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1 Datasets

In the main paper, we conduct experiments on three benchmarks, namely Kinetics-
400, Youtube-car and UCF101. The detailed statistics of the target and auxiliary datasets
are listed in Table 1. Our framework is very data efficient, comparing to approaches
which use billion of images, dozens of millions of videos for pretraining. All the web
data we collected are only several Tera-Bytes. After filtering, remained web data are
only around 3TB, which can easily fit into one hard drive. In stark comparison, the
space required by [4] is estimated to be at least 100TB. In this section, we visualize
videos in these three datasets, and data in the auxiliary datasets we construct, to show
why OmniSource benefits these tasks in different levels.

Table 1: Dataset Statistics. Here we show the statistics of dataset we use in our experiments. We
report storage amount of lowest cost format for videos (videos when using high fps for training,
and frames when using low fps for training). Our framework is data efficient, the amount of data
we used is two orders less than web data pretraining approach. Tri-vid denotes trimmed videos
and Unt-vid denotes untrimmed videos.

Target Dataset Type Training Size Storage Source Dataset Type Raw size Raw storage Clean Size

Kinetics-400 Tri-Vid 240K
40K mins 140 GB

GG-k400 Img 6M 350 GB 2M
IG-img Img 7.4M 450 GB 1.5M

IG-vid Tri-Vid 1.1M
480K mins 1.74 TB 500K

250K mins
k400-untrim Unt-Vid 670K mins 2.44 TB 500K mins

Youtube-car Unt-Vid 10K
21K mins 92 GB GG-car Img 70K 12 GB 50K

YT-car-17k Unt-Vid 28K
63K mins 66 GB 17K

38K mins

UCF101 Tri-Vid 10K
1.2K mins 7 GB GG-UCF Img 200K 12 GB 100K

Kinetics-400 We visualize some images in GG-k400 and some videos in k400-tr,
IG-vid in Fig. 1. The observations are summarized below: (1) Web data have much
more diversified appearance comparing to the target dataset. (2) Web data are very
noisy. Teacher network tells us that almost 60% - 70% data in the web data is irrelevant
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to the task we are interested in. (3) We can eliminate noise in web data at the cost of
dropping some false negative samples, resulting in a much cleaner auxiliary dataset.
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Fig. 2: Youtube-car. Visualization of data in Youtube-car and its auxiliary dataset. Since one can
easily get images of centain types of cars by querying its name, the quality of the auxiliary dataset
is much better. The high quality web data leads to considerable gain in model performance.
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Fig. 3: UCF101. Visualization of data in
UCF101 and its auxiliary dataset. For some
classes, web data are more diversified and con-
tain more discriminative poses.

Youtube-Car Youtube-Car is the
benchmark on which our framework ben-
efits most. It mainly has two reasons: (1)
The web data are much cleaner: when
searching with the name of a car, it is
easy to get a bunch of images with lit-
tle noise, since nothing is ambiguous. (2)
The source for both target and auxiliary
dataset is YouTube, which mean the do-
main gap is much smaller. Some sam-
ples from Youtube-Car and its auxiliary
datasets are visualized in Fig. 2.

UCF101 Our framework also works
on UCF101, which is a small-scale video
recognition dataset. UCF101 has much
less data diversity and lower visual qual-
ity, while auxiliary web data can be com-
plementary in these two aspects. For example, from Fig. 3, one can hardly tell the differ-
ence between BreastStroke and FrontCrawl videos in UCF101. The difference is much
more significant in web data. Using our framework, models can learn those discrimina-
tive features from web data, and can better recognize videos in the target dataset.

2 Implementation Details

Here, we report the implementation details for all our experiments for Kinetics-400
and transfer learning in UCF101 and HMDB51.
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Fig. 1: Kinetics. Data from Kinetics and data from auxiliary datasets are visualized, both raw and
clean. Red boxes denote that the image is identified as negative by teacher. There might be some
false-negative during teacher filtering, but the data filtered out by teacher are almost clean.



4 H. Duan, Y. Zhao et al.

2.1 Experiments on Kinetics-400

For all experiments on Kinetics-400, we use an SGD with momentum of 0.9, and
weight decay of 10−4. The initial learning rate (LR) we use linearly scales with the
number of samples and is decreased to its 10−1. For TSN-2D experiments, we use
4× 10−5/sample as the starting LR. The training process lasts 100 epoches and LR de-
cays at 40 and 80 epochs. For 3D-ConvNet experiments, we use 1.6× 10−4/sample as
the starting LR for experiments with ImageNet-pretrain, 1.6×10−3/sample as the start-
ing LR for train-from-scratch experiments. For ImageNet-pretrain experiments, train-
ing lasts 150 epochs and LR decays at 90 and 130 epochs. For train-from-scratch ex-
periments, we use CosineLR schedule instead of StepLR schedule, and training lasts
for 256 epoches and 196 epoches respectively for SlowOnly-4x16 and SlowOnly-8x8,
same as training schedules used in [3]. For IG-65M pretrained irCSN-152, we use
5×10−6/sample as the starting LR. The training process lasts 58 epochs and LR decays
at 32 and 48 epochs, which is consistent with [4]. Warmup is also used in our experi-
ments, which lasts 34 epochs for the train-from-scratch SlowOnly approach, 16 epochs
for irCSN-152. During warmup, learning rate grows linearly from 0 to the starting LR.
The warmup schedules follows [3,4].

2.2 Experiments for Transfer Learning on UCF-101 and HMDB-51

We use one simple schedule for all transfer learning experiments. We we use an
SGD with momentum of 0.9, and weight decay of 10−4. The starting LR is set to 5 ×
10−6/sample. We train 90 epoches on UCF101 and HMDB51 and the first 20 epoches
are used for warmup, during which learning rate grows linearly from 0 to the starting
LR. No LR decay is performed during training.

3 Experiments

Due to space limitation, some experiment results are not described in detail in the
main paper. In this part, we discuss these experiments at length.

3.1 Verifying the efficacy of OmniSource.

Why do we need teacher filtering and are search results good enough? In the main
text, we argue that directly using collected web data for joint training leads to a signif-
icant performance drop (Top-1 Accuracy: 70.6% to 67.4%) on TSN, which proves the
necessity of having a teacher network. However, since we crawl Top 1000 images for
each class name from search engines, one may argue that too many queries lead to bad
data quality. In response to this question, we construct two subset of GG-k400-Raw,
which include Top 1⁄4 (GG-k400-Raw-1⁄4) and Top 1⁄2 (GG-k400-Raw-1⁄2) results
in GG-k400-Raw respectively. To make sure web images are much more than trimmed
videos in the target dataset, we construct a subset of k400-tr, named k400-tr-half,
which includes half classes and half videos per class. We jointly train k400-tr-half
with different auxiliary datasets. From Table 2, we see that raw web data are of low qual-
ity, even for top search results. Thus teacher filtering is an essential step in OmniSource.
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Table 2: Joint training k400-tr-half with different raw web datasets. We see that even top
search results are of bad quality, lead to inferior performance. Thus teacher filtering is essential

Target Dataset Source Dataset Top-1 Top-5

k400-tr-half

/ 72.2 90.3
GG-k400-Raw 70.3 89.2

GG-k400-Raw-1⁄2 69.8 88.7
GG-k400-Raw-1⁄4 69.9 88.7

Does every data source contribute? In the main text, we use two groups of experi-
ments which use ImageNet pretrained TSN-3seg-R50 and SlowOnly-4x16-R50 as base-
lines, to prove that every source contributes. Besides that, the conclusion also holds
for SlowOnly-4x16-R50 trained from scratch. From Table 3, we see that for the train-
from-scratch setting, each data source not only contributes to the target task, but the
improvement is much larger than the ImageNet-pretrain setting.

Table 3: For the train-from-scratch setting, every data source also contributes to the target task.
The improvement is much larger compared to the ImageNet-pretrain setting. (FT: ImageNet-
pretrain; SC: train-from-scratch)

Arch/Dataset K400-tr +GG-k400 +GG&IG-img +IG-vid +K400-untr + All
SlowOnly

4x16, R50 [FT]
73.8/90.9 74.5/91.4 75.2/91.6 75.2/91.7 74.5/91.1 76.6/92.5

SlowOnly
4x16, R50 [SC]

72.9/90.9 74.1/91.0 74.8/91.4 75.8/92.0 74.8/91.2 76.8/92.5

Do features learned by OmniSource transfer to other tasks? In this section, we pro-
vide extensive experiment results on transfer learning, much more than results presented
in the main text. Table 4 lists transfer learning results on UCF101-split1 and HMDB-
split1. Those results further support 2 points proposed in the main text: (1) OmniSource
framework can learn better representation, which leads to significant performance im-
provement on downstream tasks. (2) ImageNet-pretraining is not indispensable for Om-
niSource to learn good representation. When combined with flow stream, state-of-the-
art results on UCF101 and HMDB51 can be achieved by finetuning models jointly
trained on Kinetics and auxiliary datasets. Table 5 compares the transfer learning per-
formance of OmniSource trained models with other state-of-the-art approaches. We see
that OmniSource outperforms other methods by a large margin.

3.2 Validating the good practices in OmniSource

Impact of teacher choice. In the main paper, we mention that for web video data, 3D
teachers always outperform 2D ones. Besides that, the conclusion that the accuracy of
the student network increases when a better teacher network is used also holds for web
video data. Here, we provide some quantitative results to prove those conclusions in
Table 6. SlowOnly-4x16-R50 with ImageNet-pretrain is used as the student network.
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Table 4: Detailed results of transfer learning. We report Top-1 accuracies on the official split-1
of UCF101 and HMDB51. We see that OmniSource framework can learn better representation
which transfers to other recognition tasks well, even without ImageNet pretraining.

Architecture w/. ImageNet-pretrain w/. OmniSource UCF101-Top1 HMDB51-Top1
TSN-3seg
ResNet50

X 91.51 63.53
X X 93.29 65.88

TSN-3seg
Efficient-b4

X 92.52 66.27
X X 93.05 66.54

SlowOnly-4x16
ResNet50

X 94.69 69.35
X X 95.98 70.71

94.05 65.82
X 96.01 70.98

SlowOnly-8x8
ResNet101

X 96.40 76.41
X X 97.38 78.95

96.61 75.82
X 97.52 79.02

Table 5: We compare transfer learning results with state-of-the-art approaches. We report mean
Top-1 accuracies on three splits of UCF101 and HMDB51. We see that OmniSource framework
not only outperforms RGB-Only methods. When fused with the flow stream, it surpasses all meth-
ods by a large margin, even for those which ensemble results of RGB, Flow and other modalities
(*We reimplement Flow-I3D as our flow stream)

Model Pretrain UCF101 HMDB51
Two-Stream [5] ImageNet 88.0 59.4

TSN [6] ImageNet 94.2 69.4
RGB-I3D[1] ImageNet + Kinetics 95.6 74.8
Flow-I3D[1] ImageNet + Kinetics 96.7 77.1

Two-Stream-I3D[1] ImageNet + Kinetics 98.0 80.7
I3D + PoTion[2] ImageNet + Kinetics 98.2 80.9
I3D + PA3D[7] ImageNet + Kinetics / 82.1

SlowOnly-8x8-R101 Kinetics + OmniSource 97.3 79.0
SlowOnly-8x8-R101 + Flow1 Kinetics + OmniSource 98.6 83.8

Table 6: More results on the impact of teacher choice. 3D teachers always outperform 2D ones.
The accuracy of the student network increases when a better teacher network is used.

Aux. Dataset Teacher Teacher Top-1 2D / 3D ? Top-1 Top-5

IG-vid
TSN-3seg-R50 70.6 2D 73.2 90.8

SlowOnly-4x16-R50 73.8 3D 75.2 91.7
IRCSN-152 82.6 3D 75.4 91.9

K400-untr
TSN-3seg-R50 70.6 2D 74.1 91.0

SlowOnly-4x16-R50 73.8 3D 74.5 91.1
IRCSN-152 82.6 3D 75.0 91.4
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Table 7: We explore different combi-
nations to build a 3-frame snippet, and
find that 1 Pos. + 2 Neg. is the best
choice.

Configuration Top-1 Top-5
3 Rand. 71.42 89.34
3 Pos. 71.22 89.54
2 Pos. + 1 Neg. 71.44 89.57
1 Pos. + 2 Neg. 71.66 89.63

Untrimmed videos to snippets. In the main pa-
per, we mention that combining negative frames
and positive frames is a good practice to con-
struct harder snippets, which leads to better recog-
nition performance. We provide detailed results
in Table 7, in which we explore each possible
combinations during joint training k400-tr and
k400-untr with TSN-3seg-R50 baseline. We
find that combining one positive frame and two
negative frames to form a 3-frame snippet leads to
best performance.

4 Improvement Analysis

We further study the improvement of our framework, when using the full auxiliary
set for training. Recall that our framework can improve 3.0% and 3.9% respectively on
2D and 3D baseline with all auxiliary data we collected, We analyze the improvement
on confusing pairs over these two cases. We use delta of confusion score (∆ij) to denote
the improvement:

∆ij = Oscoreij −Bscoreij , (1)

where Oscoreij denotes the confusion score of pair < i, j > when trained with
OmniSource, and Bscoreij denotes the confusion score of pair < i, j > of baseline
model.

Case Action 1 Action 2 ∆ij ↓

Success

rock scissors paper shaking hands -0.160
headbutting sniffing -0.159
sweeping floor mopping floor -0.113
eating chips eating doughnuts -0.103
eating ice creams eating cake -0.100

Failure rock scissors paper slapping +0.176
drinking drinking shots +0.158

Table 8: Confusion Score Delta for 2D mod-
els. Lower delta means larger gain in discrim-
inative power of these two classes. Top-5 and
Lowest-2 entries are displayed.

Case Action 1 Action 2 ∆ij ↓

Success

slapping headbutting -0.235
eating doughnuts eating hotdog -0.153
eating chips eating hotdog -0.121
faceplanting drop kicking -0.120
cooking chicken cooking sausages -0.110

Failure baking cookies making a cake +0.119
yawning sneezing +0.104

Table 9: Confusion Score Delta for 3D mod-
els. Lower delta means larger gain in discrim-
inative power of these two classes. Top-5 and
Lowest-2 entries are displayed.

We show success and failure cases of 2D model in Table 8. The contribution of our
framework mainly attributes to the better object recognition ability. Besides that, it also
improves when discriminative element can be found in web data, like two hands touched
in handshaking, two head touched in headbutting, etc.. There are also failure cases when
motion is needed for action recognition or when the taxonomy is not reasonable.

We show success and failure cases of 3D model in Table 9. Thanks to the capability
of using motion cues for action recognition, the pair ’rock scissors paper’ and ’slapping’
is no longer a failure case (∆ from +0.176 to -0.059). However, when appearance and
motion are all similar, our framework might fail due to the introduced noises.
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Fig. 4: Improvement on eating something. Rows denote groundtruth and columns denote pre-
dictions. Blockij represents the difference in numbers of samples which belongs to class i but
recognized as class j between the baseline and our model.

Due to the improved ability of object recognition, the accuracy improvement on
actions of eating something is much more significant. On average, the accuracy for
eating something improved 5.8%, 8.3% for 2D and 3D models respectively, while the
average improvement for all classes are 3.0% and 3.9%. We visualize the improvement
on this subset in Fig. 4.
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