the detector, we used the maskrcnn-benchmark system [24]. We used the
Faster R-CNN detectors [34] with the feature pyramid backbone [18] based on
ResNet-50 and ResNet-101. We used the standard hyperparameters, but added
multi-scale training and testing (supported by the library), which were improving
results. The scales of images for both training and testing were set the same to
the OS2D training regime.

For the retrieval system used on top of the detections, we used the open-source
library by Radenović et al. [30, 31]. We used the trainable Generalized-Mean
(GeM) pooling and end-to-end trainable whitening layers. For the training dataset,
we used the class images as queries, annotated detections of the correct/incorrect
classes as positives and negatives, respectively. We also randomly sampled 10
bounding boxes per training image and automatically labeled them as posi-
tive/negatives based on their IoU with annotated objects. In the training process,
we used the standard setting with the contrastive loss, hard negative mining,
Adam optimizer and learning rate schedule with an exponential decay. We resized
all images (queries, positives and negatives) to have the maximal side equal to
240 (with preserving the aspect ratio).

At the testing stage, we used the same image pyramid as in OS2D for the
detector and the multi-scale descriptor (3 scales) for retrieval.

C.2 CoAE one-shot detector

We compared our methods with the official implementation of the recent CoAE
method of Hsieh et al. [12]. Their released models (trained on ImageNet) did not
generalize well to our settings, so we reported only the results of the retrained
models. For fair comparison with OS2D, we added multi-scale training and testing
to the original code. Multi-scale training helped significantly, while multi-scale
testing did not help at all. In training, we used the same number of iterations as
for OS2D (the process converged well) and the same learning rate schedule (but
different initial value).

6 https://github.com/aosokin/os2d



22 A. Osokin, D. Sumin, V. Lomakin

D Evaluation in the ImageNet-based setup

In this section, we evaluate our methods on the setting proposed by Karlinsky
et al. [17]. The test set is based on the images from 214 categories of the
ImageNet-LOC dataset [39] and is organized in 500 episodes each containing 5
classes (5-way). Each class of an episode is represented by 10 random images
with the class instances. In the 1-shot setting, each class additionally has one
representative: an image with a bounding box around the class instance. The
quality on each episode is measured by the average precision computed on the
jointly sorted list of detections of different classes (positive/negative labels are
assigned based on the IoU threshold 0.5). The overall quality is computed as
the average AP over episodes. To distinguish this metric from mAP used in the
rest of this paper (where AP is computed for each class independently and the
mean is taken over classes), we refer to it as AP. Karlinsky et al. [17] released
the exact episodic data and reported the AP of 56.9 without finetuning on
each episode and 59.2 with finetuning. To train our methods without looking
at the test classes, we retrained the ResNet101 backbone on the remaining 786
ImageNet classes using the standard PyTorch training script.7 For the main
baseline, we initialized both the detector and the retrieval system from this
network and finetuned them on the images of ImageNet-LOC (the same training
classes) for detection of all classes and image retrieval, respectively. We used
exactly the same code and hyperparameters as selected for the Grozi32k dataset.
The resulting method delivered the AP of 60.3 (better than the 1-shot methods
of [17]), which confirms the strength of our baseline. The matching based methods
were not competitive at all: the sliding window baseline and OS2D V2-init gave
15.8 and 21.8 AP, respectively. Training OS2D did not succeed and did not
lead to any improvements. We interpret such a huge difference of results as a
confirmation that the settings based on the standard detection datasets (e.g.,
ImageNet, PASCAL VOC, COCO) are very different from Grozi2k an INSTRE
showcasing the difference between instance-level vs. semantic recognition.

E Additional qualitative results

In Figures 4, 5, 6, we present extra detection results, provided by an OS2D model.
For the purposes of visualization, we’ve run these results through NMS over all
classes. The detection threshold was set a bit lower, so one can also see highest
scoring wrong detections.

7 https://github.com/pytorch/examples/tree/master/imagenet



OS2D: One-Stage One-Shot Object Detection by Matching Anchor Features 23

Fig. 4. Detection results on the val-new-cl subset of the GroZi-3.2k dataset

Fig. 5. Detection results on the dairy test set

Fig. 6. Detection results on the paste-f test set


