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Abstract. The transferability of adversarial examples across deep neu-
ral network (DNN) models is the crux of a spectrum of black-box attacks.
In this paper, we propose a novel method to enhance the black-box trans-
ferability of baseline adversarial examples. By establishing a linear map-
ping of the intermediate-level discrepancies (between a set of adversarial
inputs and their benign counterparts) for predicting the evoked adver-
sarial loss, we aim to take full advantage of the optimization procedure of
multi-step baseline attacks. We conducted extensive experiments to ver-
ify the effectiveness of our method on CIFAR-100 and ImageNet. Experi-
mental results demonstrate that it outperforms previous state-of-the-arts
considerably. Our code is at https://github.com/qizhangli/ila-plus-plus.
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1 Introduction

The adversarial vulnerability of deep neural networks (DNNs) has been exten-
sively studied over the years [34, 8, 25, 3, 24, 1, 11, 10]. It has been demonstrated
that intentionally crafted perturbations, that are small enough to be impercepti-
ble to human eyes, on a natural image can fool advanced DNNs to make arbitrary
(incorrect) predictions. Along with this intriguing phenomenon, it is also pivotal
that the adversarial examples crafted on one DNN model can fail another with
a non-trivial success rate [34, 8]. Such a property, called the transferability (or
generalization ability) of adversarial examples, plays a vital role in many black-
box adversarial scenarios [27, 28], where the architecture and parameters of the
victim model is hardly accessible.

Endeavors have been devoted to studying the transferability of adversarial ex-
amples. Very recently, intermediate-layer attacks [41, 18, 15] have been proposed
to improve the transferability. It was empirically shown that larger mid-layer
disturbance (in feature maps) leads to higher transferability in general. In this
paper, we propose a new method for improving the transferability of adversarial
examples generated by any baseline attack, just like in [15]. Our method op-
erates on the mid-layer feature maps of a source model as well. It attempts to
take full advantage of the directional guides gathered at each step of the baseline
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attack, by maximizing the scalar projection on a spectrum of intermediate-level
discrepancies. The effectiveness of the method was testified on a variety of image
classification models on CIFAR-100 [20] and ImageNet [30], and we show that
it outperforms previous state-of-the-arts considerably.

2 Related Work

Adversarial attacks can be categorized into white-box attacks and black-box
attacks, according to how much information of a victim model is leaked to the
adversary [27]. Initial attempts of performing black-box attacks rely on the trans-
ferability of adversarial examples [27, 28, 23]. Despite the excitement about the
possibility of performing attacks under challenging circumstances, early transfer-
based methods often suffer from low success rates, and thus an alternative trail
of research that estimates gradient from queries also becomes prosperity [4, 16,
17, 9, 26, 36, 2, 38]. Nevertheless, there exist applications where queries are diffi-
cult and costly to be issued to the victim models, and it is also observed that
some stateful patterns can be detected in such methods [5].

Recently, a few methods have been proposed to enhance the transferability
of adversarial examples, boosting the transfer-based attacks substantially. They
show that maximizing disturbance in intermediate-level feature maps instead
of the final cross-entropy loss delivers higher adversarial transferability. To be
more specific, Zhou et al. [41] proposed to maximize the discrepancy between
an adversarial example and its benign counterpart on DNN intermediate layers
and simultaneously reduce spatial variations of the obtained results. Requiring
a target example in addition, Inkawhich et al. [18] also advocated performing
attacks on the intermediate layers. The most related work to ours comes from
Huang et al. [15]. Their method works by maximizing the scalar projection of the
adversarial example onto a guided direction (which can be obtained by perform-
ing one of many off-the-shelf attacks [8, 21, 24, 7, 41]) beforehand, on a specific
intermediate layer. Our method is partially motivated by Huang et al.’s [15]. It
is also proposed to enhances the adversarial transferability, yet our method takes
the whole optimization procedure of the baseline attacks rather than their final
results as guidelines. As will be discussed, we believe temporary results probably
provide more informative and more transferable guidance than the final result
of the baseline attack. The problem setting will be explained in the following
subsection.

2.1 Problem Setting

In this paper, we focus on enhancing the transferability of off-the-shelf attacks,
just like Huang et al.’s intermediate-level attack (ILA) [15]. We mostly consider
multi-step attacks which are generally more powerful on the source models. Sup-
pose that a basic iterative FGSM (I-FGSM) is performed a priori as the baseline
attack, we have

xadv
t+1 = �Ψ (xadv

t + � � sgn(rL(xadv
t ; y))); (1)
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in which 	 is a presumed valid set for the adversarial examples and �Ψ denotes a
projection onto the set, given xadv

0 = x and its original prediction y. The typical
I-FGSM performs attacks after running Eq. (1) for p times to obtain the final
adversarial example xadv

p . We aim to improve the success rate of the generated
adversarial example on some victim models whose architecture and parameters
are unknown to the adversary. As depicted in Fig. 1, the whole pipeline consists
of two phases. The first phase is to perform the baseline attack just as normal,
precursor to the enhancement phase where our method or ILA can be applied.

Fig. 1. Pipeline of our method for enhancing the black-box transferability of adversarial
examples, which is comprised of two sequential phases, one for performing the baseline
attack (e.g., I-FGSM [21], PGD [24], MI-FGSM [7], etc) and the other for enhancing
the baseline result xadvp . In particular, the chartreuse-yellow background in hadv

p −hadv
0

on the left heatmap indicates a much lower disturbance than that in hadv−hadv
0 on the

right. The discrepancies of feature maps are illustrated from a spatial size of 14× 14.

3 Our Method

As has been mentioned, adversarial attacks are mounted by maximizing some
prediction loss, e.g., the cross-entropy loss [8, 24] and the hinged logit-difference
loss [3]. The applied prediction loss, which is dubbed adversarial loss in this
paper, describes how likely the input shall be mis-classified by the current model.
For introducing our method, we will first propose a new objective function that
utilizes the temporary results xadv

0 : : :xadv
t : : :xadv

p−1 as well as the final result xadv
p

of a multi-step attack that takes p+ 1 optimization steps in total, e.g., I-FGSM
whose update rule is introduced in Eq. (1).

We also advocate mounting attacks on an intermediate layer of the source
model, just like prior arts [41, 18, 15]. Concretely, given xadv

t as a (possibly adver-
sarial) input, we can get the mid-layer output hadv

t = g(xadv
t ) 2 Rm and the ad-

versarial loss lt := L(xadv
t ; y) from the source model with L(�; �), at a specific in-

termediate layer. With a multi-step baseline attack running for a sufficiently long
period of time, we can collect a set of intermediate-level discrepancies (i.e.,
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“perturbations” of feature maps) and adversarial loss values f(hadv
t �hadv

0 ; lt)g,
and further establish a direct mapping of the intermediate-level discrepancies to
predicting the adversarial loss. For instance, a linear (regression) model can be
obtained by simply solving a regularized problem.

min
w

p∑
t=0

(wT (hadv
t � hadv

0 )� lt)2 + �kwk2; (2)

in which w 2 Rm is the parameter vector to be learned. The above optimization
problems can be written in a matrix/vector form: minw kr�Hwk2 + �kwk2, in
which the t-th row of H 2 Rp×m is (hadv

t � hadv
0 )T and the t-th entry of r 2 Rp

is lt, and the problem has a closed-form solution: w∗ = (HTH + �Im)−1HT r.
Rather than maximizing the conventional cross-entropy loss as in FGSM [8],

I-FGSM [21], and PGD [24], we opt to optimizing

max
�x

(g(x + �x)� hadv
0 )Tw∗; s:t: (x + �x) 2 	 (3)

to generate pixel-level perturbations with maximum expected adversarial loss in
the sense of the established mapping from the feature space to the loss space.
Both one-step (e.g., FGSM) and multi-step algorithms (e.g., I-FGSM and PGD)
can be used to naturally solve the optimization problem (3). Here we mostly con-
sider the multi-step algorithms, and as will be explained, our method actually
boils down to ILA [15] in a one-step case. Note that the intermediate-level feature
maps are extremely high dimensional. The matrix (HTH + �Im) 2 Rm×m thus
becomes very high dimensional as well, and calculating its inverse is computa-
tional demanding, if not infeasible. While on the other hand, multi-step baseline
attacks only update for tens or at most hundreds of iterations in general, and
we have p� m. Therefore, we utilize the Woodbury identity

HTH + �Im =
1

�
I � 1

�2
HT (

1

�
HHT + Ip)

−1H

=
1

�
I � 1

�
HT (HHT + �Ip)

−1H

(4)

so as to calculate the matrix inverse of (HHT + �Ip) instead, for gaining higher
computational efficiency. We can then rewrite the derived optimization problem
in Eq. (3) as

max
�x

(g(x + �x)� hadv
0 )T (Ip �HT (HHT + �Ip)

−1H)HT r;

s:t: (x + �x) 2 	:
(5)

It is worth mentioning that, with a drastically large “regularizing” parameter
�, we have HT (HHT+�I)−1H � 0 and, in such a case, the optimization problem
in Eq. (5) approximately boils down to: max�x (g(x+�x)�hadv

0 )THT r. If only
the intermediate-level discrepancy evoked by the final result xadv

p along with its
corresponding adversarial loss is used in the optimization (or a single-step base-
line attack is applied), the optimization problem is mathematically equivalent



Yet Another Intermediate-Level Attack 5

to that considered by Huang et al. [15], making their ILA a special case of our
method. In fact, the formulation of our method suggests a maximized projection
on a linear combination of the intermediate-level discrepancies, which are de-
rived from the temporary results xadv

0 : : :xadv
t : : :xadv

p−1 and the final result xadv
p

of the multi-step baseline attack. Since the temporary results possibly provide
complementary guidance to the final result, our method can be more effective.

In (3) and (5), we encourage the perturbation g(x + �x) � hadv
0 on feature

maps to align with w∗, to gain more powerful attacks on the source model. In the
meanwhile, the magnitude of the intermediate-level discrepancy kg(x + �x) �
hadv
0 k is anticipated to be large to improve the transferability of the generated

adversarial examples, as also advocated in ILA. Suppose that we are given two
directional guides that would lead to similar adversarial loss values on the source
model, yet remarkably different intermediate-level disturbance via optimization
using for instance ILA. One may anticipate the one that causes larger disturbance
in an intermediate layer to show better black-box transferability. Nevertheless,
it is not guaranteed that the final result of the baseline attack offers an exciting
prospect of achieving satisfactory intermediate-level disturbance in the followup
phase. By contrast, our method endows the enhancement phase some capacities
of exploring a variety of promising directions and their linear combinations that
trade off the adversarial loss on the source model and the black-box transferabil-
ity. Experimental results in Section 4.3 shows that our method indeed achieves
more significant intermediate-level disturbance in practice.

3.1 Intermediate-level Normalization

In practice, the intermediate-level discrepancies at different timestamps t and t′

during a multi-step attack have very different magnitude, varying from � 0 to
� 100 for CIFAR-100. To take full advantage of the intermediate-level discrepan-
cies in Eq. (3), we suggest performing data normalization before solving the linear
regression problem. That being said, we suggest w̃∗ = (H̃T H̃ + �Im)−1H̃T r, in
which the t-th row of the matrix H̃ is the normalized intermediate-level discrep-
ancy (hadv

t � hadv
0 )=khadv

t � hadv
0 k obtained at the t-th iteration of the baseline

attack. We here optimize a similar problem as in Eq. (3), i.e.,

max
�x

(g(x + �x)� hadv
0 )T w̃∗; s:t: (x + �x) 2 	; (6)

as both
(g(x+�x)−hadv

0 )T w̃∗

‖g(x+�x)−hadv
0 ‖ and kg(x+�x)�hadv

0 k are expected to be maximized.

4 Experimental Results

In this section, we show experimental results to verify the efficacy of our method.
We will first compare the usefulness of different intermediate-level discrepancies
when being applied as the directional guides in our framework and ILA, and then
compare plausible settings of our method on CIFAR-100. We will show that our
method significantly outperforms its competitors on CIFAR-100 and ImageNet
in Section 4.3. Our experimental setting are deferred to Section 4.4.
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(a) (b)
Fig. 2. How the transferability of the baseline adversarial example (a) crafted on VGG-
19 to attack WRN (enhanced by ILA or not) and (b) crafted on WRN to attack VGG-
19 (enhanced by ILA or not) varies with p. The dashed lines indicate the performance
with the optimal p values. We see that the most transferable I-FGSMp+ILA examples
(� = 0:03) are obtained around p = 10, and the success rate declines consistently with
greater p for p ≥ 10.

4.1 Delve into the Multi-step Baseline Attacks

We conducted a comprehensive study on the adversarial transferability of con-
temporary results in multi-step baseline attacks and how competent they are in
assisting subsequent methods like ILA [15] and ours. We performed experiments
on CIFAR-100 [20], an image classification dataset that consisting of 60 000 im-
ages from 100 classes. It was officially divided into a training set of 50 000 images
and a test set of 10 000 images. We considered two models in this study: VGG-
19 [32] with batch normalization [19] and wide ResNet (WRN) [39], (specifically,
WRN-28-10). Their architectures are very different, since the latter is equipped
with skip connections and it is much deeper than the former. We collected pre-
trained models from Github 3, and they show 28.05% and 18.14% prediction
errors respectively on the official test set. We randomly chose 3000 images that
could be correctly classified by the two models to initialize the baseline attack,
and the success rate over 3000 crafted adversarial examples was considered.

We applied I-FGSM as the baseline attack and utilized adversarial examples
crafted on one model (i.e., VGG-19/WRN) to attack the other (i.e., WRN/VGG-
19). We tested the success rate when: (1) directly adopting the generated I-FGSM
adversarial examples on the victim models and (2) adopting ILA on the basis of
I-FGSM. Untargeted attacks were performed under a constraint of the ‘∞ norm
with � = 0:03. We denote by I-FGSMp the results of I-FGSM running for p steps,
and denote by I-FGSMp+ILA the ILA outcomes on the basis of I-FGSMp. The
success rates of using one model to attack the other are summarized in Fig. 2,
with varying p. Apparently, ILA operates better with relatively earlier results
from I-FGSM (i.e., I-FGSMp with a relatively smaller p). The most transferable
adversarial examples can be gathered around p = 10 when it is equipped with
ILA, and further increasing p would lead to declined success rates. While without
ILA, running more I-FGSM iterations are more beneficial to the transferability.

3 https://github.com/bearpaw/pytorch-classification
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(a) (b)

Fig. 3. How the transferability of I-FGSM adversarial examples, (a) crafted on VGG-
19 to attack WRN and (b) crafted on WRN to attack VGG-19, are enhanced by ILA.
We let � = 0:03.

In more detail, Fig. 3 shows how much the transferability is improved along
with ILA. We see that I-FGSM10+ILA consistently outperforms I-FGSM100+ILA.
We evaluated the performance of our method based on I-FGSMp examples sim-
ilarly, and the results are illustrated in Fig. 4 and 5, one with intermediate-level
normalization and the other without. We set �!1, and how the performance
of our method varies with � will be discussed in Section 4.2. Obviously, the same
tendency as demonstrated in Fig. 3 can also be observed in Fig. 4 and 5. That
being said, earlier results from the multi-step baseline attack I-FGSM are more
effective as guide directions for both ILA and our method. As illustrated in Fig. 2,
the baseline attack converges faster than expected, making many “training sam-
ples” in f(hadv

t �hadv
0 ; lt)g highly correlated, with or without intermediate-level

normalization. Using relatively early results relieve the problem and is thus ben-
eficial to our method. The performance gain on ILA further suggests that earlier
results from I-FGSM overfit less on the source model, and they are more suit-
able as the directional guides. In what follows, we fix p = 10 without any further
clarification, which also reduces the computational complexity of our method for
calculating w∗ or w̃∗ (by at least 10�), in comparison with p = 100.

(a) (b)

Fig. 4. How the transferability of I-FGSM examples, (a) crafted on VGG-19 to attack
WRN and (b) crafted on WRN to attack VGG-19, are enhanced by our method. The
range of the y axes are kept the same as in Fig. 3 for easy comparison. We let � = 0:03.




