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Abstract. Recent advances in unsupervised domain adaptation for se-
mantic segmentation have shown great potentials to relieve the demand
of expensive per-pixel annotations. However, most existing works address
the domain discrepancy by aligning the data distributions of two do-
mains at a global image level whereas the local consistencies are largely
neglected. This paper presents an innovative local contextual-relation
consistent domain adaptation (CrCDA) technique that aims to achieve
local-level consistencies during the global-level alignment. The idea is to
take a closer look at region-wise feature representations and align them
for local-level consistencies. Specifically, CrCDA learns and enforces the
prototypical local contextual-relations explicitly in the feature space of
a labelled source domain while transferring them to an unlabelled tar-
get domain via backpropagation-based adversarial learning. An adaptive
entropy max-min adversarial learning scheme is designed to optimally
align these hundreds of local contextual-relations across domain without
requiring discriminator or extra computation overhead. The proposed
CrCDA has been evaluated extensively over two challenging domain
adaptive segmentation tasks (e.g., GTA5 → Cityscapes and SYNTHIA
→ Cityscapes), and experiments demonstrate its superior segmentation
performance as compared with state-of-the-art methods.

Keywords: Semantic segmentation, Unsupervised domain adaptation,
Contextual-relation consistent

1 Introduction

Semantic segmentation has been a longstanding challenge in computer vision,
which aims to assign class labels to every pixel of an image [59]. Deep learn-
ing based approaches have achieved great successes at the price of large-scale
densely-annotated datasets [3, 27, 9] which are prohibitively expensive to collect
[9]. One way of circumventing this constraint is to use synthesized images with
automatically generated labels (e.g., synthesized [36] or game-engine produced
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Fig. 1. Our contextual-relation consistent domain adaptation (CrCDA) improves do-
main adaptive semantic segmentation significantly: The traditional domain adaptive
segmentation shown in the upper part employs discriminators for global alignment
in the output space [44, 49, 45] (e.g., probability-/entropy-/patch-represented output),
which tends to introduce segmentation errors due to the neglect of local contextual
consistency. Our CrCDA shown in the lower part adapts features at local level for
contextual-relation consistency between the source and target domains which gener-
ates more accurate segmentation consistently. In the graph, “compatibility relations”
refer to visual patterns with high co-occurrence frequency (e.g., “pole” should be be-
side the “sidewalk”), and “incompatibility relations” refer to visual patterns with low
co-occurrence frequency (i.e., ”sky” should not in the ”building”).

[35] data) in network training. Unfortunately, such models usually undergo a
drastic performance drop when applied to real-world images [53] due to the
domain bias and shift [39, 32, 44, 48, 40, 30].

Unsupervised domain adaptation (UDA) has been introduced to address the
domain bias/shift issue. To reduce the cross-domain discrepancy, most state-
of-the-art UDA methods [46, 44, 31, 49, 45, 17] exploit adversarial learning for
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distribution alignment in the intermediate feature [46], output [44, 31] or latent
[45, 49] space. Among this cohort of adversarial-based methods, a common and
pivotal step is the employment of a discriminator [16] that predicts a domain
label for data being either source or target domain. However, the discrimina-
tor works only on image-level and merely achieves global consistency (i.e., lo-
cational/spatial distributions consistency), where local contextual consistency
(i.e., region-wise contextual-relationships) is largely neglected.

Local contextual-relationships are ubiquitous and provide important cues
for scene segmentation. They can be formulated in terms of semantic compat-
ibility/incompatibility relations between one thing/stuff and its neighbouring
things/stuff. Under this formulation, a compatibility relation is an indication
of visual patterns with high co-occurrence frequency, e.g. a pole beside a side-
walk, and an incompatibility relation is an indication of visual patterns with
low co-occurrence frequency, e.g. a person above a driving car. The contextual
information has been extensively explored in supervised semantic segmentation,
whereas the local contextual-relationships is largely neglected in unsupervised
domain adaptive semantic segmentation though they’re beneficial in addressing
local contextual consistency and inconsistency in the target domain, as illus-
trated in Fig. 1.

To this end, we propose an unsupervised domain adaptation method for se-
mantic segmentation that explicitly models the local contextual-relations in the
feature space of source domain (with label) and then transfers this contextual
information into the target domain (without label), ultimately improving tar-
get domain segmentation quality, as shown in Fig. 1. We first establish local
contextual-relationships pseudo annotations in the source domain. This can be
achieved by sampling regions from pixel-level ground-truth maps of source im-
ages and clustering the sampled regions to indexed N/M groups via Dbscan [12],
as illustrated in Fig. 4. With the local contextual-relationships pseudo annota-
tions in source domain, we can train a classifier C to explicitly models/learns
the local contextual-relations in the feature space of source domain, and then
transfers/enforces these local contextual-relations into target domain.

Following current discriminator-based global alignment methods [44, 45, 49,
31], a intuitive idea is to employ hundreds of discriminators to align hundreds of
contextual-relations across domain where a single discriminator focuses on a sin-
gle contextual-relation, or employ just one discriminator to align all contextual-
relations across domains. Obviously, the former is cumbersome which requires
much redundant computation, while the latter is not aware of a variety of
contextual-relations in the data distribution and may end up biasing to low-
level/simple difference. Therefore, different from current discriminator-based
global alignment methods [44, 45, 49, 31], we enforce these local contextual-relations
on target domain via adaptive entropy max-minimizing (AEMM) between classi-
fier C and feature extractor E that estimates prototypical feature representations
of these local contextual-relations and congregates neighboring target incorrect
samples/contextual-relations to the approximated correct source prototypes al-
ternatively, ultimately leading to consistent local contextual-relations across do-
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mains. In this way, our method requires no discriminator which is normally used
in UDA-based semantic segmentation and introduces training instability and
extra components. In addition, this AEMM learning scheme can also be applied
into pixel-/global-scale training.

The contributions of this work can be summarized in three aspects. First, we
propose an unsupervised domain adaptation method for semantic segmentation
that explicitly models the local contextual-relations in the feature space of source
domain (with label) and then transfers this contextual information into target
domain (without label). To the best of our knowledge, this is the first effort to ex-
plore contextual information for UDA-based semantic segmentation. Second, it
introduces a novel adaptive entropy max-minimizing adversarial learning scheme
to effectively align hundreds of local contextual-relations across domain, which
requires no discriminator and adds no overhead. Third, it shows the proposed
method can be seamlessly integrated into existing domain adaptation techniques
without extra overhead except two classifiers and achieves consistent improve-
ments on semantic segmentation. Fourth, extensive evaluations over two chal-
lenging UDA tasks GTA5→ Cityscapes and SYNTHIA→ Cityscapes show that
our method achieves superior semantic segmentation performance consistently.

2 Related works

Current UDA-based semantic segmentation methods are threefold: adversar-
ial learning based approach [13, 23, 24, 19, 28, 29, 46, 31, 44, 7, 11, 5, 6, 51], image
translation based approach [18, 42, 50, 34, 25, 52, 54, 20, 2, 8], and pseudo-labels
based approach [64, 61, 58, 15, 21].

Adversarial learning based approach: Adversarial learning based UDA
has been extensively explored for semantic segmentation, where a discriminator
is employed to minimize the divergences between source and target domains in
feature or output spaces. [19] first applies adversarial learning for UDA based
semantic segmentation by aligning feature space at global scale. Curriculum
domain adaptation [55] utilizes certain inferred properties (e.g., superpixel and
global label distributions) as the guidance to train the segmentation network.
In [44] and [7], the adversarial learning is used to align the global structure to
benefit from the scene layout consistency across domains, where [7] integrates a
target guided distillation module to achieve style adaptation. In addition, [38,
39] combines adversarial learning and co-training to achieve domain adaptation
via maximizing the discrepancy between two classifiers’ outputs.

Image translation based approach: Inspired by the recent advances in
image synthesis (e.g., CycleGAN [60]), a number of GAN-based methods are
proposed to generate target images conditioned on the source, which can help
reduce the domain discrepancy before training segmentation models. CyCADA
[18] uses CycleGAN to generate target images conditioned on the source images
and achieves input space adaptation with a joint adversarial learning for fea-
ture alignment. A similar method, DCAN [50], implements channel-wise feature
alignment to preserve spatial structures and semantic concepts in the generator
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and segmentation network. [42] transfers the information of the target domain
to the learned embedding via the joint adversarial learning between generator
and discriminator. Besides using GANs [16] to align the embedding across do-
mains, [62] proposes a novel conservative loss to penalize the extremely easy and
difficult cases while enhancing moderate examples.

Re-training based approach: Another approach of UDA based seman-
tic segmentation is pseudo label re-training [64, 63, 26] that uses high-confident
predictions as pseudo ground truth for the target unlabelled data to finetune
the model trained on the source data. In [64], class balancing and spatial prior
are included to guide the iterative re-training in target domain. [49] proposes a
soft-assigned version of re-training, where it enforces the “most-confused” pix-
els (e.g., with equal probabilities for all classes) to become more confident (i.e.,
with either low or high probability for each class) by entropy minimization. [64]
instead implements iterative learning on high-confident pixels.

Our method does not follow either global/class-wise feature space alignment
using discriminators [19, 28, 29, 46, 31, 7] or re-training on target data [64, 41].
Instead, we enforce multi-scale feature space alignment via multi-scale entropy
max-minimizing. To the best of our knowledge, this is the first end-to-end multi-
scale UDA network that achieves competitive performance on two challenging
UDA tasks.

3 Methods

In this section, we present our framework for contextual-relationships consistent
domain adaptation (CrCDA): a discriminator-free adversarial training scheme
between a feature extractor module and a classifier via adaptive entropy max-
minimizing (AEMM) to align local contextual-relationships across domains. Fig.
2 illustrates our network architecture.

3.1 Problem Definition

We focus on the problem of unsupervised domain adaptation (UDA) in semantic
segmentation. Given the source data Xs ⊂ RH×W×3 with C-class pixel-scale seg-
mentation labels Ys ⊂ (1, C)H×W (e.g., stimulated images from game engines)
and the target data Xt ⊂ RH×W×3 without labels (i.e., real images), our goal
is to learn a semantic segmentation model G that performs well on the target
dataset Xt. Current adversarial learning methods rely heavily on discriminators
to align the distributions of source and target domains via two loss functions:
segmentation loss on source data and adversarial loss for alignment.

However, there exists a crucial limitation for these approaches: even if perfect
adaptation is achieved through a discriminator, the alignment is implemented
on global level (i.e., image-level), where local contextual information may be
lost/deconstructed. The reason lies in that the discriminator can only imple-
ment alignment at global level, which inputs the whole map but outputs a digit
to represent domain labels (e.g., 0 or 1). In some cases, parts of local regions
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Fig. 2. Overview of our proposed contextual-relation consistent domain adaptation
(CrCDA): Given images from source and target domains, the feature extractor E ex-
tracts features and feeds them to classifier Cseg and Ccr for classification at pixel and
region scales. In the source flow (highlighted by arrows in blue), Lseg is computed
based on the segmentation probability map from Cseg, Lcr is computed based on the
classification probability maps from Ccr. In the target flow (highlighted by arrows in
orange), Lent cr is computed based on the classification probability maps from Ccr.
The local-scale alignment is implemented in back-propagation by training the parts
before and after the gradient reverse layer in adversarial scheme w.r.t Lent cr.

(i.e., local contextual-relations) have been well aligned across domains. However,
the discriminator might deconstruct this existing local alignment during imple-
menting the global marginal distribution alignment. In this paper, we define this
phenomenon as “lack of local consistency (i.e., local contextual inconsistency)”,
which is important to semantic segmentation in dense pixel-scale prediction.

3.2 Overview of Network Architecture

As shown in Fig. 2, our semantic segmentation model G consists of a feature ex-
tractor E and two classifiers (i.e., Cseg and Ccr) where Cseg is for pixel-scale seg-
mentation and Ccr is for local-scale contextual-relations learning/classification.
E extracts features from input images. Cseg and Ccr classify features generated
by E into pre-defined semantic classes. Specifically, Cseg processes features at
pixel-scale, which aims to predict pixel-scale labels. The pre-defined semantic
class domain for Cseg is the pixel-scale ground-truth, so there is no difference
between Cseg and traditional segmentation classifier. Ccr processes features at
local scales, which aims to predict region-scale/contextual-relations labels. The
pre-defined semantic class domain for Ccr is the clustered contextual-relations
ground-truth. The establishment procedure of clustered contextual-relations la-
bels is described in Section 3.3 and shown in Fig. 3. We train E and the classifiers
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Fig. 3. Overview of local contextual-relation pseudo label establishment: “Dbscan clus-
tering” means implementing Dbscan clustering based on the histogram of gradient. The
effect of local contextual-relations alignment is shown at right-bottom part, with more
visualization details provided in Fig. 4.

(i.e., Cseg and Ccr) in an adversarial scheme to reduce domain shifts at local
scales to achieve local contextual-relation consistency.

3.3 Contextual-relation consistent domain adaptation

This subsection introduces our contextual-relation consistent domain adaptation
at local scales, denoted as CrCDA∗, via adaptive entropy max-minimizing, as
shown in Fig. 2.

Contextual-relation pseudo label establishment. In order to imple-
ment local-scale task, we sample regions on the feature space and implement
domain alignment at local scales to achieve local contextual-relation consistent
domain adaptation, as shown in Fig. 3. Different from [22] that implements
mode-agnostic patches alignment or [45] that aligns patch-indexed represen-
tation of the whole image only at global scales by a discriminator (i.e., the
probability distributions of patch index prediction of the whole images.), we
aim to aligns inter-class relations within each single patch, i.e., the probabil-
ity distributions of pixel class prediction within each patch, w.r.t its mode via
a classifier. Thus, the preliminary is to establish the region-scale label, where
we first crop the pixel-scale ground-truth to many larger regions and then use
Dbscan [12] to cluster them to assign each region a certain index label (i.e.,
contextual-relation pseudo label). Specifically, we assign the index label to re-
gions according to the clustering results based on the histogram of gradient. For
region-scale label (i.e., contextual-relation pseudo label), we cluster regions into
different groups based on the histogram of gradient and assign the index la-
bel. These region-scale/contextual-relation pseudo labels can assist our network
to implement alignment at local scales. Detailed information about the region-
scale/contextual-relation pseudo labels is in the supplementary materials.



8 J. Huang et al.

Traditional

global-scale

alignment 

Maximizing  entropy by 𝐶seg

Multi-scale alignment 

Global-scale 

alignment by 𝐶𝐷

Class A

Source patch sample

Source sample 

Target sample 

Source prototype

Target prototype

Target patch sample

Local-scale alignment Pixel-scale alignment 

Minimizing  entropy by 𝐸 Maximizing  entropy by 𝐶cr Minimizing  entropy by 𝐸

Class B

Fig. 4. Overview and comparison of the proposed AEMM at different scales: The mech-
anism of traditional global-scale domain adaptation is shown in the black box, where
some samples are adapted into the wrong area due to the lack of local consistency (i.e.,
local contextual-relation consistency). Our method is shown in the red boxes illustrat-
ing the alignment in pixel-scale, local-scale and global-scale. In pixel-scale alignment,
Cseg firstly approximates the target prototypical features by maximizing entropy on
target data and then E aims to congregate the features to the approximated prototyp-
ical features by minimizing entropy. Local-scale alignment works in the same scheme
of pixel-scale adaptation while the only difference is the processing unit size (the for-
mer adapts a larger group of features; the latter adapts single pixel-scale features). As
shown above, the global alignment is implemented by a domain classifier. Finally, the
proposed AEMM can achieve feature alignment in different scales simultaneously.

Adaptive entropy max-minimizing adversarial learning scheme. In
local-scale adaptation, Ccr aims to approximate the prototypical feature repre-
sentations for each contextual-relation (e.g., road-sidewalk, sky-building, pole-
sidewalk, etc.) by implementing entropy maximization in target domain accord-
ing to the source prototypical feature representations found via supervised learn-
ing in source domain. E focuses on extracting discriminative feature represen-
tations (near the approximated prototypical feature representations) by imple-
menting entropy minimization. Specifically, the prototypical feature represen-
tations of source domain found with supervision are first utilized to estimate
the prototypical feature representations for target data by entropy maximizing
w.r.t Ccr. E then adapts the extracted feature representations to the correspond-
ing prototypical feature representations by minimizing the entropy. The overall
unsupervised domain adaptation at local scales is achieved by the adversarial
training between Ccr and E as illustrated in Fig. 4. Different from that applied
in semi-supervised learning [37], our unsupervised domain adaptation training
method, referred as adaptive entropy max-minimizing (AEMM) implements en-
tropy max-min with a regularizer R(P ) = ave{P logP} × λR (λR decreases
with training iteration, details are shown in appendix) for better estimating the
prototypes in the target domain where no labels are available.

Source Flow. In our local-scale adaptation setting, the source data con-
tributes to Lseg and Lcr. Given a source image xs ⊂ Xs, its corresponding
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segmentation label ys ⊂ Ys and contextual-relation pseudo-label ys cr ⊂ Ys cr,

P
(h,w,c)
s = Cseg(E(xs)) is the predicted probability map w.r.t each pixel over

C classes; P
(i,j,n)
s cr = Ccr(E(xs)) is the predicted probability map w.r.t each re-

gion over N pre-defined contextual-relations classes. Therefore, it is a simple
supervised learning objective to minimize Lseg and Lcr, which are expressed as:

Lseg(E,Cseg) =
∑
h,w

∑
c

−y(h,w,c)s logP (h,w,c)
s (1)

Lcr(E,Ccr) =
∑
i,j

∑
n

−y(i,j,n)s cr logP (i,j,n)
s cr (2)

Target Flow. As the target label is not accessible, we introduce the adver-
sarial training scheme between feature extractor E and classifier Ccr to extract
discriminative features for target data via adaptively max-minimizing entropy in

target domain. Given a target image xt ⊂ Xt, P
(i,j,n)
t cr = Ccr(E(xt)) is the pre-

dicted probability map w.r.t each region over N pre-defined contextual-relations
classes. The entropy loss Lentcr is expressed as:

Lent cr(E,Ccr) = − 1

C

∑
i,j

∑
n

max{P (i,j,n)
t cr logP

(i,j,n)
t cr −R(P

(i,j,n)
t cr ), 0} (3)

For local-scale adaptation, we use the same back-propagation optimizing
scheme with the gradient reverse layer mentioned in [57]. The training objec-
tive can be express as:

min
θE
Lseg + λcrLcr + λentLent cr

min
θCseg

Lseg

min
θCcr

Lcr − λentLent cr

(4)

where λent is a weight factor to control the balance of unsupervised adaptation
on target data and supervised learning on source data.

3.4 CrCDA with pixel-/global-scale

This subsection introduces our CrCDA with pixel-/global-scale, denoted as Cr-
CDA, via adaptive entropy max-minimizing, as shown in Fig. 2. Our discriminator-
free AEMM adversarial training scheme can also be extended into pixel-scale and
global/image-scale to form multi-scale domain adaptation.

In multi-scale adaptation, for Lseg, Lcr and Lent cr, the objectives are the
same as that in local-scale adaptation. We extend the AEMM adversarial train-
ing scheme mentioned before into pixel-scale and global-scale adaptation. For
pixel-scale adaptation, we implement pixel-scale entropy loss Lent on target data
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to E and Cseg. For global-scale adaptation, we implement global-scale entropy
loss Lent D on target data to E and CD, where CD is a domain classifier. CD
takes the layout probability map concatenated by the two probability maps gen-
erated from Cseg and Ccr as input, and predicts domain label for it (e.g., 0 for
source domain, 1 for target domain). The global-alignment is achieved by the
adversarial training between CD and (E,Cseg, Ccr). Finally, our multi-scale con-
sistent domain adaptation network is able to align domain shift at global scales,
local-scale and pixel-scale simultaneously.

Similar to local-scale adaptation, we formulate the pixel-scale entropy loss
as:

Lent pix(E,Cseg) = − 1

C

∑
h,w

∑
c

max{P (h,w,c)
t pix logP

(h,w,c)
t pix −R(P

(h,w,c)
t pix ), 0} (5)

For multi-scale adaptation, we also use the same back-propagation optimiz-
ing scheme with the gradient reverse layer mentioned in [13, 14]. The training
objective can be express as:

min
θE
Lseg + λcrLCcr + λent(Lent pix + Lent cr) + λDLD

min
θCseg

Lseg − λentLent pix + λDLD

min
θCcr

LCcr − λentLent cr + λDLD

max
θCD

λDLD

(6)

where LD is provided in supplementary materials; λcr, λent and λD are the
weight factor to balance the unsupervised adaptation on target data and the
task-specific objectives on source data.

4 Experiments

4.1 Datasets

We evaluate our unsupervised domain adaptation networks for semantic segmen-
tation on two challenging synthesized-to-real tasks: GTA5 [35] → Cityscapes [9]
and SYNTHIA [36] → Cityscapes. GTA5 contains 24, 966 synthesized images
with high-resolution and we use the 19 common categories between GTA5 and
Cityscapes in the same setting as in [44]. SYNTHIA contains 9, 400 synthetic
images with 16 common categories in Cityscapes. We use either GTA5 or SYN-
THIA as source domain. We use the unlabelled training set of Cityscapes as
target domain, which includes 2975 real-world images.

4.2 Implementation Details

For a fair comparison, similar to [49] [31] [44], we utilize Deeplab-V2 architecture
[3] with ResNet-101 pretrained on ImageNet [10] as our single-scale semantic
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Table 1. Results of domain adaptation task GTA5 → Cityscapes. “V” means the
VGG16-based model and “R” means the ResNet101-based model.

GTA5 → Cityscapes

Networks
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FCN Wild [19] V 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CDA [55] V 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

CyCADA [18] V 83.5 38.376.4 20.6 16.5 22.2 26.2 21.980.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8

AdaptSeg [44] V 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

CBST [64] V 66.7 26.8 73.7 14.8 9.5 28.325.910.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.932.430.9

CLAN [31] V 88.030.6 79.2 23.4 20.5 26.1 23.0 14.8 81.634.572.0 45.8 7.9 80.5 26.629.90.0 10.7 0.0 36.6

AdvEnt [49] V 86.9 28.7 78.7 28.5 25.217.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.911.7 1.6 36.1

PatAlign [45] V 87.3 35.7 79.5 32.014.5 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 15.5 4.1 37.5

CrCDA (ours) V 86.8 37.5 80.430.7 18.1 26.8 25.3 15.1 81.5 30.9 72.152.819.082.125.4 29.2 10.1 15.8 3.7 39.1

AdaptSeg [44] R 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CBST [64] R 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.845.9

CLAN [31] R 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.931.4 43.2

AdvEnt [49] R 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.838.5 44.5 1.7 31.6 32.4 45.5

MaxSquare[4] R 89.4 43.0 82.1 30.5 21.3 30.3 34.724.0 85.339.478.2 63.022.9 84.6 36.4 43.0 5.5 34.7 33.5 46.4

PatAlign [45] R 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.32.2 29.5 32.3 46.5

CRST [63] R 91.0 55.480.0 33.721.4 37.332.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.926.0 42.3 47.1

CrCDA (ours) R 92.455.3 82.331.2 29.132.5 33.2 35.683.5 34.8 84.258.9 32.284.7 40.646.1 2.1 31.1 32.7 48.6

segmentation network (E + Cseg). To extend our model to multi-scale network,
we simply copy and modify Cseg to create Ccr and CD with different output
channels (e.g.,N and 1) and different output sizes due to various scales (i.e.,
region-size and global-size). We also apply our methods on VGG-16 [43] in the
same way as employing ResNet-101. Following [13] [47], a gradient reverse layer
is employed to reverse the entropy loss between E and (Cseg, Ccr) during pixel-
/region-scale adaptation to achieve adversarial training. The domain classifier
CD works similar to a discriminator for global-scale alignment. During training,
we utilize SGD [1] to optimize our networks with a momentum of 0.9 and a
weight decay of 1e−4. The initial learning rate is set as 2.5e−4 and decayed by
a polynomial policy with a power of 0.9, as illustrated in [3]. For all experiments,
the hyper-parameters λent, λD, λcr and N are set as 2.5e − 5, 2.5e − 5, 5e − 3
and 100, respectively.

4.3 Comparison with state-of-art

We compare the experimental results of our method and state-of-the-art algo-
rithms in two “Synthetic-to-real” UDA tasks with two different architectures:
VGG-16 and ResNet-101. For “GTA5 → Cityscapes”, we present the results in
Table 1 with comparisons to the state-of-the-art domain adaptation methods
[49, 31, 44, 19, 55, 18, 56, 57]. Our contextual-relation consistent domain adapta-
tion, expressed as CrCDA, achieves comparable performance to other state-of-
the-art approaches on both architectures. Compared to Adapt-SegMap (out-
put space global alignment) [44], category-level adversarial network (output
space class-wise alignment) [31] and patch-represented global alignment [45]
(patch-indexed latent space alignment), CrCDA consistently brings over +2.1%
mIoU improvements on ResNet-101. We reckon this gain is from our end-to-
end/concurrent multi-scale alignment, which indicates that local consistency
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Table 2. Results of domain adaptation task SYNTHIA → Cityscapes. “V” means
the VGG16-based model and “R” means the ResNet101-based model. “mIoU” and
“mIoU*” are calculated over 16 and 13 classes, respectively.
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mIoU mIoU*

FCNs Wild [19] V 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2 22.1

CDA [55] V 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

AdaptSeg [44] V 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

CBST [64] V 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 36.1

CLAN [31] V 80.4 30.7 74.7 - - - 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 - 39.3

AdvEnt [49] V 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6

PatAlign [45] V 72.6 29.5 77.2 3.5 0.4 21.0 1.4 7.9 73.3 79.0 45.7 14.5 69.4 19.6 7.4 16.5 33.7 39.6

CrCDA (ours) V 74.5 30.5 78.6 6.6 0.7 21.2 2.3 8.4 77.4 79.1 45.9 16.5 73.1 24.1 9.6 14.2 35.2 41.1

AdaptSeg [44] R 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CLAN [31] R 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

AdvEnt [49] R 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

MaxSquare[4] R 82.9 40.7 80.3 10.2 0.8 25.8 12.8 18.2 82.5 82.2 53.1 18.0 79.0 31.4 10.4 35.6 41.4 48.2

PatAlign [45] R 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

CrCDA (ours) R 86.2 44.9 79.5 8.3 0.7 27.8 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 42.9 50.0

(i.e., local contextual-relation consistency) is very important as well as global
consistency and they are complementary to each other. In Table 2, we present
the adaptation result for the task “SYNTHIA → Cityscapes” and consistent
improvements are observed w.r.t state-of-the-arts. Detailed analysis is included
in next subsection.

4.4 Ablation Studies and Analysis

We analyze our proposed CrCDA with several state-of-the-art baselines. In gen-
eral, both single-scale form (CrCDA∗) and multi-scale form (CrCDA) achieve
comparable results to all the baselines in all the settings.

As shown on the first three rows in Table 3, our pixel-scale AEMM adversarial
network brings +1.4% improvements in terms of mIoU over MinEnt [49]. The
reason lies in that direct entropy minimization does not take the domain gap
into account while our AEMM training scheme pushes the source distribution
closer to target distribution during maximizing entropy on target data.

For our CrCDA with single-scale form (CrCDA∗) via AEMM, it outperforms
MinEnt-based contextual-relations alignment by +1.6% on ResNet-101, as shown
on the second block (row4-5) in Table 3. We reckon that these improvements are
contributed by our adaptive entropy max-min training scheme which considers
the domain mismatch/gap while MinEnt neglects.

Our CrCDA with multi-scale form integrating three scales’ adaptation (pixel-
, local- and global-scale), termed as CrCDA shown on the bottom block in Ta-
ble 3, achieves state-of-the-art performances 48.6% mIoU on ResNet-101. Be-
sides, CrCDA also outperforms all current methods by over +1.5%. Compared
to “Pixel+Global”, CrCDA brings +2.6% improvement in mIoU, which demon-
strates that local-scale alignment is essential as well as other scales (e.g., pixel-
scale and global-scale). In fact, the local contextual-relation consistent adapta-
tion loss (i.e., Lent cr) penalize groups of pixels predictions to achieve local-scale
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Table 3. Ablation study of the proposed contextual-relation consistent domain adap-
tation on GTA5-to-Cityscapes using the ResNet-101 network. All settings/methods are
with ”Lseg” (bold texts represent our methods). CrCDA∗ represents the contextual-
relation consistent domain adaptation with only single-scale (local scale).

pixel-scale Ada. local-scale Ada. global-scale Ada. mIoU

Method Lminent Lours
ent Lminent Lours

ent Ladv Lpatadv Ladvent Lours
D

Without Ada. 36.6

MinEnt [61, 49] X 42.4

Pixel-AEMM X 43.8

CrCDA∗-MinEnt X 42.1

CrCDA∗-AEMM X 43.7

AdaptSeg [44] X 41.4

PatAlign [45] X 41.3

AdvEnt [49] X 43.8

Global-AEMM X 44.3

Pixel+CrCDA∗ X X 45.6

Pixel+Global X X 46.0

CrCDA∗+Global X X 46.1

CrCDA X X X 48.6

Table 4. Complementary study of the proposed contextual-relation consistent domain
adaptation with local-scale to current global alignment UDA methods on GTA5-to-
Cityscapes using the ResNet-101 network. All methods are default with ”Lseg”.

local-level Ada. global Ada. mIoU

Method Lours
ent Ladv Lpatadv Ladvent Lours

D

CrCDA∗ (ours) X 43.7

AdaptSeg [44] X 41.4

PatAdv [45] X 41.3

AdvEnt [49] X 43.8

GlobalAlign (ours) X 44.3

AdaptSeg[44]+PatAlign[45] X X 43.2

CrCDA∗ + AdaptSeg[44] X X 44.8

CrCDA∗ + PatAlign[45] X X 44.7

CrCDA∗ + AdvEnt[49] X X 45.2

CrCDA∗+GlobalAlign (ours) X X 46.1

alignment, where global-scale adaptation loss operates more on image-scale (e.g.,
scene layout) while that of pixel-scale works on the feature representation align-
ment of each independent pixels. The consistent results with different settings
further confirm that complementary information has been learned in different
scales’ adaptation. The qualitative results and visualization of feature distribu-
tions are provided in Fig. 5 and 6, which further demonstrate our conjectures
mentioned above. We also provide the complementary studies to demonstrate
that our local contextual-relations alignment method is complementary to most
existing global-scale alignment approaches, as shown in Table 4.

5 Conclusions

In this paper, we present the local contextual-relation consistent domain adapta-
tion (CrCDA) to address the task of unsupervised domain adaptation for seman-
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Target Image Without Ada. Ada.(AdvEnt) Ada.(CrCDA) Ground Truth

Fig. 5. Qualitative results for GTA5 → Cityscapes. Our approach (CrCDA) aligns
low-level features (e.g., boundaries of sidewalk, car and person etc.) as well as high-
level features by multi-scale adversarial learning. In contrast, AdvEnt ignores low-level
information because global alignment focuses more on high-level information. Thus, as
shown above, CrCDA achieves both local and global consistencies while AdvEnt only
achieves global consistency.

Without Adaptation Adapted(TGA) Adapted(CrCDA)

Fig. 6. Visualization of feature distributions via t-SNE [33]. “Blue”: Source. “Red”:
Target. As shown in the first column, the feature distribution of source data is naturally
more discriminative (discrete) than that of target data (uniformly distributed) due to
only source supervision is available. Traditional global alignment (TGA) aligns them
in global scale, where global consistency is achieved while local consistency is ignored.
Thus the adapted target feature distribution is not discriminative. CrCDA aligns them
with local-scale consistency (i.e., local contextual-relation consistency), where both
local and global consistencies are achieved. Thus the adapted target feature distribution
is more discriminative and consistent with that of the source.

tic segmentation. By taking a closer look at the local inconsistency (i.e., local
contextual-relations inconsistency) while implementing global adaptation, Cr-
CDA is able to align the domain shift in local and global scales at the same time,
where local semantic consistency is normally ignored by current approaches. The
experimental results on the two challenging segmentation UDA tasks validate
the state-of-the-art of CrCDA.
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