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Abstract. The remarkable performance of convolutional neural net-
works (CNNs) is entangled with their huge number of uninterpretable
parameters, which has become the bottleneck limiting the exploitation
of their full potential. Towards network interpretation, previous endeav-
ors mainly resort to the single filter analysis, which however ignores the
relationship between filters. In this paper, we propose a novel architec-
ture decoupling method to interpret the network from a perspective of
investigating its calculation paths. More specifically, we introduce a novel
architecture controlling module in each layer to encode the network ar-
chitecture by a vector. By maximizing the mutual information between
the vectors and input images, the module is trained to select specific
filters to distill a unique calculation path for each input. Furthermore, to
improve the interpretability and compactness of the decoupled network,
the output of each layer is encoded to align the architecture encoding
vector with the constraint of sparsity regularization. Unlike conventional
pixel-level or filter-level network interpretation methods, we propose a
path-level analysis to explore the relationship between the combination
of filter and semantic concepts, which is more suitable to interpret the
working rationale of the decoupled network. Extensive experiments show
that the decoupled network achieves several applications, i.e., network
interpretation, network acceleration, and adversarial samples detection.
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1 Introduction

Deep convolutional neural networks (CNNs) have dominated various computer
vision tasks, such as object classification, detection and semantic segmentation.
However, the superior performance of CNNs is rooted in their complex architec-
tures and huge amounts of parameter, which thereby restrict the interpretation
of their internal working mechanisms. Such a contradiction has become a key
drawback when the network is used in task-critical applications such as medical
diagnosis, automatic robots, and self-driving cars.
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Fig. 1. An example of the
neural network architecture
decoupling. Each color rep-
resents a calculation path of
specific input.

To this end, network interpretation have been
explored to improve the understanding of the in-
trinsic structures and working mechanisms of neu-
ral networks [40, 2, 28, 41, 20, 26, 5]. Interpreting a
neural network involves investigating the rationale
behind the decision-making process and the roles
of its parameters. For instance, some methods [22,
5] view networks as a whole when explaining their
working process. However, these approaches are too
coarse-grained for exploring the intrinsic properties
in the networks. In contrast, network visualization
approaches [40, 39] interpret the role of each param-
eter by analyzing the pixel-level feature representa-
tion, which always require complex trial-and-error
experiments. Beyonds, Bau et al. [2] and Zhang
et al. [41] explored the different roles of filters in
the decision-making process of a network. Although
these methods are more suitable for explaining the
network, they characterize semantic concepts using
only a single filter, which has been proven to be less effective than using a com-
bination of multiple filters [34, 10]. Under this situation, different combination of
filters can be viewed as different calculation paths in the network, which inspires
us to investigate the working process of networks based on a path-level analy-
sis. The challenge, however, comes from the fact that each inference involves all
filters in the network and has the same calculation process, making it difficult
to interpret how each calculation path affects the final result. To overcome this
problem, previous methods [36, 37] explore the difference between the calculation
paths of different inputs by reducing the number of parameters involved in the
calculation process. For instance, Wang et al. [36] proposed a post-hoc analysis
to obtain a unique calculation path of a specific input based on a pre-trained
model, which however involves a huge number of complicated experiments. More-
over, Sun et al. [37] learned a network that generates a dynamic calculation path
in the last layer by modifying the SGD algorithm. However, it ignores the fact
that the responses of filters are also dynamic in the intermediate layers, and thus
cannot interpret how the entire network works.

In this paper, we propose an interpretable network decoupling approach,
which enables a network to adaptively select a suitable subset of filters to form
a calculation path for each input, as shown in Fig. 1. In particular, Our design
principle lies in a novel light-weight architecture controlling module as well as a
novel learning process for network decoupling. Fig. 2 depicts the framework of the
proposed method. The architecture controlling module is first incorporated into
each layer to dynamically select filters during network inference with a negligi-
ble computational burden. Then, we maximize the mutual information between
the architecture encoding vector (i.e., the output of the architecture controlling
module) and the inherent attributes of the input images during training, which
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Fig. 2. The framework of the proposed interpretable neural network decoupling. The
architecture encoding vector zi is first constructed by the architecture controlling mod-
ule, and then learned to determine the filter selection by Eq. 12. For network inference,
we only use the selected filters based on each input. The mutual information loss Lmi

is computed between the output of the architecture controlling module zi and the at-
tribute of the inputs to decouple the network architecture. The KL-divergence loss Lkl

is computed by the output of convolutional layer Yi and zi to disentangle the filters.
The sparse loss Ls is used to sparsify the result of filter selection.

allows the network to dynamically generate the calculation path related to the
input. In addition, to further improve the interpretability of decoupled networks,
we increase the similarity between the architecture encoding vector of each con-
volutional layer and its output by minimizing the KL-divergence between them,
making filter only respond to a specific object. Finally, we sparsify the architec-
ture encoding vector to attenuate the calculation path and eliminate the effects
of redundant filters for each input. We also introduce an improved semantic
hashing scheme to make the discrete architecture encoding vector differentiable,
which is therefore capable to be trained directly by stochastic gradient descent
(SGD).

Correspondingly, the decoupled network becomes more interpretable, and one
can trace the functional processing behavior layer-by-layer to form a hierarchical
path towards understanding the working principle of the decoupled network.
Meanwhile, each filter is only related to a set of similar input images after the
decoupling, thus they also become more interpretable, and the combination of
them forms a decoupled sub-architecture, which better characterizes the specific
semantic concepts. Such a decoupled architecture further benefits from a low
computational cost for network acceleration, as well as good hints for adversarial
samples detection, which are subsequently validated in our experiments.

We summarize our three main contributions as follows:

– To interpret neural networks by dynamically selecting the filters for different
inputs, we propose a lightweight architecture controlling module, which is
differentiable and can be optimized by SGD based on the losses we propose.

– The decoupled network reserves similar performance of the original network
and has better interpretable. Thus it enables the functional processing of
each calculation path to be well interpreted, which helps better understand
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the rationale behind the network inference, as well as explore the relationship
between filters and semantic concepts in the decoupled network.

– Our method is generic and flexible, which can be easily employed on the
existing network architectures, such as VGGNets [32], ResNets [13], and
Inceptions [33]. The decoupled architecture further benefits extensive appli-
cations, including network acceleration and adversarial samples detection.

2 Related Work

Network Interpretation. One way to interpret a network is to analyze how it
responds to a specific input image for output prediction [20, 26, 22, 42, 5]. This
strategy views the network as a whole to interpret the network prediction results
by exploring the knowledge blind spots of neural networks [22], or by assigning
each output feature an importance value for a particular prediction [26]. More-
over, a decision tree [42] or an explainer network [5] has been used to better
understand the classification process. However, these methods only pay atten-
tion to the reason behind the network prediction result, and the roles of each
parameter are ignored, making it difficult to understand their effects on the
network.

To open the black-box of neural network and interpret the role of parameters,
several methods [40, 39, 8] have been proposed to visualize the feature represen-
tations inside the network. For instance, Zeiler et al. [40] visualized the feature
maps in the intermediate layers by establishing a deconvolutional network cor-
responding to the original one. Yoshinski et al. [39] proposed two visualization
methods to explore the information contained in features: a respective post-hoc
analysis on a pre-trained model and learning a network by regularized optimiza-
tion. Visualizing feature representations is a very direct method to explain the
role of parameters in a network, which however requires extensive experiments
due to the enormous number of parameters.

In addition to the above methods, the functions of filters are also explored for
interpreting networks [38, 2, 28, 41, 37]. They have evaluated the transferability
of filters [38] or quantified the relationship between filters and categories [28]
to explain their different roles. Compared with using a single filter to represent
semantic concepts, methods in [34, 10] have found that the semantic concepts
can be better characterized by combining multiple filters. Wang et al. [34] further
validated that clustering the activations of multiple filters can better represent
semantic concepts than using a single filter. Fong et al. [10] mapped the semantic
concepts into vectorial embeddings based on the responses of multiple filters and
found that these embeddings can better characterize the features. Different from
these methods, we interpret the working principle of a network based on a path-
level analysis by decoupling the network, upon which we further disentangle each
intra-layer filter to explore the interpretable semantic concepts across filters on
the calculation path. Our method is more in line with the internal working
mechanism of the network than these works, and has a better extension to other
applications, such as network acceleration and adversarial samples detection.
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Conditional Computation. Works on conditional computation tend to
concentrate on the selection of model components when generating the calcula-
tion path. For instance, the work in [3] explored the influence of stochastic or
non-smooth neurons when estimating the gradient of the loss function. Later, an
expert network was learned to find a suitable calculation path for each input by
reinforcement learning [4] or SGD [6]. However, the requirement of a specific ex-
pert network makes these approaches cumbersome. Along another line, a halting
score [9] or a differentiable directed acyclic graph [24] has been used to dynami-
cally adjust the model components involved in the calculation process. Recently,
a feature boosting and suppression method [11] was introduced to skip unim-
portant output channels of the convolutional layer for data-dependent inference,
which is different from static pruning [?,?,?]. However, it selects the same num-
ber of filters for each layer, without considering inter-layer differences. Different
from the above works, we employ a novel architecture controlling module to de-
couple the network by fitting it to the data distribution. After decoupling, the
network becomes interpretable, enabling us to visualize its intrinsic structure,
accelerate the inference, and detect adversarial samples.

3 Architecture Decoupling

Formally speaking, the l-th convolutional layer in a network with a batch nor-

malization (BN) [17] and a ReLU layer [29] transforms X l ∈ RCl×Hl
in×W

l
in to

Y l ∈ RN l×Hl
out×W

l
out using the weight W l ∈ RN l×Cl×Dl×Dl

, which is defined as:

Y l =
(
BN

(
Conv(X l,W l)

))
+
, (1)

where (·)+ represents the ReLU layer, and Conv(·, ·) denotes the standard con-
volution operator. (H l

in,W
l
in) and (H l

out,W
l
out) are the spatial size of the input

and output in the l-th layer, respectively. Dl is the kernel size.

3.1 Architecture Controlling Module

For an input image, the proposed architecture controlling module selects the
filters and generates the calculation path during network inference. In partic-
ular, we aim to predict which filters need to participate in the convolutional
computation before the convolutional operation to accelerate network inference.
Therefore, for the l-th convolutional layer, the architecture encoding vector zl

(i.e., the output of the architecture controlling module) only relies on the in-
put X l instead of the output Y l, which is defined as zl = Gl(X l). Inspired by
the effectiveness of the squeeze-and-excitation (SE) block [16], we select a sim-
ilar SE-block to predict the importance of each filter. Thus, we first squeeze
the global spatial information via global average pooling, which transforms each

input channel X l
i ∈ RHl

in×W
l
in to a scalar sli. We then design a sub-network

structure Ḡl(sl) to determine the filter selection based on sl ∈ RCl , which is
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formed by two fully connected layers, i.e., a dimensionality-reduction layer with
weights Wl

1 and a dimensionality-increasing layer with weights Wl
2:

Ḡl(sl) = Wl
2 · (Wl

1 · sl)+, (2)

where Wl
1 ∈ R

Cl

γ ×C
l

, Wl
2 ∈ RN l×Clγ and · represents the matrix multiplication.

We ignore the bias for simplicity. To reduce the module complexity, we empiri-
cally set the reduction ratio γ to 4 in our experiments. The output of Ḡl(sl) is
a real vector, while we need to binarize Ḡl(sl) to construct a binary vector zl,
which represents the result of filter selection. However, a simple discretization
using the sign function is not differentiable, which prevents the corresponding
gradients from being directly obtained by back-propagation. Thus, we further
employ an Improved SemHash method [19] to transform the real vector in Ḡl(sl)
to a binary vector by a simple rounding bottleneck, which also makes the dis-
cretization become differentiable.

Improved SemHash. The proposed scheme is based on the different op-
erations for training and testing. During training, we first sample a noise α ∼
N (0, 1)N

l

, which is added to Ḡl(sl), and then obtain s̃l = Ḡl(sl)+α. After that,
we compute a real vector and a binary vector by:

vl
1 = σ′(s̃l),vl

2 = 1(s̃l > 0), (3)

where σ′ is a saturating Sigmoid function [18] denoted as:

σ′(x) = max
(

0,min
(
1, 1.2σ(x)− 0.1

))
. (4)

Here, σ is the Sigmoid function. vl
1 ∈ RCl is a real vector with all elements falling

in the interval [0, 1], and we calculate its gradient during back-propagation. vl
2 ∈

RCl represents the discretized vector, which cannot be involved in the gradient
calculation. Thus, we randomly use zl = vl

1 for half of the training samples
and zl = vl

2 for the rest in the forward-propagation. We then mask the output
channels using the architecture encoding vector (i.e., Y l ∗ zl) as the final output
of this layer. In the backward-propagation, the gradient of zl is the same as the
gradient of vl

1.
During evaluation/testing, we directly use the sign function in the forward-

propagation as:
zl = 1

(
Ḡl(sl) > 0

)
. (5)

After that, we select suitable filters involved in the convolutional computation
based on zl to achieve fast inference.

3.2 Network Training

We expect the network architecture to be gradually decoupled during training,
where the essential problem is how to learn an architecture encoding vector that
fits the data distribution. To this end, we propose three loss functions for network
decoupling.
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Mutual Information Loss. When the network architecture is decoupled,
different inputs should select their related sets of filters. We adopt mutual in-
formation I(a; zl) between the result of filter selection zl and the attribute of
an input image a (i.e., the unique information contained in the input image) to
measure the correlation between the architecture encoding vector and its input
image. I(a; zl) = 0 means that the result of filter selection is independent to the
input image, i.e., all the inputs share the same filter selection. In contrast, when
I(a; zl) 6= 0, filter selection depends on the input image. Thus, we maximize
the mutual information between a and zl to achieve architecture decoupling.
Formally speaking, we have:

I(a; zl) = H(a)−H(a|zl)

=
∑
a

∑
zl

P (a, zl)logP (a|zl) +H(a)

=
∑
a

∑
zl

P (zl)P (a|zl)logP (a|zl) +H(a).

(6)

The mutual information I(a; zl) is difficult to directly maximize, as it is hard
to obtain P (a|zl). Thus, we use Q(a|zl) as a variational approximation to P (a|zl)
[1]. In fact, the KL-divergence is positive, so we have:

KL
(
P (a|zl), Q(a|zl)

)
≥ 0⇒

∑
a

P (a|zl)logP (a|zl)

≥
∑
a

P (a|zl)logQ(a|zl).
(7)

We then obtain the following equation:

I(a; zl) ≥
∑
a

∑
zl

P (zl)P (a|zl)logQ(a|zl) +H(a)

≥
∑
a

∑
zl

P (zl)P (a|zl)logQ(a|zl)

= Ezl∼Gl(X l)[Ea∼P (a|zl)[logQ(a|zl)]].

(8)

Eq. 8 provides a lower bound for the mutual information I(a; |zl). By maximizing
this bound, the mutual information I(a; zl) will also be maximized accordingly.
In our paper, we use the class label as the attribute of the input image c in the
classification task. Moreover, we reparametrize Q(a|zl) as a neural network Q̃(zl)
that contains a fully connected layer and a softmax layer. Thus, maximizing the
mutual information in Eq. 8 is achieved by minimizing the following loss:

Lmi = −
L∑

l=1

AX ∗ logQ̃(zl), (9)

where AX represents the label of the input image X. Q̃(zl) is defined as Wl
cla ·zl

with a fully connected weight Wl
cla ∈ RK×N l

, where K represents the number
of categories in image classification.



8 Li et al.

KL-divergence Loss. After decoupling the network architecture, we guar-
antee that the filter selection depends on the input image. However, it is uncer-
tain whether the filters become different (i.e., detect different objects), which
obstructs us from further interpreting the network. If a filter only responds to
a specific semantic concept, it will not be activated when the input does not
contain this feature. Thus, by limiting filters to only respond to specific cat-
egory, they can be disentangled to detect different categories. To achieve this
goal, we minimize the KL-divergence between the output of the current layer
and its corresponding architecture encoding vector, which ensures that the over-
all responses of filters have a similar distribution to the responses of the selected
subset. To align the dimension of the convolution output and architecture encod-
ing vector, we further downsample Y l to yl ∈ RN using global average pooling.
Then, the KL-divergence loss is defined as:

Lkl =

L∑
l=1

KL(zl||yl). (10)

As the output of filter is limited by the result of filter selection, it will be
unique and only detects the specific object. Thus, all filters are different from
each other, i.e., each one performs its function.

Sparse Loss. An `1-regularization on zl is further introduced to encourage
the architecture encoding vector to be sparse, which makes the calculation path
of each input becomes thinner. Thus, the sparse loss is defined as:

Ls =

L∑
l=1

|‖zl‖1 −R ∗N l|, (11)

where R represents the target compression ratio. Since zl falls in the interval
[0, 1], the maximum value of ‖zl‖1 is N l, and the minimum value is 0, where N l

is the number of filters. For example, we set R to 0.5 if activating only half of
the filters.

Therefore, we obtain the overall loss function as follows:

L = Lce + λm ∗ Lmi + λk ∗ Lkl + λs ∗ Ls, (12)

where Lce is the network classification loss. λm, λk and λs are the hyper-
parameters. Eq. 12 can be effectively solved via SGD.

4 Experiments

We evaluate the effectiveness of the proposed neural network architecture de-
coupling scheme on three kinds of networks, i.e., VGGNets [32], ResNets [13],
and Inceptions [33]. For network acceleration, we conduct comprehensive exper-
iments on three datasets, i.e., CIFAR-10, CIFAR-100 [21] and ImageNet 2012
[31]. For quantifying the network interpretability, we use the interpretability of
filters [41] and the representation ability of semantic features [10] on BRODEN
dataset [2] to evaluate the original and our decoupled models.
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(a) VGGNet

−75 −50 −25 0 25 50 75

−75

−50

−25

0

25

50

75

100
0
1
2
3
4
5
6
7
8
9

(b) ResNet-56
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(c) GoogleNet

Fig. 3. Visualization of the distribution of the integral calculation path in different
networks on CIFAR-10.

4.1 Implementation Details

We implement our method using PyTorch [30]. The weights of decoupled net-
works are initialized using the weights from their corresponding pre-trained mod-
els. We add the architecture controlling module to all convolutional layers ex-
cept the first and last ones. All networks are trained using stochastic gradient
descent with a momentum of 0.9. For CIFAR-10 and CIFAR-100, we train all
the networks over 200 epochs using a mini-batch size of 128. The learning rate is
initialized by 0.1, which is divided by 10 at 50% and 75% of the total number of
epochs. For ImageNet 2012, we train the networks over 120 epochs with a mini-
batch size of 64 and 256 for VGG-16 and ResNet-18, respectively. The learning
rate is initialized as 0.01 and is multiplied by 0.1 after the 30-th, 60-th and 90-th
epoch. The real speed on the CPU is measured by a single-thread AMD Ryzen
Threadripper 1900X. Except for the experiments on network acceleration, we
automatically learn sparse filters by setting R to 0 in Eq. 11.

4.2 Network Interpretability

Architecture Encoding. We collect the calculation paths from three different
networks (i.e., VGGNet, ResNet-56 and GoogleNet) to verify that the proposed
network decoupling method can successfully decouple the network and ensure
that it generates different calculation paths for different images. We first reduce
the dimension of the calculation path (i.e., the concatenation of architecture
encoding vectors zl across all layers) to 300 using Principal Component Analy-
sis (PCA), and then visualize the calculation path by t-SNE [27]. As shown in
Fig. 3, each color represents one category and each dot is a calculation path cor-
responding to an input. We can see that the network architecture is successfully
decoupled after training by our method, where different categories of images
have different calculation paths.
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Model Top1-Acc Top5-Acc Conv2 2 Conv3 3 Conv4 3 Conv5 3

VGG-16 71.59 90.38 0.0637 0.0446 0.0627 0.0787
VGG-16decoupled 71.51 90.32 0.0750 0.0669 0.0643 0.0879

Model Top1-Acc Top5-Acc Block1 Block2 Block3 Block4

ResNet-18 69.76 89.08 0.0527 0.0212 0.0477 0.0521
ResNet-18decoupled 67.62 87.78 0.1062 0.0268 0.0580 0.0618
Table 1. The average interpretability score of filters in the different layers of original
networks and decoupled networks on BRODEN. The higher score is better.
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Fig. 5. Average representation ability of different concepts in ResNet-18 on BRODEN.
SF/MF represents use single/multiple filters characterizing the semantic features.
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Fig. 4. The distribution of filters with
different states in each layer of VGG-16
on ImageNet2012.

Filter State. After decoupling the
network architecture, the state of a fil-
ter in the network has three possibilities:
it responds to all the input samples, it
does not respond to any input samples,
or it responds to the specific inputs. These
three possibilities are termed as energetic
filter, silent filter, and dynamic filter, re-
spectively. As shown in Fig. 4, we collect
different states of filters in different lay-
ers. We can see that the proportion of dy-
namic filters increases with network depth increasing. This phenomenon demon-
strates that filters in the top layer tend to detect high-level semantic features,
which are highly related to the input images. In contrast, filters in the bottom
layer tend to detect low-level features, which are always shared across images.
For more detailed analysis, refer to Section A.1 of the supplementary material.

Interpretable Quantitative Analysis. Following the works [2, 41, 10], we
select the interpretability of filters and the representation ability of semantic
features to measure the network interpretability. Specifically, we first select the
original and our decoupled models which trained on ImageNet2012, and compute
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Fig. 6. Visualization of the receptive fields of filters which are inactivated because of
the lack of semantic feature in images. We occlude the specific semantic feature (i.e.,
wheel) in different images (i.e., car, bike and motorcycle) on ImageNet and then collect
the filters become inactivated due to the lack of the semantic feature.

the activation map of each filter/unit on BRODEN dataset. Then, the top quan-
tile level threshold is determined over all spatial locations of feature maps. After
that, low-resolution activation maps of all filters are scaled up to input-image
resolution using bilinear interpolation and thresholded into a binary segmen-
tation, so as to obtain the receptive fields of filters. The score of each filter f
as segmentation for the semantic concept t in the input image I is reported as

an intersection-over-union score IoU I
f,t =

|SIf∩S
I
t |

|SIf∪S
I
t |

, where SI
f and SI

t denote the

receptive field of filter f and the ground-truth mask of the semantic concept t
in the input image, respectively. Given an image I, we associated filter f with
the t-th part if IoU I

f,t > 0.01. Finally, we measure the relationship between the

filter f and concept t by Pf,t = meanI1(IoU I
f,t > 0.01) across all the input im-

ages. Based on [41], we can report the highest association between the filter and
concept as the final interpretability score of filter f by maxtPf,t. As shown in
Table. 1, the value in each layer is obtained by averaging the final interpretabil-
ity score across all the corresponding filters. For ResNet-18, we collect the filters
from the first convolutional layers in the last unit of each block. Compared to
the original networks, our decoupled networks have the better interpretability
under the similar classification accuracy. For instance, we achieve 1.2× ∼ 2×
score improvement of the filter interpretability than the original ResNet-18.

We further investigate the representation ability of network for specific se-
mantic features before and after network decoupling. For the representation of
semantic features from a single filter, we evaluate the highest association be-
tween each semantic feature in BRODEN (which has 1, 197 semantic features)
and the filters using maxI,fIoU

I
f,t as the representation ability of specific se-

mantic features, based on [10]. For the representation of semantic features from
multiple filters, we first occlude the semantic features in the original image and
then collect the number of M filters by comparing the difference between the
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calculation path of the original image and the occluded image, where these filters
are activated on the original image but inactivated due to the lack of specific
semantic features. After that, we merge their receptive field and calculate the

value of IoU IoU I
f∈M,t =

|SIf∈M∩S
I
t |

|SIf∈M∪S
I
t |

as the representation ability of semantic

feature t. As shown in Fig. 5, we average the representation ability of seman-
tic features belonging to the same concepts in the different layers. The results
demonstrates that our decoupled network has the better representation ability
of semantic feature than the original ResNet-18. The combination of multiple
filters, which collected by our path-level disentangling, achieves about 3× im-
provement in the representation ability than the single ones. Moreover, we find
that the bottom layers in the decoupled network always use the single filters
to characterize the semantic features based on our path-level analysis, so the
representation ability of semantic features in the bottom layers is similar in the
single filter and multiple filters.

Semantic Concept Analysis. We further investigate the relationship be-
tween semantic concepts and calculation paths. To this end, we occlude the areas
that contain similar semantic features (i.e., wheels) in the images from different
categories (i.e,. car, bike and motorcycle) to analyze the characterization of the
same semantic concept in different categories. After that, we collect the filters
which in the different parts of calculation path between the original images and
the semantic lacked images. Our experiments only collect the three filters with
highest IoU score in the last three convolutional layers of VGG-16. We find that
the existence of a single semantic concept affects the state of multiple filters. For
example, as shown in the first row of Fig. 6, when we only occlude the wheels
of the car with black blocks, the 131-th, 410-th and 474-th filters in the 12-th
convolutional layer become inactived, which makes the calculation path change.
To further analyze the relationship between each filter and semantic concept, we
visualize the receptive fields of filters on the input image to obtain the specific
detection location of each one, and calculate the IoU score between the receptive
fields of filters and the location area of the semantic concept. We find that dif-
ferent filters are responsible for different parts of the same semantic concept. For
instance, the 131-th, 410-th and 474-th filters in the 12-th convolutional layer
of VGG-16 are responsible for the features in the different parts of the wheel
in “car” images, respectively. Therefore, the combination of these filters has the
better representation ability of the wheel than the single ones.

4.3 Network Acceleration

In this subsection, we evaluate how our method can facilitate network acceler-
ation. We decouple three different network architectures (i.e., ResNet-56, VG-
GNet and GoogleNet) on CIFAR-10 and CIFAR-100, and set R = 0 to allow
the networks to be learned automatically. The VGGNet in our experiments is
the same as the network in [25]. As shown in Table 2, our method achieves the
best trade-off between accuracy and speedup/compression rate, compared with
static pruning [15, 23, 25] and dynamic pruning [35]. For instance, we achieve a
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Model
CIFAR-10 CIFAR-100

FLOPs
Top-1
Acc(%)

FLOPs
Top-1
Acc(%)

ResNet-56 125M 93.17 125M 70.43

CP [15] 63M 91.80 - -

L1 [23]∗ 90M 93.06 86M 69.38

Skip [35]∗ 103M 92.50 - -

Ours 63M 93.08 41M 69.72

VGGNet 398M 93.75 398M 72.98

L1 [23]∗ 199M 93.69 194M 72.14

Slim [25] 196M 93.80 250M 73.48

Ours 141M 93.82 191M 73.84

GoogleNet 1.52B 95.11 1.52B 77.99

L1 [23]∗ 1.02B 94.54 0.87B 77.09

Ours 0.39B 94.65 0.75B 77.28
Table 2. Results of the different networks
on CIFAR-10 and CIFAR-100. ∗ represents
the result based on our implementation.

Model
Top-1
Acc↓
(%)

Top-5
Acc↓
(%)

FLOPs
Reduc-

tion

CPU
Time

Reduc-
tion

SFP [14] 3.18 1.85 1.72× 1.38×
DCP [43] 2.29 1.38 1.89× 1.60×
LCL [7] 3.65 2.30 1.53× 1.25×
FBS [11] 2.54 1.46 1.98× 1.60×
Ours 2.14 1.30 2.03× 1.64×

Table 3. Results of ResNet-18 on
ImageNet2012. The baseline in our
method has an 69.76% top-1 accuracy
and 89.08% top-5 accuracy with 1.81B
FLOPs and an average 180 ms testing
on CPU based an image by running the
whole of the validation dataset.

2× FLOPs reduction with only a 0.09% drop in top-1 accuracy for ResNet-56 on
CIFAR-10. For ImageNet 2012, the results of accelerating ResNet-18 are sum-
marized in Table 3. When setting R to 0.6, our method also achieves the best
performance with a 1.64× real CPU running speedup and 2.03× reduction in
FLOPs compared with the static pruning [14, 43] and dynamic pruning [7, 11],
while only decreasing by 1.30% in top-5 accuracy. The detail of hyper-parameter
settings are presented in Section B of the supplementary material.

4.4 Adversarial Samples Detection

We further demonstrate that the proposed architecture decoupling can help to
detect the adversarial samples. Recently, several works [12] have concluded that
neural networks are vulnerable to adversarial examples, where adding a slight
amount of noise to an input image can disturb their robustness. We add noise to
images belonging to the “dog” category to make the network predicts as “truck”
and visualize the distribution of the calculation path between the original im-
ages and adversarial samples in ResNet-56 on CIFAR-10, as shown in Fig. 7.
The result demonstrates that the calculation path of the adversarial samples
“dog→truck” is different from that of the original “dog” and “truck” images.
In other words, adversarial samples do not completely deceive our decoupled
network, which can detect them by analyzing their calculation paths. More ex-
amples are given in Section C.1 of the supplementary material.

Based on the above observation, we use random forest, adaboost and gradient
boosting as the binary classifier to determine whether the calculation paths are
from real or adversarial samples. As shown in Table 4, we randomly select 1,
5 and 10 images from each class in the ImageNet 2012 training set to organize
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Fig. 7. The distribution of the integral cal-
culation path of original images and adver-
sarial samples in ResNet-56 on CIFAR-10.

Classifier Method
Num. of samples
1 5 10

random
forest

[36] 0.879 0.894 0.904
Ours 0.903 0.941 0.953

adaboost
[36] 0.887 0.905 0.910

Ours 0.909 0.931 0.940

gradient
boosting

[36] 0.905 0.919 0.915
Ours 0.927 0.921 0.928

Table 4. The Area-Under-Curve
(AUC) score on adversarial samples
detection. Higher is better.

three different scales training datasets. The testing set is collected by selecting
1 image from each class in the ImageNet validation dataset. Each experiment
is run five times independently. The results show that our method achieves an
AUC score of 0.049 gain over Wang et al. [36] (i.e., 0.953 vs. 0.904), when the
number of training samples is 10 on random forest. It also demonstrates that
the calculation paths obtained by our method are better than Wang et al. [36],
with higher discriminability.

5 Conclusion

In this paper, we propose a novel architecture decoupling method to obtain an
interpretable network and explore the rationale behind its overall working pro-
cess based on a novel path-level analysis. In particular, an architecture control-
ling module is introduced and embedded into each layer to dynamically identify
the activated filters. Then, by maximizing the mutual information between the
architecture encoding vector and the input image, we decouple the network ar-
chitecture to explore the functional processing behavior of each calculation path.
Meanwhile, to further improve the interpretability of the network and inference,
we limit the output of the convolutional layers and sparsifying the calculation
path. Experiments show that our method can successfully decouple the network
architecture with several merits, i.e., network interpretation, network accelera-
tion and adversarial samples detection.
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