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Abstract. In this supplementary material, we present detailed informa-
tion including: 1. ablation study; 2. sample face of MR-GAN; 3. details of
constructed IJB-C TinyFace; 4. learning algorithm of Multi-Resolution
Generative Adversarial Networks (MR-GAN); 5. detailed network archi-
tectures; 6. learning algorithm of feature adaption network.
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Fig. 1. Visualization for effects of local networks. MR-GAN (1) represents the MR-
GAN without local generators, attention networks and local discriminators, which is the
simplest baseline. MR-GAN (2) represents the MR-GAN without local generators
and attention networks. And MR-GAN(3) shows the results of MR-GAN without
local generators. Besides, the last row shows the compared faces generated by MR-
GAN.

1 Ablation Study

Effects of attention networks on MR-GAN. To confirm the advances of
our attention part, we investigate the effect of attention networks and attention



2 Han Fang, Weihong Deng∗, Yaoyao Zhong, Jiani Hu

𝑮𝑨𝟑(𝒙, 𝒛)𝑮𝑨𝟐(𝒙, 𝒛) 𝑮𝟑(𝒙, 𝒛)𝑮𝟐(𝒙, 𝒛)𝑮𝟏(𝒙, 𝒛)𝒙𝒓𝟑𝒙

Fig. 2. Visualization for spatial attention in different cases. The leftmost face x is
the input face. And xr3 is the down-sampled face of the lowest resolution. G1(x, z)
is the face generated by MR-GAN without spatial attention mechanism. G2(x, z) is
the face generated by MR-GAN without attention activation loss and GA2(x, z) is the
corresponding attention map. Besides, G3(x, z) is the face generated by MR-GAN and
GA3(x, z) is the corresponding attention map.
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Table 1. Evaluation results on IJB-C TinyFace 1:1 covariate protocol.

Method 10−7 10−6 10−5 10−4 10−3 10−2 10−1

MR-GAN + Adaption (RAN) 0.0699 0.1031 0.1616 0.2287 0.3273 0.4817 0.7095

MR-GAN + Adaption(Cosine loss) 0.0479 0.0837 0.1253 0.1814 0.2722 0.4181 0.6488
MR-GAN + Adaption(Euclidean loss) 0.0553 0.0861 0.1277 0.1848 0.2728 0.4213 0.6525

MR-GAN (w/o attention loss) + Adaption 0.0812 0.1065 0.1568 0.2209 0.3160 0.4666 0.6911
MR-GAN (w/o spatial attention)+ Adaption 0.0664 0.1011 0.1421 0.2015 0.2915 0.4411 0.6810
MR-GAN (w/o local generators)+ Adaption 0.0771 0.1086 0.1564 0.2188 0.3101 0.4545 0.6839

MR-GAN (w/o local generators and spatial attention)+ Adaption 0.0631 0.0924 0.1406 0.2024 0.2888 0.4281 0.6613
MR-GAN (w/o local generators, spatial attention and local discriminators)+ Adaption 0.0709 0.1014 0.1430 0.1999 0.2871 0.4257 0.6556

activation loss qualitatively and quantitatively. We train the same MR-GAN
without activation loss and attention networks respectively and report the re-
sults of IJB-C TinyFace in Table 1. And we visualize some sample faces and
their attention maps in Figure 2. Without spatial attention and activation loss,
MR-GAN focuses more on reducing the resolution of global information and
ignores the modification around the details. Compared with GA2(x, z), the at-
tention maps of GA3(x, z), which supervised by attention activation loss, can
learn more identity-relevant regions and help global generator to pay attention
to the learned masks. And the masks learned by GA2(x, z) are over-smoothed
and lost some important regions, which can deteriorate recognition performance
to some extent.

Effects of local networks on MR-GAN. To investigate the effectiveness
of local networks, we train MR-GAN without different parts respectively. The
quantitative results are shown in Table 1. Row 6 shows the results of MR-GAN
without local generators. Furthermore, Row 7 adopts global generator without
the spatial attention networks. And Row 8 depicts results which reduces local
generators, attention networks and local discriminators to show a simple base-
line. As reported in Table 1, the results of IJB-C TinyFace decrease in turn. To
better compare with the faces, we also visualize the sample faces and show in
Figure 1. Without paying attention to facial details, MR-GAN can still generate
low-resolution faces. However, the aim of MR-GAN is to generate the LR faces
which can be used for data augmentation. The preservation of realism around
the facial details can help adaption networks to achieve the better performance.

Effects of different loss functions on feature adaption networks. To
avoid deteriorating the HR feature space by directly minimizing HR and LR
features, we propose the novel translation gate to translate the HR feature into
LR feature and minimize the distance between translated LR features and realis-
tic LR features. Only minimizing the distance in the low-resolution domain will
make the network to generate more realistic fTranslate

LR (xHR) without affecting
the HR feature space. Besides, fHR can be gradually translated into fMR by
generating fTranslate

LR (xHR) and preserving enough LR representations. To effec-
tively minimize the distance, we explore the influence of L1 loss, Cosine loss
and Euclidean loss in IJB-C TinyFace and report the results in Table 1. In our
paper, we have empirically chosen the best way to minimize the distance.

Effects of W in translation gate. To demonstrate the change of W , we
visualize the whole process and depict in Figure 3. As we mentioned in paper,
due to the limited LR representations in fHR during the early stage of training,
translation gate adopts translator to amplify the LR representations to obtain
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TLR(fHR) and TLR(fHR) plays the dominant role in the feature and proba-
bilistic supervision. So TLR(fHR) can be more close to the LR domain and W
increases rapidly. Then as HR features can preserve and provide more realistic
LR representations gradually without amplification, fHR can be translated into
fMR directly and weight of fHR will increase in weighted architecture. Besides,
because we set the small value in hyper-parameters of low-resolution adversarial
networks, W will decrease and maintain within a stable range to balance two
sources of low-resolution representations. With this weighted translation, fHR

can retain enough LR representations to construct resolution-robust embedding.
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Fig. 3. (a): Visualization for change of W in translation gate. (b): Visualization for
change of accuracy in LR domain. The red curve represents the learned LR accuracy
by translation gate and the green curve depicts the fixed LR accuracy obtained by LR
model. (c): Visualization for Lf in feature supervision.

2 Sample Face of MR-GAN

We visualize the low-resolution face synthesis of MR-GAN on CASIA-WebFace
[4] in Figure 4. Our MR-GAN presents a great identity preserved but blurred
enough faces. In our MR-GAN, we observe the facial regions of low resolution
can also provide a part of discriminative information, which can improve the
performance in low-resolution face recognition.
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Fig. 4. The sample results on CASIA-WebFace [4]. The leftmost face in each group
is the input face, and the rest 3 faces are the synthesized visualizations from down-
sampling, Cycle-GAN [5] and MR-GAN.

3 Details of IJB-C TinyFace

The IARPA Janus Benchmark-C face challenge (IJB-C) [3] is the challenging
dataset collected from unconstrained environment with resolution and illumina-
tion variations. To focus on studying the problem of low resolution, we utilize
the distance between center point of eyes and mouth center as the criterion to
define small face and analyze it. The distribution is depicted in Figure 5. Most
distances are concentrated below 50 which reveals that IJB-C contains a lot of
low-resolution faces. Faces whose distances less than 30 and more than 10 are
selected as realistic LR faces, which can avoid the artifacts and large pose varia-
tions and provide enough LR representations. We totally get 7,985 LR faces and
select the corresponding pairs under the same subject for each selected LR face
to construct the positive pairs. For each selected LR face, we randomly select
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Fig. 5. The distribution of distances between center point of eyes and mouth center in
IJB-C [3] .

QMUL-SurvFaceSCface

IJB-C TinyFace

Fig. 6. Top: Example positive pairs from IJB-C TinyFace; Bottom: Example face
images from SCface [2] and QMUL-SurvFace [1].
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20 non-repeating faces with the same subject to construct pairs, and for the
subject whose number of face is less than 20, all the faces are selected. Finally
158,338 positive pairs are determined. Following IJB-C 1:1 covariate verification
protocol, selected 158,338 positive pairs and the same 39,584,639 negative pairs
are used to construct IJB-C TinyFace. More sample faces including SCface [2]
and QMUL-SurvFace [1] can be shown in Figure 6.

4 Learning Algorithm of MR-GAN

Algorithm 1 Learning algorithm of MR-GAN

Require:
High-resolution face images x.
Realistic low-resolution face images y.
Max number of epochs E.
Number of network updates per epoch B.

Ensure:
Resolution-aggregated generator G.
Global-local focused discriminator D.

for each e ∈ [1, E] do
for each b ∈ [1, B] do

if b mod 5 == 0 then
Optimize G by employing pixel loss;

else
Optimize G without pixel loss;

end if
Optimize D;

end for
Save G and D in epoch e;

end for

5 Detailed Network Architecture

Architecture of global and local discriminator are shown in Figure 8. In global
discriminator network, We use several convolutional layers, instance norm and
leaky ReLU to learn and activate the feature maps. PatchGANs [5] are utilized to
classify whether the image patches are real or fake. For the local discriminator
networks, the sizes of local patch are 20×72×3, 32×20×3 and 24×52×3 for
region of eyes, nose and mouth respectively. An to reduce parameters, we only
adopt three convolutional layers to focus on real or fake region to help global
discriminator to pay attention to discriminating the realism of facial details.
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Fig. 7. Local generator consists of several convolutional layers to encode images into
feature maps, residual blocks to deepen the network and transposed convolutional layers
to decode the local regions. And the random vector is connected with the feature after
residual blocks, deepening the channel.
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Fig. 8. Architecture of global and local discriminator. Top: Global discriminator; Bot-
tom: local discriminator. Input of global discriminator is the entire face. And input
face are cropped into eyes, nose and mouth, feeding into local discriminator.
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The architecture of local generator is depicted in Figure 7. With injection of
random vector, local generator aims to blur the local region randomly, avoid-
ing the artifacts. In Figure 9, multi-resolution fusions are adopted to aggregate
streams of different resolutions. The information of higher-resolution is repeat-
edly combined with the feature maps of lower-resolution and finally stream of the
lowest resolution contains multiple resolutions which can be randomly selected
to refine the LR faces.

6 Learning Algorithm of Feature Adaption Network

Algorithm 2 Learning algorithm of feature adaption network

Require:
High-resolution face images xHR.
Synthesized low-resolution face images xLR.
Pre-trained HR model (ModelHR) by using xHR.
Pre-trained LR model (ModelLR) by using xLR.
Max number of epochs E.
Number of network updates per epoch B.

Ensure:
Multi-resolution model ModelMR.
Low-resolution discriminator D.
for each e ∈ [1, E] do

for each b ∈ [1, B] do
1. Forward propagating ModelLR to obtain fReal

LR (xLR);
2. Forward propagating ModelMR to obtain fTranslate

LR (xHR) (input W=1);
3. Forward propagating D and optimize D;
4. Forward propagating D and obtain weight W ;
5. Forward propagating ModelMR with W ;
if b mod 4 == 0 then

Optimize ModelMR by employing LG
feature;

else
Optimize ModelMR without LG

feature;
end if

end for
end for
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Fig. 9. The architecture of global generator.
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