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Abstract. Target shift, the different label distributions of source and
target domains, is an important problem for practical use of unsupervised
domain adaptation (UDA); as we do not know labels in target domain
datasets, we cannot ensure an identical label distribution between the two
domains. Despite this inaccessibility, modern UDA methods commonly
try to match the shape of the feature distributions over the domains while
projecting the features to labels by a common classifier. This implicitly
assumes the identical label distribution. To overcome this problem, we
propose a method that generates a pseudo pair by domain conversion
where the label is preserved identically even trained with target-shifted
datasets. A pair-wise metric learning enables to align feature over the do-
mains without matching the shape of distributions. We conducted two
experiments: one is a regression of pose-estimation, where label distri-
bution is continuous and the target shift problem can seriously degrade
the quality of UDA. The other is digit classification task where we can
systematically control the distribution difference. The code and dataset
are available at https://github.com/iiyama-lab/PS-VAEs.

1 Introduction

Unsupervised domain adaptation (UDA) is one of the most studied topics in
recent years. One attractive application of UDA is adaptation from computer
graphic (CG) data to sensor-observed data. By constructing a CG-rendering
system, we can easily obtain a large amount of supervised data with diversity
for training. Because a model straightforwardly trained on CG-rendered dataset
hardly works with real observation, training a model with both CG-rendered
dataset (source domain) and unsupervised real observation dataset (target do-
main) by UDA is a necessary but promised approach.

As in ADDA [38], the typical approach for UDA is to match feature dis-
tributions between the source and target domains [8, 19, 22]. This approach
works impressively with identically-balanced datasets, such as those for dig-
its (MNIST, USPS, and SVHN) and traffic-scene semantic-segmentation (GTA5
[30] to Cityscapes [5]). When the prior label distributions of the source and tar-
get domains are mismatched, however, such approaches hardly work without a
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(c) A model trained with pair-wise alignment

Fig. 1. (best viewed in color) Overview of the proposed approach on the problem of
(2D) human pose estimation. Note that the feature-to-label projection M is trained
only with source domain dataset, where Es and Et are domain specific image-to-feature
encoders. (a) The naive approach fails in the target domain due to the differences in the
feature distributions between the two domains: location difference that illustrates the
affection by domain shift and shape difference caused by target shift (non-identical label
distributions of the two domains). (b) While feature distribution matching attempts
to adjust the shape of two feature distributions, it suffers from misalignment in label
estimation due to the deformed target domain feature distribution. (c) The proposed
method avoid this deformation problem by sample-wise feature distance minimization,
where pseudo sample pairs with an identical label are generated via a CycleGAN-based
architecture.

countermeasure for the mismatch (see Figure 1). Cluster finding [34, 33, 6] is an-
other approach for UDA by a class-boundary adjustment; they are not, however,
applicable to regression problems due to the absence of class-boundaries in the
distribution.

In this paper, we propose a novel UDA method applicable especially to the
regression problem with mismatched label distributions. The problem of mis-
matched label distributions is also known as target shift [10, 42] or prior prob-
ability shift [28]. The typical example of this problem is UDA from a balanced
source domain dataset to an imbalanced target domain dataset. Some recent
studies have tried to overcome this problem by estimating category-wise im-
portance labels [1–3, 39, 41] or sample-wise importance labels [15]. The former
approach is only applicable to classification tasks. The latter is applicable to
regression but under-samples the source domain data. In addition, it requires a
reliable similarity metric over the domain shift (a domain-shift-free metric) to se-
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lect important samples; this suffers from the chicken-and-egg situation. Namely,
if we have a measure that is hardly affected by domain shift, we can safely apply
pair-wise metric learning (e.g., with a Siamese loss), but such metric is not given
in general.

In contrast, our method resolves this problem by oversampling with label-
preserving data augmentation. This is applicable even to regression with UDA
and does not require any preliminary knowledge of the domain-shift-free metrics.
Figure 1 shows the overview. Traditional methods [11, 19, 32, 38] matches feature
distributions of the two domains (Fig. 1 (b)). Since feature distributions are
forced to be identical and the feature-to-label projection function is shared by
the two domains, the estimated labels in the target domain must distribute
identically with that of the source domain. Under the target shift condition, this
clearly competes with the assumption of non-identical label distributions.

Our method addresses the problem of target shift by tolerating feature dis-
tribution mismatches and instead requiring the sample-wise matches of the la-
bels (Fig. 1 (c)). To this end, our method called partially-shared variational
auto-encoders (PS-VAEs) organizes a CycleGAN architecture [44] with two VAE
branches that share weights as much as possible to realize the label-preserving
conversions.

The contribution of this paper is three-fold.

– We propose a novel UDA method that overcomes the target shift problem by
oversampling with label-preserving data augmentation, which is applicable
to regression. This is the first algorithm that solves regression with UDA
under a target shift condition without relying on any prior knowledge of
domain-shift-free metrics.

– We tackled the problem of human-pose estimation by UDA with target shift
for the first time and outperformed the baselines with a large margin.

– The proposed method showed the versatility under various levels of target
shift intensities and different combinations of datasets in the task of digit
classification with UDA.

2 Related Work

UDA by a feature space discriminator
The most popular approach in modern UDA methods is to match the feature dis-
tributions of the source and target domains so that a classifier trained with the
source domain dataset is applicable to target domain samples. There are various
options to match the distributions, such as minimizing MMD [22, 39], using a
gradient-reversal layer with domain discriminators [8], and using alternative ad-
versarial training with domain discriminators [2, 16, 19, 38]. Adversarial training
removes domain bias from the feature representation. To preserve information in
domain invariant features as much as possible, UFDN [19] involves a VAE mod-
ule [7] with the discriminator. Another approach is feature whitening [31], which
whitens features from each domain at domain-specific alignment layers. This ap-
proach does not use adversarial training, but it tries to analytically fit a feature
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Table 1. Representative UDA methods and their supporting situations. The symbol
“(X)” indicates that the method theoretically supports the situation but this was not
experimentally confirmed in the original paper.

Balance Imbalance
classification regression classification regression

ADDA[38], UFDN[19], CyCADA[11] X (X)
MCD[34] X (X)
PADA[39], UAN[40], CDAN-E[23] X X
SimGAN[35] X (X)
Ours X (X) X X

distribution from each domain to a common spherical distribution. As shown in
Table 1, all these methods are theoretically applicable to both classification and
regression, but it is limited to the situations without target shift.

Cluster finding approaches
MCD was proposed by Saito et al. [33, 34], which does not use distribution
matching. Instead, the classifier discrepancy is measured based on the differ-
ence of decision boundaries between multiple classifiers. DIRT-T [36] and CLAN
[24] are additional approaches focusing on the boundary adjustment. These ap-
proaches are potentially be robust against target shift, because they focus only
on the boundaries and do not try to match the distributions. CAT [6] is a plug-
and-play method that aligns clusters found by other backbone methods. Since
these approaches assume an existence of boundaries between clusters, they are
not applicable to regression, which have continuous sample distributions (see the
second row in Table 1).

UDA with target shift
Traditional UDA benchmarks barely discuss the problem of target shift. Most
classification datasets, such as MNIST, USPS, and SVHN are balanced. Even
the class-imbalance problem is known with semantic segmentation, target shift
does not come to the surface as long as source and target domains are simi-
larly imbalanced (i.e., their label distributions can be considered as identical).
GTA5→Cityscapes is in the case. CDAN-E [23] is one of the few methods that
has potential to deal with target shift although the original paper does not
clearly discuss the target shift problem. Partial domain adaptation (PDA) is a
variant of UDA with several papers on it [1–3, 39, 41] (see the third row in Table
1). This problem assumes a situation in which some categories in the source
domain do not appear in the target domain. This problem is a special case of
target shift in two senses: it assumes the absence of a category and it assumes
only classification tasks. The principle approach for this problem is to estimate
the importance weight for each category, and ignore those judged as unimpor-
tant (under-sampling). UAN [40] is another recent method that solves PDA
and the open-set problem simultaneously. It estimates sample-wise importance
weight based on the entropy at the classification output for each target sample.
PADACO [15] is designed for a regression problem of head pose estimation under
a target shift situation. To obtain sample-wise importance weight with a regres-
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sion problem, it uses head-pose similarity between source and target samples,
where target domain head-pose is estimated by a pretrained backbone, which is
source-only model in the paper. Then, the similarity values are converted into
fixed sampling weights (under-sampling). Finally, it performs UDA training with
a weighted sampling strategy. To obtain better results with this method, it is
important to obtain good sampling weights with the backbone, just as CAT [6].
UDA by domain conversion
Label-preserving domain conversion is another important approach and includes
the proposed method (see fourth and fifth rows in Table 1). Shrivastava et
al. proposed SimGAN [35], which converts CG images to nearly real images
by adversarial training. This method tries to preserve labels by minimizing the
self-regularization loss, the pixel-value difference between images before and af-
ter conversion. This method can be seen as an approach based on over-sampling
with data augmentation in the sense that it generates source-domain-like sam-
ples using GAN under the self-regularization constraint. Note that SimGAN is
the first deep-learning-based UDA method for regression that is theoretically
applicable to the task with target shift. On the other hand, this method still
assumes a domain-shift-free metric of the self-regularization loss, which is not
always domain-shift-free.

CyCADA [11] combines CycleGAN, ADDA and SimGAN for a better per-
formance. It first generates fake target domain images via CycleGAN. The label-
consistency of generated samples are preserved by SimGAN’s self-regularization
loss; however it has a discriminator that matches the feature distributions. Hence,
this methods principally has the same weakness against target shift. SBADA-
GAN [32] is yet another CycleGAN-based method with discriminator for feature
distribution matching.

In addition to the above methods, there is a recent attempt to solve human-
pose estimation by domain adaptation [43].This method tried to regularize do-
main difference by sharing a discrete space of body-parts segmentation as an
intermediate representation, but the reported score shows that the method dose
not work effectively under the UDA setting.

3 Method

3.1 Problem statement

Let {xs, ys} ∈ Xs×Ys be samples and their labels in the source domain dataset
(Ys is the label space), and let xt ∈ Xt be samples in the target domain dataset.
The target labels Yt and their distribution Pr(Yt) are unknown (i.e., possibly
Pr(Yt) 6= Pr(Ys)) in the problem of UDA with target shift. The goal of this
problem is to obtain a high-accuracy model for predicting the labels of samples
obtained in the target domain.

3.2 Overview of the proposed method

The main strategy of the proposed method is to replace the feature distribution
matching process with pair-wise feature alignment. To achieve this, starting from
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the standard CycleGAN as the base architecture (Fig. 2), we add two new losses
to generate pseudo pairs (xs, x̂t) and (xt, x̂s), each of which are expected to
have an identical label: Lfc for feature alignment (Fig. 3) and Lpred for label
prediction (Fig. 4). The both losses are calculated only on the domain-invariant
component z of the disentangled feature representation zs (or zt). After the
training, prediction in target domain is done by the path, encoder→predictor
(M ◦ Et). 3.3 describes this modification in detail.

To preserve the label-related content at domain conversion, we further modify
the network by sharing weights and introducing VAE’s mechanism (Fig. 5). 3.4
describes this modification in detail.

3.3 Disentangled CycleGAN with feature consistency loss

The model in Figure 2 has pairs of encoders E∗, generators G∗, and discrimina-
tors D∗, where ∗ ∈ {s, t}. x̂t is generated by Gt(Es(xs)), and x̂s by Gs(Et(xt)).
The original CycleGAN [44] is trained by minimizing the cycle consistency loss
Lcyc, the identity loss Lid, and the adversarial loss Ladv defined in LSGAN [26]:

min
Es,Et,Gs,Gt

Lcyc(Xs, Xt) =
∑
∗∈{s,t}

Ex∈X∗ [d(x, ˆ̂x)], (1)

where d is a distance function and ˆ̂x = G∗(E∗̄(x̂∗̄)). Here,∗̄ is the opposite domain
of ∗.

min
Es,Et,Gs,Gt

Lid(Xs, Xt) =
∑
∗∈{s,t}

Ex∈X∗ [d(x,G∗(E∗(x)))] (2)

min
Es,Et,Gs,Gt

max
Ds,Dt

Ladv(Xs, Xt) = E{xs,xt}∈Xs×Xt
[‖Ds(xs)− 1‖2+

‖Ds(Gs(Et(xt))) + 1‖2 + ‖Dt(xt)− 1‖2 + ‖Dt(Gt(Es(xs))) + 1‖2]
(3)
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Note that we used spectral normalization [27] in Ds and Dt for a stable adver-
sarial training.

To successfully achieve pair-wise feature alignment, the model divides the
output of E∗ into z∗̄ = {z, ζ∗̄}. Then, it performs feature alignment by using the
domain-invariant feature consistency loss Lfc (Fig. 3), defined as

min
Es,Et,Gs,Gt

Lfc(Zs, Zt) =
∑
∗∈{s,t}

Ez∗∈Z∗ [d(select(z∗), select(E∗̄(G∗̄(z∗))))], (4)

where Z∗ = E∗(X∗) and select is a function to select z in z∗. Note that gradients
are not further back-propagated to E∗̄ over z∗ because updating both z∗ and ẑ∗
in one step leads to bad convergence.

In addition, z obtained from xs is fed into M to train the classifier/regressor
M : z → ŷ by minimizing the prediction loss Lpred(Xs, Ys) (Fig. 4). The concrete
implementation of Lpred is task-dependent.

We avoid applying Lfc to the whole feature components zt, as it can hardly
reach good local minima because of the competition between the pair-wise fea-
ture alignment (by Lfc) and CycleGAN (by Lcyc and Lid). Specifically, training
Gt to generate x̂t must yield a dependency of Pr(zt|xt). This means that ẑt is
trained to have in-domain variation information for xt. The situation is the same
with xs and zs. Hence, ẑt and ẑs have dependencies on different factors, xt and
xs, respectively, and it is difficult to match the whole features, ẑt and ẑs. The
disentanglement into z and ζ∗ resolves this situation. Note that this architecture
is similar to DRIT [18] and MUNIT [12].

3.4 Partially shared VAEs

Next, we expect Es and Et to output a domain-invariant feature z. Even with
this implementation, however, CycleGAN can misalign an image’s label-related
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content in domain conversions under a severe target shift, because it has dis-
criminators that match not feature- but image-distributions. Figure 6 shows
actual examples of misalignment caused by the image space discriminators. This
happens because the decoders Gs and Gt can convert identical zs into different
digits (or poses) to better minimize Ladv with mismatched label distributions.
In such cases, the corresponding encoders also extract identical zs from images
with totally different appearance.

To prevent such misalignment and get more stable results, we make the
decoders share weights to generate similar content from z, and we make the
encoders extract z only from similar content. Figure 5 shows the details of the
parameter-sharing architecture, which consists of units called partially-shared
auto-encoders (PS-AEs). Formally, the partially shared encoders are described
as a function E : x → {z, ζs, ζt}. In our implementation, only the last layer
is divided into three parts, which outputs z, ζs, and ζt. E can obviously be
substituted for Es and Et by discarding ζt and ζs from the output, respectively.
Similarly, the generator G : {z, ζs, ζt} → x̂ shares weights other than for the first
layer. The first layer consists of three parts, which output z, ζs, and ζt. G can
be substituted for Gs and Gt by inputting {z, ζs,0} and {z,0, ζt}, respectively.
Note that the reparameterization trick and Lkl minimization are applied only at
Lid calculation, but not at Lcycle calculation.

This implementation brings another advantage for UDA tasks: it can disen-
tangle the feature space by consisting of two variational auto-encoders (VAEs),
Gs ◦ Et and Gt ◦ Es (Figure 5). Putting VAE in a model to obtain a domain-
invariant feature is reported as an effective option in recent domain adaptation
studies [19, 21]. To make PS-AEs a pair of VAEs, we put VAE’s resampling
process at calculation of Lid and add the KL loss defined as

min
Es,Et

LKL(Xs, Xt) =
∑
∗∈{s,t}

Ez,ζ∗∈E∗(X∗)[KL(pz||qz) +KL(pζ∗ ||qζ∗)], (5)

where KL(p‖q) is the KL divergence between two distributions p and q, pζ∗ is
the distribution of ζ∗ sampled from X∗, and qz and qζ∗ are standard normal
distributions with the same sizes as z and ζ∗, respectively.

Our full model, partially-shared variational auto-encoders (PS-VAEs), is
trained by optimizing the weighted sum of the all the above loss functions:

Ltotal = Ladv + αLcyc + βLid + γLKL + δLfc + εLpred, (6)

where α, β, γ, δ, and ε are hyper-parameters that should be tuned for each task.
For the distance function d, we use the smooth L1 distance [9], which is defined
as

d(a, b) =

{
‖a− b‖2 if |a− b| < 1
|a− b| − 0.5 otherwise

(7)
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Fig. 7. Difference in joint position
distributions. A complete list ap-
pears in the supplementary mate-
rials.
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4 Evaluation

4.1 Evaluation on human-pose dataset

We firstly evaluated the proposed method with a regression task on human-pose
estimation.

Dataset For this task, we prepared a synthesized depth image dataset whose
poses were sampled with CMU Mocap [4] and rendered with PoserPro2014 [37],
as the source domain dataset. Each image had 18 joint positions. In the sam-
pling, we avoided pose duplication by confirming that at least one joint had a
position more than 50mm away from its position in any other samples. The total
number of source domain samples was 15000. These were rendered with a choice
of two human models (male and female), whose heights were sampled from a
normal distribution with respective means of 1.707 and 1.579m and standard
deviations of 56.0mm and 53.3mm). For the target dataset, we used depth im-
ages from the CMU Panoptic Dataset [14], which were observed with a Microsoft
Kinect. We automatically eliminated the background in the target domain data
by preprocessing.3 Finally, we used 15,000 images for training and 500 images
(with manually annotated joint positions) for the test.

Experimental Settings Figure 7 shows the target shift between the source
and target domains via the differences in joint positions at the head and foot.
Lpred was defined as

min
Es,M

Lpred(Ys, Xs)=Exs,ys∈{Xs,Ys}(d(M(Es(xs)), ys)). (8)

Comparative methods We compared the proposed method with the following
three baselines.

3 The details appear in the supplementary material.
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Table 2. Accuracy in human-pose estimation by UDA (higher is better). Results were
averaged for joints with left and right entries (e.g., the ”Shoulder” column lists the
average scores for the left and right shoulders). The ”Avg.” column lists the average
scores over all samples, rather than only the joints appearing in this table.

Error less than 10px. Head Neck Chest Waist Shldr. Elbow Wrists Hands Knees Ankles Foots Avg.

Source only 69.6 78.6 31.6 34.2 47.3 44.5 38.4 31.5 38.5 54.1 66.2 47.4
MCD 4.6 7.0 0.2 0.6 1.4 0.2 0.3 0.9 0.4 21.0 16.6 5.3
SimGAN 90.2 68.0 10.8 22.6 38.8 26.3 28.5 33.6 35.9 52.5 52.8 40.4
CyCADA 90.0 69.0 15.4 28.2 39.5 27.3 31.3 32.5 35.4 54.4 53.2 41.0
Ours
CycleGAN+Lfc 82.8 79.0 33.8 17.0 40.0 16.4 15.8 28.4 13.8 51.0 51.5 35.5
D-CycleGAN 93.0 85.8 21.4 47.8 42.5 42.5 35.8 39.2 42.5 66.9 64.1 50.8
D-CycleGAN+VAE 40.6 34.2 17.6 41.2 10.1 10.2 7.5 6.4 20.0 28.0 20.2 18.6
PS-AEs 80.6 72.4 40.8 28.0 46.5 28.4 25.2 29.4 25.3 58.9 53.9 42.1
PS-VAEs(full) 89.4 84.6 21.4 43.4 51.7 54.4 49.4 43.9 45.6 74.5 74.0 57.0

(a) Source Only (b) SimGAN (c) CyCADA (d) Ours

Fig. 9. (best viewed in color) Feature distribution visualized by t-SNE [25]: source
domain CG data (blue points) and target domain observed data (red points).

SimGAN [35] is a method based on image-to-image conversion. To prevent
misalignment during conversion, it also minimizes changes in the pixel-values
before and after conversion by using a self-regularization loss. The code is
borrowed from the implementation of CyCADA.

CyCADA [11] is a CycleGAN-based UDA method. The self-regularization loss
is used in this method, too. In addition, it matches feature distributions, like
ADDA.

MCD [34] is a method that minimizes a discrepancy defined by the boundary
differences obtained from multiple classifiers. This method is expected to be
more robust against target shift than methods based on distribution match-
ing, because it does not focus on the entire distribution shape. On the other
hand, this kind of approach is theoretically applicable only to classification
but not to regression.

All the above methods were implemented with a common network structure,
which appears in the supplementary materials.

In addition to the above methods, on the purpose of an ablation study, we
compared our full model with the following four different variations.

CycleGAN+Lfc does not divide zs and zt into the two components, but ap-
plied Lfc to zs and zt directly.
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(a) Input (c) Ours(b) SimGAN

Fig. 10. (best viewed in
color) Qualitative compari-
son on the domain conver-
sion. Detailed structure in
body region is lost with Sim-
GAN, but reproduced with
our model.

(a) Input (c) SimGAN(b) Ground truth (e) Ours(d) CyCADA

Fig. 11. (best viewed in color) Qualitative results of
human-pose estimation. Due to the lack of detailed
depth structure as seen in Fig. 10, SimGAN and Cy-
CADA often fail to estimate joints with self-occlusion.

D-CycleGAN stands for disentangled CycleGAN, which divides zs and zt into
the two components, but weights of encoders and decoders are not shared
and not using VAE at the calculation of Lid.

D-CycleGAN+VAE is a D-CycleGAN with LKL and the resampling trick of
VAE at the calculation of Lid.

PS-AEs stands for Partially-shared Auto-Encoders, whose encoders and de-
coders partially shares weights as described in 3.4, but not using VAE.

PS-VAEs stands for Partially-shared Variational Auto-Encoders and this is the
full model of the proposed method.

All hyper-parameters of baselines and the proposed methods are manually tuned
with our best effort for this new task. (A comparison under the optimal hyper-
parameter settings are given in 4.2 with the other task.)

Results and Comparison Figure 8 shows the rate of samples whose estimated
joint position error is less than thresholds (the horizontal axis shows the thresh-
old in pixels). To view the joint-wise tendency, we trimmed the figure at the
threshold of ten pixels and listed joint-wise accuracy in Table 2.The full model
using the proposed methods achieved the best scores on average and for all the
joints other than the head, neck, chest, and waist. These four joints have less
target shift than others do (see Figure 7 or the complete list of joint position
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distributions in supplementary materials). SimGAN was originally designed for
a similar task (gaze estimation and hand-pose estimation) and achieved bet-
ter scores than MCD. CyCADA is an extension of SimGAN and has additional
losses for distribution matching, but it did not boost the accuracy in the tasks
of UDA with target shift. MCD was originally designed for classification tasks
and did not work for this regression task, as expected.

Discussion Figure 9 shows the feature distributions obtained from four differ-
ent methods. Because SimGAN does not have any mechanisms to align features
in the feature space, the distributions did not merge well. CyCADA better mixes
the distributions, but still the components are separated. In contrast, the pro-
posed method merged features quite well despite no discriminators or discrep-
ancy minimization was performed. This indicates that the proposed pair-wise
feature alignment by Lfc worked well with this UDA task.

A qualitative difference in domain conversion is shown in Figure 10. Sim-
GAN’s self-regularization loss worked to keep the silhouette of generated sam-
ples, but subtle depth differences in the body regions were not reproduced well.
In addition, the silhouettes were forced to be similar to those of the two human
models used to render the CG dataset. This insists that the prior assumption
of domain-shift-free metric (i.e., self-regularization loss) could rather reduce the
accuracy from source only model. In contrast, the proposed method seems to be
able to reproduce such subtle depth differences with a more realistic silhouette.
This difference contributed to the prediction quality difference shown in Figure
11.

D-CycleGAN had actually performed the second best result and D-
CycleGAN+VAE and PS-AEs did not work well. First, as UNIT [20] does,4

it seems to be difficult to use VAE with CycleGAN without sharing weights
between the encoder-decoder models. After combining all these modifications,
the full model of the proposed method outperformed any other methods with a
large margin.

4.2 Evaluation on digit classification

To show the versatility of the proposed method with classification task and
to systematically analyze the performance of the methods against target
shift, we conducted an experiment by a simple UDA task with digit datasets
(MNIST[17]↔USPS[13], and SVHN[29]→MNIST), with which the optimal
hyper-parameters are provided in many methods.

Controlling the intensity of target shift To evaluate the performance
under a controlled situation with an easy-to-reproduce and high-contrast class-
imbalances in the target domain, we adjusted the rate of samples of class ‘1’ from

4 Another neural network model that combines CycleGAN and VAE as the proposed
model, but for image-to-image translation.
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Table 3. Accuracy in the three UDA tasks (Bold&Underline: The best and second
best scores. ∆: the degradation from 10% to 50%).

Src. Only ADDA UFDN CDAN-E PADA UAN SimGAN CyCADA MCD Ours

M
N

IS
T
→

U
S
P

S Ref. - 89.4 97.1 95.6 - - - 95.6 94.2 -

10% 71.0 89.8 94.0 91.0 75.3 78.2 72.4 91.8 91.2 93.9
20% - 86.9 90.4 90.7 77.7 77.3 86.5 91.0 90.4 94.8
30% - 79.3 83.2 91.1 79.3 74.9 84.0 80.3 79.0 93.4
40% - 81.8 82.3 84.2 77.8 75.0 84.3 86.4 78.5 94.6
50% - 78.5 83.8 79.8 80.2 76.0 76.3 87.6 80.3 92.6

∆ - -11.3 -10.2 -11.2 4.9 -2.2 3.9 -4.2 -10.9 -1.3

U
S
P

S
→

M
N

IS
T Ref. - 90.1 93.7 98.0 - - - 96.5 94.1 -

10% 55.6 96.0 93.6 95.8 47.9 83.2 68.3 75.3 96.0 94.8
20% - 89.0 81.9 95.8 39.2 83.4 50.2 75.3 81.5 94.4
30% - 81.5 79.2 95.4 36.0 79.4 49.9 75.2 79.1 90.8
40% - 78.9 72.0 90.9 29.8 78.4 63.8 76.7 78.1 82.6
50% - 80.5 69.1 90.7 25.2 77.7 49.3 70.7 77.4 82.4

∆ - -15.5 -24.6 -4.1 -22.7 -5.5 -19.0 -4.6 -18.4 -12.4

S
V

H
N
→

M
N

IS
T Ref. - 76.0 95.0 89.2 - - - 90.4 96.2 -

10% 46.6 75.5 91.1 78.7 30.5 68.0 61.4 91.4 90.3 73.7
20% - 65.0 70.9 79.4 39.5 64.8 52.5 75.4 89.7 72.9
30% - 65.2 58.7 73.2 37.3 63.2 57.7 69.7 80.2 73.8
40% - 50.8 52.6 56.9 36.8 64.9 51.8 70.7 72.0 64.4
50% - 54.3 43.6 56.1 36.7 66.8 49.3 68.3 65.3 68.4

∆ - -21.2 -47.5 -22.6 6.2 -1.2 -12.1 -23.1 -25.0 -5.3

10% to 50%. Note that the operation is done only to the training samples in the
target domain. Those in the source domain and test data are both maintained
to be balanced.

When the rate was 10%, the number of samples was exactly the same among
the categories. When it was 50%, half the data belonged to category ‘1,’ which
was the largest target shift in this experiment. Note that the reference scores
reported in the original papers and those at 10% are slightly different due to
the controled numbers of training data. A more detailed explanation of this
operation appears in the supplementary materials.

Experimental settings and comparative methods In this task, Lpred is
simply given as the following categorical cross-entropy loss:

min
Es,M

Lpred(Ys, Xs)=Exs,ys∈Xs×L[−ys logM(E(xs))] (9)

In addition to the comparative methods shown in 4.1, we prepared the fol-
lowing three additional baselines as the methods that resolve domain shift purely
by distribution matching:

ADDA [38] and UFDN [19] are methods based on feature distribution
matching.
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PADA [2] and UAN [40] also match feature distributions but while estimat-
ing a category- and sample-wise weights, respectively.

CDAN-E [23] uses category-wise distribution matching and thus potentially
valid under target shift as long as the target domain samples are assigned
to the right category. To ensure the right assignment, the method estimates
sample-wise weights.

Note that some of recent state-of-the-art methods for the digit UDA task
without target shift was not listed in the experiment due to their repro-
ducibility problem.5 The detailed implementations (network architecture, hyper-
parameters, and so on) of the proposed method and the above methods appear
in the supplementary material.

Results and discussion Table 3 lists the results. The methods based on dis-
tribution matching (ADDA and UFDN) were critically affected by target shift.
CyCADA was more robust than ADDA and UFDN for the MNIST↔USPS
tasks, owing to the self-regularization loss; however it did not work for the
SVHN→MNIST task due to the large pixel-value differences. A similar tendency
was observed by SimGAN.

MCD stably performed well among all the three tasks; however, it was largely
affected by target shifts (≥30%). Similar tendency was observed with CDAN-E
(≥40%). From the perspective of the performance drop by target shift, PADA
behaved differently from any other methods; it typically works better with a
heavier target shift but not so good without target shift. UAN, which was not
evaluated on this dataset in the original paper, achieved a poor absolute perfor-
mance although it was least degraded by the target shift. Overall, our method
comparably performed under the various level of target-shifted conditions even
in the classification task. This shows the versatility of the method against various
UDA tasks.

5 Conclusion

In this paper, we have proposed a novel approach of partially-shared variational
auto-encoders for the problem of UDA with target shift. The traditional ap-
proach of feature distribution matching implicitly assumes the identical distri-
bution and will fail with target shift. The proposed method resolves this problem
by label-preserving domain conversion; pseudo pair with an identical label is gen-
erated with domain conversion and used to resolve domain shift by sample-wise
metric learning rather than a distribution matching. The model is specially de-
signed to preserve the labels by sharing weights between two domain conversion
branches as much as possible. The experimental results showed its versatile per-
formance on pose estimation and digit classification tasks.
5 The authors of [31] provide no implementation and there are currently no other

authorized implementations. Two SBADAGAN[32] implementations were available
but it was difficult to customize them for this test and the reported accuracy was
not reproducible.
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