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1 Study on Hyper-parameters
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Fig. 1. Study on N. FrameAP@0.5 result on UCF101-24 [8] with tubelet length K=5
and only RGB input.

N in Center Branch. During inference, Center Branch keeps top N instances
from all categories after max pooling operation, which is indicated in paper’s
Section 3.1. We follow CenterNet [11], which is an anchor-free object detector
and set N as 100. As shown in Figure 1, we can see that the detection result is
robust to N and changes slightly after 40.

a and b in Loss Function. Paper’s Equation (9) is MOC’s training objective
consisting of three branches’ loss. As shown in Figure 2, we have a linear search
on a and b with tubelet length K=5 and only RGB input. We can see that a=1,
b=0.1 performs best.

? Yixuan Li and Zixu Wang contribute equally to this work. This work is supported
by Tencent AI Lab.
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Fig. 2. Study on a and b. FrameAP@0.5 result on UCF101-24 [8] with tubelet length
K=5 and only RGB input.

2 Error Analysis
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Fig. 3. Error analysis on UCF101-24 [8] and JHMDB [5] (only split 1). We
report the detection error results according to five categories: (1) classification error
EC , (2) localization error EL, (3) time error ET , (4) missed detection EM , and (5)
other error EO. The green part represents the correct detection. With tubelet length
K = 7 and two-stream fusion.

In this section, following [6], we conduct an error analysis on the frame mAP
to better explore our proposed MOC-detector. In particular, we investigate five
kinds of tubelet detection error: (1) classification error EC : the detection IoU
is greater than 0.5 with the ground-truth box of another action class. (2) local-
ization error EL: the detection class is correct in a frame but the bounding box
IoU with ground truth is less than 0.5. (3) time error ET : the detection in the
untrimmed video covers the frame that doesn’t belong to the temporal extent of
the current action instance. (4) missed detection error EM : cannot detect out a
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Fig. 4. Error Analysis with Two-stream Fusion. We report the detection error
results according to five categories by changing input: (1) classification error EC , (2)
localization error EL, (3) time error ET , (4) missed detection EM , and (5) other error
EO. With tubelet length K = 7 and two-stream fusion on UCF101-24 [8].

ground truth box. (5) other error EO: the detection appears in a frame without
the class and has IoU less than 0.5 with the ground truth bounding box of other
classes.

We present error analysis on the untrimmed dataset UCF101-24 [8] and the
trimmed dataset JHMDB [5] (only split 1) with tubelet length K = 7 and two-
stream fusion. As shown in Figure 3, we find the major error is ET , time error
(10.18%), for the untrimmed dataset UCF101-24 [8] and EC , classification error
(25.43%), for the trimmed dataset JHMDB [5]. Although our MOC-detector has
achieved state-of-art on both datasets, we will try to extend this framework to
model longer temporal information to improve classification accuracy and model
action boundary in the temporal dimension to eliminate time error.

We also visualize error analysis with two-stream fusion on UCF101-24 [8]
and the results are reported in Figure 4. Note that we set tubelet length K as
7. First, spatial stream performs obviously better than the temporal stream for
classification error and missed detection, owing to its richer information. Second,
two-stream fusion improves the performance except for time error, which shows
that two-stream fusion harms temporal localization.

3 More exploration on Box Branch

Previously, we tried to add temporal information into the bbox estimation by
stacking features across time as input, which is as same as Movement Branch.
As shown in Table 1, the performance drops after adding temporal information.
It indicates that a single frame is sufficient for the bbox detection.
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Table 1. Exploration study on the Box Branch design with only RGB as input and
K = 5. Note that union means stacking feature together to add temporal information
into the bbox estimation and separate (MOC) estimates bbox separately for each frame.

Method F-mAP@0.5 (%)
Video-mAP (%)

@0.2 @0.5 @0.75 0.5:0.95

union 70.41 76.54 49.14 26.61 26.14
separate(MOC) 71.63 77.74 49.55 27.04 26.09

4 More Results on JHMDB

Table 2. Comparison with Gu et al. [3] and Sun et al. [9] on JHMDB [5] (3 splits) with
tubelet length K=7 and two stream fusion. Ours (MOC) † is pretrained on ImageNet [2]
, Ours (MOC)†† is pretrained on COCO [7] and Ours (MOC)††† is pretrained on
UCF101-24 [8] for action detection.

Method GFLOPs
JHMDB

Frame-mAP@0.5 (%)
Video-mAP (%)

@0.2 @0.5 @0.75 0.5:0.95

Ours (MOC)† 29.4 68.0 76.2 75.4 68.5 54.0

Ours (MOC)†† 29.4 70.8 77.3 77.2 71.7 59.1

Ours (MOC)††† 29.4 74.0 80.7 80.5 75.0 60.2

Gu et al. 2018 [3] (I3D) >91.0 73.3 - 78.6 - -
Sun et al. 2018 [9] (S3D-G) >65.5 77.9 - 80.1 - -

Our MOC is a one stage tubelet detector with 2D backbone. We compare it
with two-stage detectors with 3D backbone [3,9] in paper’s Section 4.3, which
perform comparably with us on UCF101-24 [8] while better than ours on JH-
MDB [5].

JHMDB [5] is really small and sensitive to the pre-train model. For fair
comparison with 2D backbone methods in paper’s Section 4.3, we just provide
results with ImageNet [2] pretrain and COCO [7] pretrain. But Gu et al [3]
and Sun et al. [9] both pretrain 3D backbone on Kinetics [1], which is a large-
scale video classification dataset and always boosts task results especially on
small datasets. We pretrain our MOC on UCF101-24 [8] for action detection in
Table 2, which outperforms Gu et al. [3] for all metrics with saving more than 3
times computation cost and performs comparably with Sun et al. [9] with saving
more than 2 times computation cost. Note that Gu et al. [3] and Sun et al. [9]
do not provide implementation code, so we just roughly estimate the backbone
computation for each frame’s detection result, whose input is 20 frames with
resolution of 320*400. For Gu et al. [3], we calculate ResNet50 (conv4) [4] for
action localization and I3D (Mixed 4e) [1] for classification. For Sun et al. [9]
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(Base Model), we calculate ResNet50 (conv4) [4] for action localization and S3D-
G [10] for classification. For our MOC, we calculate the whole computation cost
for each frame detection result. For fair comparison, we only use RGB as input
to estimate GFLOPs for all methods.
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