
18 Da Li and Timothy Hospedales

A Short-Path Gradient Descent

Optimizing Eq. 3 naively by Algorithm 1 would be costly and ineffective. It
is costly because in the case of domain adaptation (unlike for example, few-
shot learning [12], the inner loop requires many iterations). So back-propagating
through the whole optimization path to update the initial Θ in the outer loop
will produce multiple high-order gradients. For example, if the inner loop applies
j iterations, we will have

Θ(1) = Θ − α∇Θ(0)Luda(.)

. . .

Θ(j) = Θ(j−1) − α∇Θ(j−1)Luda(.)

(13)

then the outer loop will update the initial condition as

Θ∗ = Θ − α

Meta Gradient︷ ︸︸ ︷
∇ΘLsup(Θ(j),Dval)

(14)

where higher-order gradient will be required for all items ∇
Θ(0)Luda(.),...,∇Θ(j−1)Luda(.)

in the update of Eq. 14.
One intuitive way of eliminating higher-order gradients for computing Eq. 14

is making ∇Θ(0)Luda(.), . . . ,∇Θ(j−1)Luda(.) constant during the optimization.
Then, Eq. 14 is equivalent to

Θ∗ = Θ − α

First-order Meta Gradient︷ ︸︸ ︷
∇Θ(j)Lsup(Θ(j),Dval)

(15)

However, in order to compute Eq. 15, one still needs to store the optimization
path of Eq. 13 in memory and back-propagate through it to optimize Θ, which
requires high computational load. Therefore, we propose a practical solution an
iterative meta-learning algorithm to iteratively optimize the model parameters
during training.
Shortest Path Optimization To obtain the meta gradient in Eq. 15 in a more
efficient way, we propose a more scalable and efficient meta-learning method
using shortest-path gradient (S-P.G.) [36]. Before the optimization of Eq. 13, we
copy the parameters Θ as Θ̃(0) and use Θ̃(0) in the inner-level algorithm.

Θ̃(j) =


Θ̃(0) − α∇Θ(0)Luda(Θ̃(0),Dtr),

. . .

Θ̃(j−1) − α∇Θ(0)Luda(Θ̃(j−1),Dtr)

(16)

then, after finishing the optimization in Eq. 16, we can get the shortest-path

gradient between two items Θ̃i
(j)

and Θi.

∇short
Θ = Θ − Θ̃(j) (17)



Online Meta-DA 19

Different from Eq. 15, we use this shortest-path gradient ∇short
Θ and initial

parameter Θ to compute Lsup(.) as,

Lsup(Θi −∇short
Θi ,Dval) (18)

Then, one-step meta update of Eq. 18 will be,

Θ∗i = Θi − α∇ΘiLsup(Θi −∇short
Θi ,Dval)

= Θi − α∇Θi−∇short
Θi

Lsup(Θi −∇short
Θi ,Dval)

= Θi − α∇Θ̃i(j)Lsup(Θ̃i
(j)
,Dval)

(19)

Effectiveness: We can see that one update of Eq. 19 corresponds to that of
Eq. 15, which proves that using shortest-path optimization has the equivalent
effectiveness to the first-order meta optimization. Scalability/Efficiency: The
computation memory of the first-order meta-learning increases linearly with the
inner-loop update steps, which is constrained by the total GPU memory. How-
ever, for the shortest-path optimization, storing the optimization graph is no
longer necessary, which makes it scalable and efficient. We also experimentally
evaluate that one step shortest-path optimization is 7x faster than one-step first-
order meta optimization in our setting. The overall algorithm flow is shown in
Algorithm 2.

B Additional Illustrative Schematics

To better explain the contrast between our online meta-learning domain adapta-
tion approach with the sequential meta-learning approach, we add a schematic
illustration in Figure 4. The main difference between sequential and online meta-
learning approaches is how do we distribute the meta and DA updates. Sequen-
tial meta-learning approach performs meta updates and DA updates sequen-
tially. And online meta-learning conducts the alternative meta and DA updates
throughout the whole training procedure.

C Additional Experiments

Visualization of the Learned Features We visualize the learned features of
MCD and Meta-MCD on PACS when sketch is the target domain as shown in
Figure 5. We can see that both MCD and Meta-MCD can learn discriminative
features. However, the features learned by Meta-MCD is more separable than
vanilla MCD. This explains why our Meta-MCD performs better than the vanilla
MCD method.
Effect of varying S Our online meta-learning method has iteration hyper-
parameters S and J . We fix J = 1 throughout, and analyze the effect of varying
S here using the DomainNet MSDA experiment with ResNet-18. The result in
Table 7 shows that MetaDA is rather insensitive to this hyperparameter.



20 Da Li and Timothy Hospedales

DA Update
Meta Update

Vanilla Init
Sequential Meta Init

Online Meta Init
Solution

!" !#

…
!∗…

%&'

Sequential Meta Update for DA

Meta
Update

Meta
Update

Meta
Update

(da(!,, ./0) %&2&

!#… …

Meta
Update : Illustrated below

!"
!#

…

… !$%& !∗…

()*

(+,-

Online Meta Update for DA

Meta
Update

Meta
Update

Meta
Update

. steps /uda

!3= !3-4∇!6ℒ89:(!3<=, ?89:)

!3

!3
!3<=

/da(!", ?AB)

/da(!3, ?AB)

Input orig. !#
Output new !#

. can be small, eg, 1

()C)

Fig. 4: Illustrative schematics of sequential and online meta domain adapta-
tion. Left: Optimization paths of different approaches on domain adaptation
loss (shading). (Solid line) Vanilla gradient descent on a DA objective from a
fixed start point. (Multi-segment line) Online meta-learning iterates meta and
gradient descent updates. (Two segment line) Sequential meta-learning provides
an alternative approximation: update initial condition, then perform gradient
descent. Right: (Top) Sequential meta-learning performs meta updates and DA
updates sequentially. (Bottom) Online meta-learning alternates between meta-
optimization and domain adaptation.

Method Meta-MCD (S=3) Meta-MCD (S=5) Meta-MCD (S=10)
DomainNet (ave.) 41.02 40.98 40.93

Table 7: MetaDA is insensitive to the update ratio hyperparameter S – Results
for MSDA ResNet-18 performance on DomainNet.

Varying the Number of Source Domains in MSDA For multi-source
DA, the performance of both Meta-DA and the baselines is expected to drop
with fewer sources (same for SSDA if fewer labeled target domain points). To
disentangle the impact of the number of sources for baseline vs Meta-DA we
compare MSDA by Meta-MCD on PACS with 2 vs 3 sources. The results for
Meta-MCD vs vanilla MCD are 82.30% vs 80.07% (two source, gap 2.23%) and
87.24% vs 84.79% (three source, gap 2.45%). Meta-DA margin is similar with
reduction of domains. Most difference is accounted for by the impact on the base
DA algorithm.

Other base DA methods Besides the base DA methods evaluated in the main
paper (DANN, MCD and MME), our method is applicable to any base domain
adaptation method. We use the published code of JiGen7 and M3SDA8, and
further apply our Meta-DA on the existing code. The results are shown in Table 8
and 9. From the results, we can see that our Meta-JiGen and Meta-M3SDA-
β improves over the base methods by 3.42% and 1.2% accuracy respectively,

7 https://github.com/fmcarlucci/JigenDG
8 https://github.com/VisionLearningGroup/VisionLearningGroup.github.io



Online Meta-DA 21

Fig. 5: t-SNE [32] visualization of learned MCD (left) and Meta-MCD (right)
features on PACS (sketch as target domain). Different colors indicate different
categories.

Method C,P,S→A A,P,S→C A,C,S→P A,C,P→S Ave.

JiGen [7] 84.88 81.07 97.96 79.05 85.74
JiGen* 81.54 85.88 97.25 68.21 83.22
Meta-JiGen 85.21 86.13 97.31 77.91 86.64 (+3.42)

Table 8: Test accuracy on PACS. * our run.

which confirms our Meta-DA’s generality. The reason we excluded these from
the main results is that: (i) Re-running JiGen’s published code on our compute
environment failed to replicate their published numbers. (ii) M3SDA as a base
algorithm is very slow to run comprehensive experiments on. Nevertheless, these
results provide further evidence that Meta-DA can be a useful module going
forward to plug in and improve future new base DA methods as well as those
evaluated here.
Initialization Dependence of Domain Adaptation One may not think
of domain adaptation as being sensitive to initial condition, but given the lack
of target domain supervision to guide learning, different initialization can lead
to a significant difference in accuracy. To illustrate this we re-ran MCD-based
DA on PACS with sketch target using different initializations. From the results
in Tab 10, we can see that both different classic initialization heuristics, and
simple perturbation of a given initial condition with noise can lead to significant
differences in final performance. This confirms that studying methods for tuning
initialization provide a valid research direction for advancing DA performance.

Method
mt,up,sv,sy mm,up,sv,sy mt,mm,sv,sy mt,mm,up,sy mt,mm,up,sv

Ave.→mm →mt →up →sv →sy

M3SDA-β [38] 72.82 98.43 96.14 81.32 89.58 87.65
Meta-M3SDA-β 71.73 98.79 97.80 84.81 91.12 88.85 (+1.2)

Table 9: Test accuracy on Digit-Five.



22 Da Li and Timothy Hospedales

Classifier Init
Kaiming U Xavier U Kaiming N Xavier N

74.49 73.02 64.27 73.66

Feat. Extr. Init
No perturb + ε ∈ N (0, 0.01) + ε ∈ N (0, 0.02) + ε ∈ N (0, 0.03)

74.49 71.85 59.99 52.18

Table 10: Test accuracy of MCD on PACS (sketch) with different initialization.


