
Supplementary materials for
“CurveLane-NAS: Unifying Lane-Sensitive Architecture Search and

Adaptive Point Blending”

In this material, we provide some additional illustrations of the paper. Sec. 2 provides the searched architectures of our
CurveLane-NAS in CULane and CurveLanes datasets. More intermediate results as shown in Sec. 1. The performance of the
transferred architectures from CULane on TuSimple testing set can be found in Sec. 3. Sec. 4 provides the detailed description
of the loss function used in training. The detailed algorithm of adaptive point blending module is presented in Sec. 5. Sec. 6
visualizes the additional qualitative results on CULane, TuSimple and CurveLanes datasets.

1 Intermediate Results for the Architecture Searching on CULane
Figure 1 shows the intermediate results of the searched architectures on CULane. The blue dots are the architectures trained
and evaluated during the search. We searched about 500 architectures and it takes about 5 days on 4 computational nodes
to complete searching. Red stars on the Pareto front are identified by non-dominate sorting in term of both F1 measure and
FLOPS.

2 Searched Architectures of CurveLane-NAS
The searched architectures of CurveLane-NAS in CULane and CurveLanes datasets can be found in Table 1. Our CurveLane-
NAS includes the backbone architecture search module and the feature fusion search module that not only is the optimal
trade-off between accuracy and different computation constraints but also can find a better fusion of the high-level and low-
level features. In each dataset, we search three models that are denoted as CurveLane-S, CurveLane-M, and CurveLane-L by
considering three kinds of computational constraints. In backbone architecture, the encoding string looks like “BB_64_14_[3,
5]_[9, 14]” in CurveLane-S in CULane, where the first placeholder encodes the block setting, the base channel size is 64, 14 is
the total number of blocks, [3, 5] are the position of downsampling blocks and [9, 14] are the position of doubling the channel
size. In the feature fusion search module, we set the fusion layers M = 2 due to the computational constraints. The feature
fusion module of CurveLane-S in CULane is “[F2F1, R3]_[F2F1, R3]” where [F2F1, R3] is one fusion layer Oi, F2F1 two

0.53

0.55

0.57

0.59

0.61

0.63

0.65

0.67

7 9 11 13 15 17 19 21 23 25

To
ta

l F
1

sc
or

e

FLOPS

Total Architectures Searched and the Pareto Front

Figure 1: Intermediate Results for the Architecture Searching on CULane. The blue dots are the architectures trained and
evaluated during the search. Red stars on the Pareto front are the models with best trade-off for accuracy and FLOPS.

1

input feature that picked from the output feature levels with different generate by the backbone denoted {F1, F2, ..., Ft} and
R3 is target output resolution corresponding to the F3.

Dataset Models Backbone Architecture Feature Fusion Module

CULane
CurveLane-S BB_64_14_[3, 5]_[9, 14] [F2F1, R3]_[F2F1, R3]

CurveLane-M BB_64_26_[12, 18]_[12, 16] [F1F2, R3]_[F2F1, R3]

CurveLane-L BB_128_25_[3, 13]_[4, 13] [F2F1, R3]_[F2F1, R3]

CurveLanes
CurveLane-S BB_64_27_[2, 3]_[23, 27] [F2F3, R3]_[F1F2, R3]

CurveLane-M BB_64_27_[4, 13]_[19, 24] [F2F1, R3]_[F2F1, R3]

CurveLane-L BB_64_25_[3, 13]_[4, 13] [F2F1, R3]_[F2F1, R3]

Table 1: Searched architectures in CULane and CurveLanes datasets.

3 Transferability of Our Searched Architectures
Table 2 shows the performance of the transferred architectures from CULane on the TuSimple dataset with a comparison
between our methods and other SOTA methods. The transferred architectures reached a comparable performance with most
SOTA methods which proves the effectiveness, transferability and robustness of our multi-objective search framework in dealing
with lane detection tasks.

Methods LaneNet[1] EL-GAN[2] SCNN[3] Enet-SAD[4] PointLaneNet[5] CurveLane-S CurveLane-M CurveLane-L

Accuracy 96.38% 96.39% 96.53% 96.64% 95.15% 95.97% 96.21% 96.52%

FP 0.0780 0.0412 0.0617 0.0602 0.091 0.1145 0.1032 0.0813

FN 0.0244 0.0336 0.0180 0.0205 0.038 0.0316 0.0321 0.0293

Table 2: Performance of the transferred architectures from CULane on TuSimple testing set. CurveLane-S, CurveLane-M, and
CurveLane-L are transfered architectures from the searched results of CULane.

4 Loss Function
CurveLane-NAS predicts one line proposal per grid. For each grid gij , the model will predict a set of offsets ∆xijz and one
ending point position to generate line proposals, and corresponding confidence scores. The loss function consists of two parts:
the regression loss of line proposals and the classification loss of the confidence scores. The regression loss is smooth L1 loss
between the predicted line proposals and the ground-truth lane line. The cross-entropy loss is designed as the classification loss
over two classes: real lane line or not. During training we optimize the following multi-part loss function:

Loss =
1

Ncls

w∑
i=1

h∑
j=1

Lossclsij +
1

Nreg

w∑
i=1

h∑
j=1

mobj
ij Loss

reg
ij

where
Lossclsij = − [yij ln(pij) + (1− yij)ln(1− pij)]

and

Lossregij = αsmoothL1(ending
p
ij − ending

gt
ij) + β

n∑
k=1

smoothL1(offset
p
k − offset

gt
k)

.
where Ncls is the number of the grids. Nregis the number of the samples selected. mobj

ij is equal to 1 when the grid is
positive, otherwise, it is equal to 0. α and β are penalty coefficient of the ending point position and the set of offsets. In this
paper, α = 10 and β = 1. In order to improve the performance and to reduce the training time, the Online Hard Example
Mining is used in our experiments.

2

Figure 2: The adaptive score masking mf of CurveLane-L in CULane dataset including two heads from two feature maps in different
stages. The input size is 512× 288 in our experiment, so the size of the third stage and fourth stage are 36× 64 (Left) and 18× 32 (Right)
respectively. Since the receptive fields in the fourth stage are larger than the third stage so the adaptive score masking mf in the fourth
stage is emphasis regions where lane lines may exist but the adaptive score masking mf in the third stage is emphasis center
regions more than the fourth stage.

5 Detailed Algorithm of Adaptive Point Blending Search Module
The adaptive point blending module to search a novel multi-level post-processing refinement strategy to combine multi-level
head prediction and allow more robust prediction over the shape variances and remote lanes. The detailed algorithm of the new
post-processing adaptive point blending search module can be found in Algorithm 1. For the comparisons, we summary the
detailed algorithm of Line-NMS to Algorithm 1. Line-NMS keep only one lane with the highest score in the distance threshold
can be found in the Algorithm 1. However, the receptive field is too small to catch the long-rang semantic to predict the whole
line, so far away from the anchor is inaccurate, this situation can be found in Figure 3 (f), Figure 4 (a), (b) and (f). In practice,
we found that each anchor can only predict the offsets precisely locally around the anchor, so our adaptive point blending
search module uses the anchor points of all lanes in the distance threshold to replace the corresponding point in the lane with
the highest score. Thus, those remote parts of lanes and curve shape can be mended by the local points and the final results are
better.

The distance threshold T of Line-NMS and our adaptive point blending search module is initialized to 10 in CULane
and TuSimple. If the number of lane lines is more than five updates the distance threshold T = T + 10, this setting mostly
follows the PointLaneNet. However, the number of lane lines in CurveLanes is up to 14 and the number is uncertain, so the
distance threshold T of Line-NMS and our adaptive point blending search module is set to 90 in CurveLanes according to our
experience. The adaptive score masking mf on the original score prediction for each feature map f can be implemented as
shown in Algorithm 1. The adaptive score masking allows different emphasis regions in multi-level prediction. The adaptive
score masking mf of CurveLane-L in CULane dataset as shown in Figure 2. The input size is 512× 288 in our experiment, so
the size of the third stage and fourth stage are 32× 64 and 16× 32 respectively. The adaptive score masking mf in the fourth
stage is emphasis regions where lane lines may exist but the adaptive score masking mf in the third stage is emphasis center
regions more than the fourth stage. So the adaptive score masking can emphasize regions where the learned lane’s information
to improve the performance of lanes detection by adaptive adjusts the detection scores.

6 Additional Qualitative Results
More qualitative comparisons on CULane, TuSimple and CurveLanes datasets between PointLaneNet and our method CurveLane-
L can be found in Figure 3, 4 and 5, respectively. From the comparisons, our method performs better in the difficult scenarios
such as large-curves, remote lanes, wet roads, night and multi-lanes (the number of lane lines is more than 4), while the Point-
LaneNet fails to detect them. Results of our method not only are more accurate than the PointLaneNet but also have less
false negative lanes due to the help of the CurveLane-NAS to automatically capture both long-ranged coherent and accurate
short-range curve information while unifying both architecture search and post-processing on curve lane predictions via point
blending. The elastic backbone search module and the feature fusion search module to find a better fusion of the local and global

3

Algorithm 1 Line-NMS and Adaptive Point Blending Search Module
Input: L = {l1, ..., ln}, S = {s1, ..., sn}, T

L is n ∗ z matrix of initial detection lanes, where n = w× h is the number of detection lanes and z is the number of the
points of one lane.

S contains corresponding confidence scores.
T is the distance threshold.
[uxf , uyf] denote the center position of the image.
α1f , β1f , α2f searched from the adaptive point blending search module.

Output: D = {l1, ..., lk}, S = {s1, ..., sn}
D is k ∗ z matrix of initial detection lanes, where k is the number of lanes last reserved and z is the number of the points

of one lane.
S contains corresponding confidence scores.

Begin:
Adaptive Score Masking mf

for lane in L do
cx,cy = lanecx, lanecy
logit(mf) = α1f (cy) + β1f + α2f [(cx − uxf)2 + (cy − uyf)2]

1
2

S = S × logit(mf)
end
D ← {}
while L 6= empty do

m← argmax S
L← L− lm, S ← S − si
for i in L do

dis(li, lm)←
∑z

point=0 abs(li[point]−lm[point])/z
if dis(li, lm) ≤ T then

Line-NMS
L← L− li, S ← S − si
Adaptive Point Blending
localpoints← anchor points of di
lm[localpoints]← di[localpoints]
L← L− li, S ← S − si

end
end
D ← D

⋃
lm

end
return D,S

end

4

G
ro

un
d

Tr
ut

h
Po

in
tL

an
eN

et
C

ur
ve

L
an

e-
L

(a) (b) (c)

G
ro

un
d

Tr
ut

h
Po

in
tL

an
eN

et
C

ur
ve

L
an

e-
L

(d) (e) (f)

Figure 3: Qualitative results comparison on CULane between PointLaneNet and our method CurveLane-L: Ground-truth(top),
PointLaneNet(middle), and our Curve-L(bottom). Our method performs better in the difficult scenarios such as night, crowd
and large-curves.

context for multi-level hierarchy features. The adaptive point blending module to search a novel multi-level post-processing re-
finement strategy to combine multi-level head prediction and allow more robust over the variate shape of the lane and remote
lanes.

References
[1] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool, “Towards end-to-end lane detection: an instance segmen-

tation approach,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 286–291.

[2] M. Ghafoorian, C. Nugteren, N. Baka, O. Booij, and M. Hofmann, “El-gan: embedding loss driven generative adversarial networks for
lane detection,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 0–0.

[3] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial cnn for traffic scene understanding,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[4] Y. Hou, Z. Ma, C. Liu, and C. C. Loy, “Learning lightweight lane detection cnns by self attention distillation,” arXiv preprint
arXiv:1908.00821, 2019.

[5] Z. Chen, Q. Liu, and C. Lian, “Pointlanenet: Efficient end-to-end cnns for accurate real-time lane detection,” in 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2019, pp. 2563–2568.

5

G
ro

un
d

Tr
ut

h
Po

in
tL

an
eN

et
C

ur
ve

L
an

e-
L

(a) (b) (c) (d)

G
ro

un
d

Tr
ut

h
Po

in
tL

an
eN

et
C

ur
ve

L
an

e-
L

(e) (f) (g) (h)

Figure 4: Qualitative results comparison on TuSimple between PointLaneNet and our method CurveLane-L: Ground-truth(top),
PointLaneNet(middle), and our CurveLane-L(bottom). Our method performs better in the difficult scenarios such as large-
curves and remote lanes.

6

G
ro

un
d

Tr
ut

h
Po

in
tL

an
eN

et
C

ur
ve

L
an

e

(a) (b) (c) (d)

G
ro

un
d

Tr
ut

h
Po

in
tL

an
eN

et
C

ur
ve

L
an

e

(e) (f) (g) (h)

Figure 5: Qualitative results comparison on CurveLanes between PointLaneNet and our method CurveLane-L: Ground-
truth(top), PointLaneNet(middle), and our CurveLane-L(bottom). Our method performs better in the difficult scenarios such as
night, crowd and multi-lanes.

7

	Intermediate Results for the Architecture Searching on CULane
	Searched Architectures of CurveLane-NAS
	Transferability of Our Searched Architectures
	Loss Function
	Detailed Algorithm of Adaptive Point Blending Search Module
	Additional Qualitative Results

