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Abstract. Implicit surface representations, such as signed-distance func-
tions, combined with deep learning have led to impressive models which
can represent detailed shapes of objects with arbitrary topology. Since a
continuous function is learned, the reconstructions can also be extracted
at any arbitrary resolution. However, large datasets such as ShapeNet
are required to train such models.

In this paper, we present a new mid-level patch-based surface represen-
tation. At the level of patches, objects across different categories share
similarities, which leads to more generalizable models. We then introduce
a novel method to learn this patch-based representation in a canonical
space, such that it is as object-agnostic as possible. We show that our
representation trained on one category of objects from ShapeNet can also
well represent detailed shapes from any other category. In addition, it can
be trained using much fewer shapes, compared to existing approaches.
We show several applications of our new representation, including shape
interpolation and partial point cloud completion. Due to explicit control
over positions, orientations and scales of patches, our representation is
also more controllable compared to object-level representations, which
enables us to deform encoded shapes non-rigidly.

Keywords: implicit functions, patch-based surface representation, intra-
object class generalizability

1 Introduction

Several 3D shape representations exist in the computer vision and computer
graphics communities, such as point clouds, meshes, voxel grids and implicit
functions. Learning-based approaches have mostly focused on voxel grids due to
their regular structure, suited for convolutions. However, voxel grids [5] come
with large memory costs, limiting the output resolution of such methods. Point
cloud based approaches have also been explored [23]. While most approaches
assume a fixed number of points, recent methods also allow for variable res-
olution outputs [28, 17]. Point clouds only offer a sparse representation of the
surface. Meshes with fixed topology are commonly used in constrained settings
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with known object categories [32]. However, they are not suitable for represent-
ing objects with varying topology. Very recently, implicit function-based rep-
resentations were introduced [21, 17, 4]. DeepSDF [21] learns a network which
represents the continuous signed distance functions for a class of objects. The
surface is represented as the 0-isosurface. Similar approaches [17, 4] use occu-
pancy networks, where only the occupancy values are learned (similar to voxel
grid-based approaches), but in a continuous representation. Implicit functions
allow for representing (closed) shapes of arbitrary topology. The reconstructed
surface can be extracted at any resolution, since a continuous function is learned.

Fig. 1. In contrast to a global ap-
proach, our patch-based method
generalizes to human shapes
after being trained on rigid
ShapeNet objects.

All existing implicit function-based methods
rely on large datasets of 3D shapes for train-
ing. Our goal is to build a generalizable surface
representation which can be trained with much
fewer shapes, and can also generalize to dif-
ferent object categories. Instead of learning an
object-level representation, our PatchNet learns
a mid-level representation of surfaces, at the
level of patches. At the level of patches, objects
across different categories share similarities. We
learn these patches in a canonical space to fur-
ther abstract from object-specific details. Patch
extrinsics (position, scale and orientation of a
patch) allow each patch to be translated, ro-
tated and scaled. Multiple patches can be com-
bined in order to represent the full surface of
an object. We show that our patches can be
learned using very few shapes, and can general-
ize across different object categories, see Fig. 1.
Our representation also allows to build object-
level models, ObjectNets, which is useful for applications which require an object-
level prior.

We demonstrate several applications of our trained models, including partial
point cloud completion from depth maps, shape interpolation, and a generative
model for objects. While implicit function-based approaches can reconstruct
high-quality and detailed shapes, they lack controllability. We show that our
patch-based implicit representation natively allows for controllability due to the
explicit control over patch extrinsics. By user-guided rigging of the patches to
the surface, we allow for articulated deformation of humans without re-encoding
the deformed shapes. In addition to the generalization and editing capabili-
ties, our representation includes all advantages of implicit surface modeling. Our
patches can represent shapes of any arbitrary topology, and our reconstructions
can be extracted at any arbitrary resolution using Marching Cubes [16]. Simi-
lar to DeepSDF [21], our network uses an auto-decoder architecture, combining
classical optimization with learning, resulting in high-quality geometry.
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2 Related Work

Our patch-based representation relates to many existing data structures and
approaches in classical and learning-based visual computing. In the following, we
focus on the most relevant existing representations, methods and applications.

Global Data Structures. There are multiple widely-used data structures for ge-
ometric deep learning such as voxel grids [5], point clouds [23], meshes [32] and
implicit functions [21]. To alleviate the memory limitations and speed-up train-
ing, improved versions of voxel grids with hierarchical space partitioning [24]
and tri-linear interpolation [27] were recently proposed. A mesh is an explicit
discrete surface representation which can be useful in monocular rigid 3D re-
construction [32, 13]. Combined with patched-based policies, this representation
can suffer from stitching artefacts [12]. All these data structures enable a limited
level of detail given a constant memory size. In contrast, other representations
such as sign distance functions (SDF) [6] represent surfaces implicitly as the
zero-crossing of a volumetric level set function.

Recently, neural counterparts of implicit representations and approaches op-
erating on them were proposed in the literature [21, 17, 4, 18]. Similarly to SDFs,
these methods extract surfaces as zero level sets or decision boundaries, while
differing in the type of the learned function. Thus, DeepSDF is a learnable vari-
ant of SDFs [21], whereas Mescheder et al. [17] train a spatial classifier (indicator
function) for regions inside and outside of the scene. In theory, both methods
allow for surface extraction at unlimited resolution. Neural implicit functions
have already demonstrated their effectiveness and robustness in many follow-up
works and applications such as single-view 3D reconstruction [25, 15] as well as
static [28] and dynamic [19] object representation. While SAL [1] perform shape
completion from noisy full raw scans, one of our applications is shape comple-
tion from partial data with local refinement. Unlike the aforementioned global
approaches, PatchNets generalize much better, for example to new categories.

Patch-Based Representations. Ohtake et al. [20] use a combination of implicit
functions for versatile shape representation and editing. Several neural tech-
niques use mixtures of geometric primitives as well [31, 11, 7, 9, 33]. The latter
have been shown as helpful abstractions in such tasks as shape segmentation, in-
terpolation, classification and recognition, as well as 3D reconstruction. Tulsiani
et al. [31] learn to assemble shapes of various categories from explicit 3D geo-
metric primitives (e.g., cubes and cuboids). Their method discovers a consistent
structure and allows to establish semantic correspondences between the samples.
Genova et al. [11] further develop the idea and learn a general template from
data which is composed of implicit functions with local support. Due to the func-
tion choice, i.e., scaled axis-aligned anisotropic 3D Gaussians, shapes with sharp
edges and thin structures are challenging for their method. In CVXNets [7], solid
objects are assembled in a piecewise manner from convex elements. This results
in a differentiable form which is directly usable in physics and graphics engines.
Deprelle et al. [9] decompose shapes into learnable combinations of deformable
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elementary 3D structures. VoronoiNet [33] is a deep generative network which
operates on a differentiable version of Voronoi diagrams. The concurrent NASA
method [8] focuses on articulated deformations, which is one of our applications.
In contrast to other patch-based approaches, our learned patches are not limited
to hand-crafted priors but instead are more flexible and expressive.

3 Proposed Approach

We represent the surface of any object as a combination of several surface
patches. The patches form a mid-level representation, where each patch rep-
resents the surface within a specified radius from its center. This representation
is generalizable across object categories, as most objects share similar geometry
at the patch level. In the following, we explain how the patches are represented
using artificial neural networks, the losses required to train such networks, as well
as the algorithm to combine multiple patches for smooth surface reconstruction.

3.1 Implicit Patch Representation

We represent a full object i as a collection of NP = 30 patches. A patch p
represents a surface within a sphere of radius ri,p ∈ R, centered at ci,p ∈ R3.
Each patch can be oriented by a rotation about a canonical frame, parametrized
by Euler angles φi,p ∈ R3. Let ei,p = (ri,p, ci,p, φi,p) ∈ R7 denote all extrinsic
patch parameters. Representing the patch surface in a canonical frame of refer-
ence lets us normalize the query 3D point, leading to more object-agnostic and
generalizable patches.

The patch surface is represented as an implicit signed-distance function
(SDF), which maps 3D points to their signed distance from the closest surface.
This offers several advantages, as these functions are a continuous representa-
tion of the surface, unlike point clouds or meshes. In addition, the surface can be
extracted at any resolution without large memory requirement, unlike for voxel
grids. In contrast to prior work [33, 11], which uses simple patch primitives, we
parametrize the patch surface as a neural network (PatchNet). Our network
architecture is based on the auto-decoder of DeepSDF [21]. The input to the
network is a patch latent code z ∈ RNz of length Nz = 128, which describes the
patch surface, and a 3D query point x ∈ R3. The output is the scalar SDF value
of the surface at x. Similar to DeepSDF, we use eight weight-normalized [26]
fully-connected layers with 128 output dimensions and ReLU activations, and we
also concatenate z and x to the input of the fifth layer. The last fully-connected
layer outputs a single scalar to which we apply tanh to obtain the SDF value.

3.2 Preliminaries

Preprocessing: Given a watertight mesh, we preprocess it to obtain SDF values
for 3D point samples. First, we center each mesh and fit it tightly into the unit
sphere. We then sample points, mostly close to the surface, and compute their
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truncated signed distance to the object surface, with truncation at 0.1. For more
details on the sampling strategy, please refer to [21].

Auto-Decoding: Unlike the usual setting, we do not use an encoder that re-
gresses patch latent codes and extrinsics. Instead, we follow DeepSDF [21] and
auto-decode shapes: we treat the patch latent codes and extrinsics of each ob-
ject as free variables to be optimized for during training. I.e., instead of back-
propagating into an encoder, we employ the gradients to learn these parameters
directly during training.

Initialization: Since we perform auto-decoding, we treat the patch latent codes
and extrinsics as free variables, similar to classical optimization. Therefore, we
can directly initialize them. All patch latent codes are initially set to zero, and the
patch positions are initialized by greedy farthest point sampling of point samples
of the object surface. We set each patch radius to the minimum such that each
surface point sample is covered by its closest patch. The patch orientation aligns
the z-axis of the patch coordinate system with the surface normal.

3.3 Loss Functions

We train PatchNet by auto-decoding N full objects. The patch latent codes of
an object i are zi = [zi,0, zi,1, . . . , zi,NP−1], with each patch latent code of length
Nz. Patch extrinsics are represented as ei = [ei,0, ei,1, . . . , ei,NP−1]. Let θ denote
the trainable weights of PatchNet. We employ the following loss function:

L(zi, ei, θ) = Lrecon(zi, ei, θ) + Lext(ei) + Lreg(zi) . (1)

Here, Lrecon is the surface reconstruction loss, Lext is the extrinsic loss guiding
the extrinsics for each patch, and Lreg is a regularizer on the patch latent codes.

Reconstruction Loss: The reconstruction loss minimizes the SDF values between
the predictions and the ground truth for each patch:

Lrecon(zi, ei, θ) =
1

NP

NP−1∑
p=0

1

|S(ei,p)|
∑

x∈S(ei,p)

∥∥f(x, zi,p, θ)− s(x)
∥∥
1
, (2)

where f(·) and s(x) denote a forward pass of the network and the ground truth
truncated SDF values at point x, respectively; S(ei,p) is the set of all (normal-
ized) point samples that lie within the bounds of patch p with extrinsics ei,p.

Extrinsic Loss: The composite extrinsic loss ensures all patches contribute to the
surface and are placed such that the surfaces are learned in a canonical space:

Lext(ei) = Lsur(ei) + Lcov(ei) + Lrot(ei) + Lscl(ei) + Lvar(ei) . (3)



6 E. Tretschk et al.

Lsur ensures that every patch stays close to the surface:

Lsur(ei) = ωsur ·
1

NP

NP−1∑
p=0

max( min
x∈Oi

∥∥ci,p − x
∥∥2
2
, t) . (4)

Here, Oi is the set of surface points of object i. We use this term only when the
distance between a patch and the surface is greater than a threshold t = 0.06.

A symmetric coverage loss Lcov encourages each point on the surface to be
covered by a at least one patch:

Lcov(ei) = ωcov ·
1

|Ui|
∑
x∈Ui

wi,p,x∑
p wi,p,x

(
∥∥ci,p − x

∥∥
2
− ri,p) , (5)

where Ui ⊆ Oi are all surface points that are not covered by any patch, i.e., out-
side the bounds of all patches. wi,p,x weighs the patches based on their distance
from x, with wi,p,x = exp (−0.5 · ((

∥∥ci,p − x
∥∥
2
− ri,p)/σ)2) where σ = 0.05.

We also introduce a loss to align the patches with the surface normals. This
encourages the patch surface to be learned in a canonical frame of reference:

Lrot(ei) = ωrot ·
1

NP

NP−1∑
p=0

(1− 〈φi,p · [0, 0, 1]T ,ni,p〉)2 . (6)

Here, ni,p is the surface normal at the point oi,p closest to the patch center, i.e.,
oi,p = argmin

x∈Oi

∥∥x− ci,p
∥∥
2
.

Finally, we introduce two losses for the extent of the patches. The first loss
encourages the patches to be reasonably small. This prevents significant overlap
between different patches:

Lscl(ei) = ωscl ·
1

NP

NP−1∑
p=0

r2i,p . (7)

The second loss encourages all patches to be of similar sizes. This prevents the
surface to be reconstructed only using very few large patches:

Lvar(ei) = ωvar ·
1

NP

NP−1∑
p=0

(ri,p −mi)
2 , (8)

where mi is the mean patch radius of object i.

Regularizer: Similar to DeepSDF, we add an `2-regularizer on the latent codes
assuming a Gaussian prior distribution:

Lreg(zi) = ωreg ·
1

NP

NP−1∑
p=0

∥∥zi,p∥∥22 . (9)
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Optimization: At training time, we optimize the following problem:

argmin
θ,{zi}i,{ei}i

N−1∑
i=0

L(zi, ei, θ) . (10)

At test time, we can reconstruct any surface using our learned patch-based
representation. Using the same initialization of extrinsics and patch latent codes,
and given point samples with their SDF values, we optimize for the patch latent
codes and the patches extrinsics with fixed network weights.

3.4 Blended Surface Reconstruction

For a smooth surface reconstruction of object i, e.g. for Marching Cubes, we
blend between different patches in the overlapping regions to obtain the blended
SDF prediction gi(x). Specifically, gi(x) is computed as a weighted linear com-
bination of the SDF values f(x, zi,p, θ) of the overlapping patches:

gi(x) =
∑
p∈Pi,x

wi,p,x∑
p∈Pi,x

wi,p,x
f(x, zi,p, θ), (11)

with Pi,x denoting the patches which overlap at point x. For empty Pi,x, we set
gi(x) = 1. The blending weights are defined as:

wi,p,x = exp

(
− 1

2

(∥∥ci,p − x
∥∥
2

σ

)2)
− exp

(
− 1

2

(
ri,p
σ

)2)
, (12)

with σ = ri,p/3. The offset ensures that the weight is zero at the patch boundary.

4 Experiments

In the following, we show the effectiveness of our patch-based representation on
several different problems. For an ablation study of the loss functions, please
refer to the supplemental.

4.1 Settings

Datasets We employ ShapeNet [3] for most experiments. We perform prepro-
cessing with the code of Stutz et al. [29], similar to [17, 10], to make the meshes
watertight and normalize them within a unit cube. For training and test splits,
we follow Choy et al. [5]. The results in Tables 1 and 2 use the full test set.
Other results refer to a reduced test set, where we randomly pick 50 objects
from each of the 13 categories. In the supplemental, we show that our results on
the reduced test set are representative of the full test set. In addition, we use
Dynamic FAUST [2] for testing. We subsample the test set from DEMEA [30]
by concatenating all test sequences and taking every 20th mesh. We generate
200k SDF point samples per shape during preprocessing.
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Metrics We use three error metrics. For Intersection-over-Union (IoU), higher
is better. For Chamfer distance (Chamfer), lower is better. For F-score, higher
is better. The supplementary material contains further details on these metrics.

Training Details We train our networks using PyTorch [22]. The number of
epochs is 1000, the learning rate for the network is initially 5 · 10−4, and for the
patch latent codes and extrinsics 10−3. We half both learning rates every 200
epochs. For optimization, we use Adam [14] and a batch size of 64. For each
object in the batch, we randomly sample 3k SDF point samples. The weights
for the losses are: ωscl = 0.01, ωvar = 0.01, ωsur = 5, ωrot = 1, ωsur = 200. We
linearly increase ωreg from 0 to 10−4 for 400 epochs and then keep it constant.

Baseline We design a “global-patch” baseline similar to DeepSDF, which only
uses a single patch without extrinsics. The patch latent size is 4050, matching
ours. The learning rate scheme is the same as for our method.

4.2 Surface Reconstruction

We first consider surface reconstruction.

Results We train our approach on a subset of the training data, where we
randomly pick 100 shapes from each category. In addition to comparing with our
baseline, we compare with DeepSDF [21] as setup in their paper. Both DeepSDF
and our baseline use the subset. Qualitative results are shown in Fig. 2 and 3.

Fig. 2. Surface Reconstruction. From left to right: DeepSDF, baseline, ours,
groundtruth.

Table 1 shows the quantitative results for surface reconstruction. We signifi-
cantly outperform DeepSDF and our baseline almost everywhere, demonstrating
the higher-quality afforded by our patch-based representation.

We also compare with several state-of-the-art approaches on implicit surface
reconstruction, OccupancyNetworks [17], Structured Implicit Functions [11] and
Deep Structured Implicit Functions [10]1. While they are trained on the full

1 DSIF is also known as Local Deep Implicit Functions for 3D Shape.
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Table 1. Surface Reconstruction. We significantly outperform DeepSDF [21] and our
baseline on all categories of ShapeNet almost everywhere.

IoU Chamfer F-score
Category DeepSDF Baseline Ours DeepSDF Baseline Ours DeepSDF Baseline Ours

airplane 84.9 65.3 91.1 0.012 0.077 0.004 83.0 72.9 97.8
bench 78.3 68.0 85.4 0.021 0.065 0.006 91.2 80.6 95.7
cabinet 92.2 88.8 92.9 0.033 0.055 0.110 91.6 86.4 91.2
car 87.9 83.6 91.7 0.049 0.070 0.049 82.2 74.5 87.7
chair 81.8 72.9 90.0 0.042 0.110 0.018 86.6 75.5 94.3
display 91.6 86.5 95.2 0.030 0.061 0.039 93.7 87.0 97.0
lamp 74.9 63.0 89.6 0.566 0.438 0.055 82.5 69.4 94.9
rifle 79.0 68.5 93.3 0.013 0.039 0.002 90.9 82.3 99.3
sofa 92.5 85.4 95.0 0.054 0.226 0.014 92.1 84.2 95.3
speaker 91.9 86.7 92.7 0.050 0.094 0.243 87.6 79.4 88.5
table 84.2 71.9 89.4 0.074 0.156 0.018 91.1 79.2 95.0
telephone 96.2 95.0 98.1 0.008 0.016 0.003 97.7 96.2 99.4
watercraft 85.2 79.1 93.2 0.026 0.041 0.009 87.8 80.2 96.4

mean 77.4 76.5 92.1 0.075 0.111 0.044 89.9 80.6 94.8

ShapeNet shapes, we train our model only on a small subset. Even in this dis-
advantageous and challenging setting, we outperform these approaches on most
categories, see Table 2. Note that we compute the metrics consistently with Gen-
ova et al. [10] and thus can directly compare to numbers reported in their paper.

Table 2. Surface Reconstruction. We outperform OccupancyNetworks (OccNet) [17],
Structured Implicit Functions (SIF) [11], and Deep Structured Implicit Functions
(DSIF) [10] almost everywhere.

IoU Chamfer F-score
Category OccNet SIF DSIF Ours OccNet SIF DSIF Ours OccNet SIF DSIF Ours

airplane 77.0 66.2 91.2 91.1 0.016 0.044 0.010 0.004 87.8 71.4 96.9 97.8
bench 71.3 53.3 85.6 85.4 0.024 0.082 0.017 0.006 87.5 58.4 94.8 95.7
cabinet 86.2 78.3 93.2 92.9 0.041 0.110 0.033 0.110 86.0 59.3 92.0 91.2
car 83.9 77.2 90.2 91.7 0.061 0.108 0.028 0.049 77.5 56.6 87.2 87.7
chair 73.9 57.2 87.5 90.0 0.044 0.154 0.034 0.018 77.2 42.4 90.9 94.3
display 81.8 69.3 94.2 95.2 0.034 0.097 0.028 0.039 82.1 56.3 94.8 97.0
lamp 56.5 41.7 77.9 89.6 0.167 0.342 0.180 0.055 62.7 35.0 83.5 94.9
rifle 69.5 60.4 89.9 93.3 0.019 0.042 0.009 0.002 86.2 70.0 97.3 99.3
sofa 87.2 76.0 94.1 95.0 0.030 0.080 0.035 0.014 85.9 55.2 92.8 95.3
speaker 82.4 74.2 90.3 92.7 0.101 0.199 0.068 0.243 74.7 47.4 84.3 88.5
table 75.6 57.2 88.2 89.4 0.044 0.157 0.056 0.018 84.9 55.7 92.4 95.0
telephone 90.9 83.1 97.6 98.1 0.013 0.039 0.008 0.003 94.8 81.8 98.1 99.4
watercraft 74.7 64.3 90.1 93.2 0.041 0.078 0.020 0.009 77.3 54.2 93.2 96.4

mean 77.8 66.0 90.0 92.1 0.049 0.118 0.040 0.044 81.9 59.0 92.2 94.8

Generalization Our patch-based representation is more generalizable com-
pared to existing representations. To demonstrate this, we design several ex-
periments with different training data. We modify the learning rate schemes to
equalize the number of network weight updates. For each experiment, we com-
pare our method with the baseline approaches described above. We use a reduced
ShapeNet test set, which consists of 50 shapes from each category. Fig. 3 shows
qualitative results and comparisons. We also show cross-dataset generalization
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by evaluating on 647 meshes from the Dynamic FAUST [2] test set. In the first
experiment, we train the network on shapes from the Cabinet category and try
to reconstruct shapes from every other category. We significantly outperform
the baselines almost everywhere, see Table 3. The improvement is even more
noticeable for cross dataset generalization with around 70% improvement in the
F-score compared to our global-patch baseline.

Fig. 3. Generalization. From left to right: DeepSDF, baseline, ours on one category,
ours on one shape, ours on 1 shape per category, ours on 3 per category, ours on 10
per category, ours on 30 per category, ours on 100 per category, and groundtruth.

In the second experiment, we evaluate the amount of training data required
to train our network. We train both our network as well as the baselines on 30, 10,
3 and 1 shapes per-category of ShapeNet. In addition, we also include an exper-
iment training the networks on a single randomly picked shape from ShapeNet.
Fig. 4 shows the errors for ShapeNet (mean across categories) and Dynamic
FAUST. The performance of our approach degrades only slightly with a de-
creasing number of training shapes. However, the baseline approach of DeepSDF
degrades much more severely. This is even more evident for cross dataset gener-
alization on Dynamic FAUST, where the baseline cannot perform well even with
a larger number of training shapes, while we perform similarly across datasets.

Fig. 4. Generalization. We train our PatchNet (green), the global-patch baseline (or-
ange), and DeepSDF (blue) on different numbers of shapes (x-axis). Results on different
metrics on our reduced test sets are shown on the y-axis. For IoU and F-score, higher
is better. For Chamfer distance, lower is better.
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Table 3. Generalization. Networks trained on the
Cabinet category, but evaluated on every cate-
gory of ShapeNet, as well as on Dynamic FAUST.
We significantly outperform the baseline (BL) and
DeepSDF (DSDF) almost everywhere.

IoU Chamfer F-score
Category BL DSDF Ours BL DSDF Ours BL DSDF Ours

airplane 33.5 56.9 88.2 0.668 0.583 0.005 33.5 61.7 96.3
bench 49.1 58.8 80.4 0.169 0.093 0.006 63.6 76.3 93.3
cabinet 86.0 91.1 91.4 0.045 0.025 0.121 86.4 92.6 91.7
car 78.4 83.7 92.0 0.101 0.074 0.050 62.7 73.9 87.2
chair 50.7 61.8 86.9 0.473 0.287 0.012 49.1 65.2 92.5
display 83.2 87.6 94.4 0.111 0.065 0.052 83.9 89.6 96.9
lamp 49.7 59.3 86.6 0.689 2.645 0.082 50.4 64.5 93.4
rifle 56.4 56.1 91.8 0.114 2.669 0.002 71.0 54.7 99.1
sofa 81.1 87.3 94.8 0.245 0.193 0.010 74.2 84.6 95.2
speaker 83.2 88.3 90.5 0.163 0.080 0.232 71.8 80.1 84.9
table 55.0 73.6 88.4 0.469 0.222 0.020 61.8 82.8 95.0
telephone 90.4 94.7 97.3 0.051 0.015 0.004 90.8 96.1 99.2
watercraft 66.5 73.5 91.8 0.115 0.157 0.006 63.0 74.2 96.2

mean 66.4 74.8 90.3 0.263 0.547 0.046 66.3 76.6 93.9

DFAUST 57.8 71.2 94.4 0.751 0.389 0.012 25.0 45.4 94.0

Table 4. Ablative Analysis. We
evaluate the performance using
different numbers of patches, as
well as using variable sizes of the
patch latent code/hidden dimen-
sions, and the training data. The
training time is measured on an
Nvidia V100 GPU.

IoU Chamfer F-score Time

NP = 3 73.8 0.15 72.9 1h
NP = 10 85.2 0.049 88.0 1.5h
size 32 82.8 0.066 84.7 1.5h
size 512 95.3 0.048 97.2 8h
full dataset 92.2 0.050 94.8 156h

ours 91.6 0.045 94.5 2h

Ablation Experiments We perform several ablative analysis experiments to
evaluate our approach. We first evaluate the number of patches required to re-
construct surfaces. Table 4 reports these numbers on the reduced test set. The
patch networks here are trained on the reduced training set, consisting of 100
shapes per ShapeNet category. As expected, the performance becomes better
with a larger number of patches, since this would lead to smaller patches which
can capture more details and generalize better. We also evaluate the impact of
different sizes of the latent codes and hidden dimensions used for the patch net-
work. Larger latent codes and hidden dimensions lead to higher quality results.
Similarly, training on the full training dataset, consisting of 33k shapes leads to
higher quality. However, all design choices with better performance come at the
cost of longer training times, see Table 4.

4.3 Object-Level Priors

We also experiment with category-specific object priors. We add ObjectNet (four
FC layers with hidden dimension 1024 and ReLU activations) in front of Patch-
Net and our baselines. From object latent codes of size 256, ObjectNet regresses
patch latent codes and extrinsics as an intermediate representation usable with
PatchNet. ObjectNet effectively increases the network capacity of our baselines.

Training We initialize all object latents with zeros and the weights of Object-
Net’s last layer with very small numbers. We initialize the bias of ObjectNet’s
last layer with zeros for patch latent codes and with the extrinsics of an arbi-
trary object from the category as computed by our initialization in Sec. 3.2. We
pretrain PatchNet on ShapeNet. For our method, the PatchNet is kept fixed
from this point on. As training set, we use the full training split of the ShapeNet
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category for which we train. We remove Lrot completely as it significantly lowers
quality. The L2 regularization is only applied to the object latent codes. We set
ωvar = 5. ObjectNet is trained in three phases, each lasting 1000 epochs. We
use the same initial learning rates as when training PatchNet, except in the last
phase, where we reduce them by a factor of 5. The batch size is 128.
Phase I : We pretrain ObjectNet to ensure good patch extrinsics. For this, we
use the extrinsic loss, Lext in Eq. 3, and the regularizer. We set ωscl = 2.
Phase II : Next, we learn to regress patch latent codes. First, we add a layer
that multiplies the regressed scales by 1.3. We then store these extrinsics. After-
wards, we train using Lrecon and two L2 losses that keep the regressed position
and scale close to the stored extrinsics, with respective weights 1, 3, and 30.
Phase III : The complete loss L in Eq. 1, with ωscl = 0.02, yields final refinements.

Coarse Correspondences Fig. 5 shows that the learned patch distribution is
consistent across objects, establishing coarse correspondences between objects.

Fig. 5. Coarse Correspondences. Note the consistent coloring of the patches.

Interpolation Due to the implicitly learned coarse correspondences, we can
encode test objects into object latent codes and then linearly interpolate between
them. Fig. 6 shows that interpolation of the latent codes leads to a smooth morph
between the decoded shapes in 3D space.

Generative Model We can explore the learned object latent space further by
turning ObjectNet into a generative model. Since auto-decoding does not yield
an encoder that inputs a known distribution, we have to estimate the unknown
input distribution. Therefore, we fit a multivariate Gaussian to the object latent
codes obtained at training time. We can then sample new object latent codes
from the fitted Gaussian and use them to generate new objects, see Fig. 6.

Partial Point Cloud Completion Given a partial point cloud, we can opti-
mize for the object latent code which best explains the visible region. ObjectNet
acts as a prior which completes the missing parts of the shape. For our method,
we pretrained our PatchNet on a different object category and keep it fixed, and
then train ObjectNet on the target category, which makes this task more chal-
lenging for us. We choose the versions of our baselines where the eight final layers
are pretrained on all categories and finetuned on the target shape category. We
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Fig. 6. Interpolation (top). The left and right end points are encoded test objects.
Generative Models (bottom). We sample object latents from ObjectNet’s fitted prior.

evaluated several other settings, with this one being the most competitive. See
the supplemental for more on surface reconstruction with object-level priors.

Optimization: We initialize with the average of the object latent codes ob-
tained at training time. We optimize for 600 iterations, starting with a learning
rate of 0.01 and halving it every 200 iterations. Since our method regresses the
patch latent codes and extrinsics as an intermediate step, we can further re-
fine the result by treating this intermediate patch-level representation as free
variables. Specifically, we refine the patch latent code for the last 100 iterations
with a learning rate of 0.001, while keeping the extrinsics fixed. This allows to
integrate details not captured by the object-level prior. Fig. 7 demonstrates this
effect. During optimization, we use the reconstruction loss, the L2 regularizer
and the coverage loss. The other extrinsics losses have a detrimental effect on
patches that are outside the partial point cloud. We use 8k samples per iteration.

We obtain the partial point clouds from depth maps similar to Park et al. [21].
We also employ their free-space loss, which encourages the network to regress
positive values for samples between the surface and the camera. We use 30%
free-space samples. We consider depth maps from a fixed and from a per-scene
random viewpoint. For shape completion, we report the F-score between the full
groundtruth mesh and the reconstructed mesh. Similar to Park et al. [21], we
also compute the mesh accuracy for shape completion. It is the 90th percentile of
shortest distances from the surface samples of the reconstructed shape to surface
samples of the full groundtruth. Table 5 shows how, due to local refinement on
the patch level, we outperform the baselines everywhere.

Fig. 7. Shape Completion. (Sofa) from left to right: Baseline, DeepSDF, ours unrefined,
ours refined. (Airplane) from left to right: Ours unrefined, ours refined.
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Table 5. Partial Point Cloud Completion from Depth Maps. We complete depth maps
from a fixed camera viewpoint and from per-scene random viewpoints.

sofas fixed sofas random airplanes fixed airplanes random
acc. F-score acc. F-score acc. F-score acc. F-score

baseline 0.094 43.0 0.092 42.7 0.069 58.1 0.066 58.7
DeepSDF-based baseline 0.106 33.6 0.101 39.5 0.066 56.9 0.065 55.5
ours 0.091 48.1 0.077 49.2 0.058 60.5 0.056 59.4
ours+refined 0.052 53.6 0.053 52.4 0.041 67.7 0.043 65.8

4.4 Articulated Deformation

Our patch-level representation can model some articulated deformations by only
modifying the patch extrinsics, without needing to adapt the patch latent codes.
Given a template surface and patch extrinsics for this template, we first encode it
into patch latent codes. After manipulating the patch extrinsics, we can obtain an
articulated surface with our smooth blending from Eq. 11, as Fig. 8 demonstrates.

Fig. 8. Articulated Motion. We encode a template shape into patch latent codes (first
pair). We then modify the patch extrinsics, while keeping the patch latent codes fixed,
leading to non-rigid deformations (middle two pairs). The last pair shows a failure case
due to large non-rigid deformations away from the template. Note that the colored
patches move rigidly across poses while the mixture deforms non-rigidly.

5 Concluding Remarks

Limitations. We sample the SDF using DeepSDF’s sampling strategy, which
might limit the level of detail. Generalizability at test time requires optimizing
patch latent codes and extrinsics, a problem shared with other auto-decoders.
We fit the reduced test set in 71 min due to batching, one object in 10 min.
Conclusion. We have presented a mid-level geometry representation based on
patches. This representation leverages the similarities of objects at patch level
leading to a highly generalizable neural shape representation. For example, we
show that our representation, trained on one object category can also represent
other categories. We hope that our representation will enable a large variety of
applications that go far beyond shape interpolation and point cloud completion.
Acknowledgements. This work was supported by the ERC Consolidator Grant
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