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In this supplemental document, we present:

1. Details of the marginal likelihood calculation used in the automatic deter-
mination of relevant predictors ΣL (Sec. 1.1);

2. A summary of our predictor combination algorithm (Sec. 1.2);
3. A detailed discussion of baseline algorithms, including:

(a) our adaptation of Mejjati et al.’s multi-task learning (MTL) algorithm
[6] (Sec. 2.1),

(b) a derivation of Kim et al.’s original predictor combination (OPC ) algo-
rithm [5,4] (Sec. 2.2), and

(c) Evgeniou et al.’s graph Laplacian (GL)-based MTL algorithm and its
adaptation to predictor combination (Sec. 2.3).

In the main paper, we only presented the ranking results for the first 10 at-
tributes in each dataset. In Section 3, we provide the complete experimental
results, including additional results of GL and tests of statistical significance of
the accuracy improvements made by different algorithms. We reproduce some
content from the main paper to make this document self-contained.

1 Details of the main algorithm

1.1 Calculating the marginal likelihood for linear Gaussian process
prediction

Suppose that we have the following linear and nonlinear anisotropic covariance
functions:

kL(a,b)=a>ΣLb, (1)

kA(a,b)=exp
(
−(a−b)>ΣA(a−b)

)
, (2)

where ΣL=diag[σ], the diagonal matrix with elements σ=[σ1,...,σn]>. ΣA is
defined similarly. Our goal is to maximize the marginal likelihood p(f |G,ΣL) of
the sampled predictor f given the reference matrix G with respect to σ. The log
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marginal likelihood log(p(f |G,ΣL)) of linear Bayesian regression with Gaussian
prior and i.i.d. Gaussian noise model is given as [7]:

log(p(f |G))=− 1

2
log
∣∣G·diag[σ]·G>+λI∣∣−N

2
log(2π)

− 1

2
f>(G·diag[σ]·G>+λI)−1f . (3)

As maximizing p(f |G,ΣL) is equivalent to minimizing −log(p(f |G,ΣL)), and
the second term in log(p(f |G,ΣL)) is independent of σ, we can find the optimal
parameter vector σ∗ by minimizing the following energy:

E(σ)=log
∣∣G·diag[σ]·G>+λI∣∣+f>(G·diag[σ]·G>+λI)−1f (4)

=N log|λ|+
n∑
i=1

log(σi)+log
∣∣diag[1./σ]+G>G/λ∣∣

+f>

(
1

λ
I− 1

λ2
G

(
diag[1./σ]+

1

λ
G>G

)−1
G>

)
f ,

where the second equation is obtained by applying the Sherman–Morrison–Woodbury
formula [9] to both summands of E , and ‘1./σ’ is the element-wise reciprocal of
σ. Since 1

λ f
>f and N log|λ| are also independent of σ, minimizing E is equivalent

to minimizing

E ′(σ)=
n∑
i=1

log(σi)+log
∣∣diag[1./σ]+G>G/λ∣∣ (5)

− 1

λ2
f>

(
G

(
diag[1./σ]+

1

λ
G>G

)−1
G>

)
f .

Since this energy E ′ is a continuously differentiable function of σ, it can be
minimized by standard gradient descent. Figure 1 shows example parameters
σ∗ optimized for the Pubfig dataset. For each of the 11 attributes in Pubfig
as a target, we optimized the corresponding parameters σ using the remaining
attributes as references, plus 5 additional randomly generated references. As
indicated by small magnitudes and the corresponding standard deviations of
the σ∗ entries, our algorithm successfully disregards these irrelevant references.
For comparison, we also show the corresponding parameters optimized for the
anisotropic Gaussian kernel kA (Eq. 2), demonstrating that once normalized,
their relative scaling behaviors are similar, i.e.

Σ∗A≈
Σ∗L
σ2
k

(6)

for a global scaling parameter σ2
k. Our final algorithm uses Σ∗L/σ

2
k as a surrogate

to Σ∗A, using σ
2
k as hyperparameter.

1.2 Algorithm summary

Given the reference matrix G, the initial predictor f0, and hyperparameters (noise
variance σ2 in Eq. 8; global kernel scaling σ2

k in Eq. 6; regularization parameter λJ



Combining Task Predictors via Enhancing Joint Predictability 3

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 101112131415
0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 101112131415
0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 101112131415

References

0

0.1

0.2

0.3

Fig. 1. The average diagonal values of ΣA and ΣL optimized for each attribute in
the Pubfig dataset as the target with the remaining 10 attributes in the same dataset
(references 1 to 10), plus 5 additional randomly generated attributes (references 11 to
15) as references. The values of ΣA and ΣL are normalized such that the respective
sums total to one. Note that the unrelated references (11–15) are correctly detected as
irrelevant (small magnitudes and standard deviations) and hence ignored. In addition,
the linear kernel ΣL (orange) is highly correlated to the anisotropic kernel ΣA (blue),
so we use a scaled version of ΣL as a surrogate to the optimal Σ∗

A (Eq. 6).

in Eq. 7), our algorithm constructs a denoised predictor by iteratively maximizing
the objective

ON(f)=
f>Af

f>CN f
with (7)

A=(CN f t)(CN f t)>+λJQ
′ and

Q′=CN (2K(K+σ2I)−1−(K+σ2I)−1KK(K+σ2I)−1)CN . (8)

Algorithm 1 summarizes this process.
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Algorithm 1 Nonlinear predictor combination
Input: Initial predictor f0, references {gi}Ri=1, noise variance σ2 (Eq. 8), global kernel

scaling σ2
k, regularization parameter λJ (Eq. 7), and iteration number S.

1: H0={h0
0,h

0
1,...,h

0
R}⇐{f0,g1,...,gR};

2: Calculate the kernel parameter matrix (Σ∗
L)i for each h0

i ∈H0; (ΣA)i=(Σ∗
L)i/σ

2
k;

3: for step t∈{0,...,S−1} do
4: for reference i∈{0,...,R} do
5: Calculate ht+1

i ∈Ht+1 by maximizing ON based on Ht (Eq. 7);
6: end for
7: end for

Output: Denoised target predictor f∗=hS
0 .

2 (Adapting) Existing algorithms

2.1 Mejjati et al.’s MTL algorithm

Mejjati et al.’s MTL algorithm considers each task-specific predictor as a ran-
dom variable. Then, the relationships between tasks are modeled based on the
statistical dependence estimated by evaluating these predictor random variables
on a dataset X [6]. Adopting a nonparametric measure of statistical dependence,
the finite set independence criterion (FSIC) [3], MTL enables training multiple
predictors independently of their parametric forms and, therefore, it can be
applied to predictor combination problems.

Applying this algorithm to the predictor combination setting, we construct the
initial predictor matrix H0 by stacking column-wise, the initial target predictor
f0 and the references {g1,...,gR}

H0=[f0,g1,...,gR]. (9)

MTL then refines the initial predictor matrix H0 by minimizing the energy

EM(H)=
∥∥H−H0

∥∥2
F−λ1‖vec(Φ(H))‖22+λ2‖vec(Φ(H))‖1, (10)

where vec(A) constructs a vector by concatenating columns of matrix A, Φ(H) is
an (R+1)×(R+1)-sized matrix consisting of pairwise FSIC evaluations: Φ(H)[i,j]
takes a large positive value when H[:,i] and H[:,j] exhibit strong statistical de-
pendence and it takes 0 when H[:,i] and H[:,j] are independent as realizations of
random variables. Minimizing EM strengthens overall task dependence via (nega-
tion of) the L2 norm of vec(Φ(H)) and, at the same time, introduces sparsity in
the task dependence via the L1 norm of Φ(H). Combing these two terms, MTL se-
lectively enforces task dependence while suppressing the dependence of weakly re-
lated tasks as outliers. As EM is not differentiable, standard gradient-descent type
algorithms are not applicable. Instead, it is minimized based on the alternating di-
rection method of multipliers (ADMM) approach. This involves iteratively solving
ADMM sub-problems [1], with the number of total iterations S as a hyperpa-
rameter. Once the optimal predictor matrix H∗ is constructed, the final denoised
predictor is obtained by extracting the first column of H∗: f∗=H∗[:,1]. Similarly to
our algorithm, S is determined by setting the maximum number of iterations at 50
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and selecting the iteration number achieving the highest validation accuracy. The
other two hyperparameters, λ1 and λ2, are tuned based on validation accuracy.

2.2 Derivation of Kim et al.’s algorithm (OPC ).

Kim et al.’s original predictor combination (OPC ) approach iteratively minimizes
the following energy (Eq. 1 in the main paper):

EO(f)=DKL(f |f t)2+λO

R∑
i=1

wiDKL(f |gi)2, (11)

wi=exp

(
−DKL(f

t |gi)2

σ2
O

)
, (12)

with λO,σ
2
O > 0 being hyperparameters. We present how this algorithm is ob-

tained as an instance of Hein and Maier’s Manifold Denoising algorithm [2] by
discretizing a diffusion process on a predictor manifoldM.

Manifold denoising [2]. Suppose that we have a set of data points H0={h0
i }ni=1

presented as a sample from a Euclidean space Rd and, further, that the points
in H0 are sampled from an underlying data-generating manifoldM embedded in
Rd (ı(M)⊂Rd with ı being the embedding), and they are observed as a subset
of Rd contaminated with i.i.d. Gaussian noise ε in Rd:

h0
i = ı(h̃

0
i )+ε∈Rd for h̃0

i ∈M. (13)

The manifold denoising algorithm denoises H0 by simulating diffusion on a graph
G that discretizesM (each point h0

i ∈H0 forms a vertex of G):
∂H

∂t
=−δLH, (14)

where H=[h1,...,hn]
> and L is the graph Laplacian:

L=I−D−1W , (15)

W[i,j]=exp

(
−‖hi−hj‖

2

σ2

)
, (16)

and D is a diagonal matrix consisting of row sums of W , such that Dii =∑
j=1W[i,j]. Now discretizing Eq. 14 using the implicit Euler method, we obtain

Ht+1−Ht=−δLHt+1. (17)

At each time step t, the solution Ht+1 of Eq. 17 is obtained as the minimizer
of the following energy:

ED(H)=
∥∥H−Ht

∥∥2
F+δtr[H

>LH], (18)

where ‖A‖F and tr[A] are the Frobenius norm and trace of matrix A, respectively.
As the number of data points n grows to infinity, G becomes a precise represen-
tation ofM embedded in Rd, and L converges to the Laplace-Beltrami operator
∆M on M casting Eq. 17 into a diffusion process on a continuous manifold
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M [2]. It should be noted that the graph Laplacian was constructed based on the
ambient L2 distance in Rd rather than the intrinsic metric onM. This facilitates
building a practical, still consistent algorithm: Equation 18 only requires the
ambient Euclidean distance (via L) without having to accessM directly, but it
guarantees the statistical consistency of L as proven by Hein and Maier [2].

Now applying this algorithm to the predictor combination setting and, there-
fore, assuming that only the first point h0

1 ∈H0 is noisy (i.e. hi= ı(h̃i) for i=
{2,...,n}), we obtain an iterative update rule of ht1 given fixed references {hi}ni=2:

ED(h)=
∥∥h−ht1∥∥2+δ n∑

i=2

W[1,i]‖h−hi‖
2. (19)

Finally, EO in Eq. 11 is obtained by replacing each point in Ht and the correspond-
ing L2 distances in ED with a Gaussian process predictor and Kullback–Leibler
divergences, respectively: ht1 and {hi}ni=2 (with n=R+1) are considered as the
target predictor f and the corresponding references {gi}, respectively.

2.3 Evgeniou et al.’s graph Laplacian (GL)-based MTL algorithm.

Evgeniou et al.’s graph Laplacian (GL)-based algorithm learns predictors H=
{hi}ni=1 of multiple tasks by enforcing pairwise parameter similarities: Assuming
that all predictors are linear, i.e. hi(x) =w>i x, their algorithm estimates the
predictor parameters W ={w1,...,wn} by minimizing the energy

EGL(W )=

n∑
i=1

li(hi)+λ1

n∑
i=1

‖wi‖2+λ2
n∑
i=1

∑
j 6=i

U[i,j]‖wi−wj‖2, (20)

where {li(·)}ni=1 are task-specific loss functions and U[i,j]≥0 represents the re-
lationship between tasks i and j. Now adapting this algorithm to the predictor
combination setting, we assume that the initial predictor f0=h1 and the cor-
responding references gi=hi+1 for i∈{1,...,R} are given (n=R+1). Then, f0
is refined by minimizing the energy

EGL(w)=
∥∥w−w0

1

∥∥2+λGL

n∑
j=2

U[1,j]‖w−wj‖2. (21)

In general, determining the task relationship parameters {U[1,j]} is a challeng-
ing problem. Here, we determine them by adopting Kim et al.’s approach: We
iteratively update {U[1,j]} by minimizing EGL at each time step t with

U[1,j]=exp

(
−‖wi−wt

1‖
2

σ2
GL

)
. (22)

Further, adopting Kim and Chang’s approach [4], we explicitly constrain all
predictor parameter vectors to have unit norm: ‖wi‖ = 1, enabling the com-
parison of task predictor parameters independently of their scales. The two
hyperparameters σ2

GL and λGL are determined based on validation accuracy. As
often, ranking problems are nonlinear, we extend this framework by adopting
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the linear-in-parameter model:

f(x)=φ(x)>wf , (23)

where φ : X →Fk with Fk being the reproducing kernel Hilbert space (RKHS)
corresponding to a Gaussian kernel with hyperparameter σ2

k [8]:

k(a,b)=exp

(
−‖a−b‖

2

σ2
k

)
. (24)

In this case, the target predictor f is represented based the original parameter
vector wf as well as its dual parameter vector af =[a1f ,...,a

N ′

f ]>:

f(x) :=φ(x)>wf =

N ′∑
j=1

ajfk(bj ,x), (25)

with {bi}N
′

i=1 being a set of basis vectors. The reference predictors {gi}Ri=1 are
represented similarly:

gi(x) :=φ(x)
>wi=

N ′∑
j=1

ajik(bj ,x). (26)

Under this setting, the parameter similarity ‖wf−wi‖ can be calculated using
the standard kernel trick [8] as

‖wf−wj‖=a>f Ka>f +a>i Ka>i −2a>f Ka>i , (27)

with K[i,j]=k(bi,bj). It should be noted that efficient1 calculation of ‖wf−wi‖
based on Eq. 27 requires that all predictors should share the same RKHS de-
termined by the kernel parameter σk. To facilitate this, in our experiments, we
first determine f0 as nonlinear rank support vector machine that minimizes the
regularized energy

ES(f)=
∑

(xi,xj)∈U

L(f,(xi,xj))+Cf‖w‖2, (28)

L(f,(a,b))=max(1−(f(a)−f(b)),0)2 (29)

for the rank loss L defined on ground-truth ranked pairs U ⊂X×X and tune
the hyperparameters σ2

k and Cf based on validation accuracy. Once f0 is fixed
in this way, the reference predictors {gi}Ri=1 are determined by minimizing ES
for the respective rank labels. However, for these references, only the respective
regularization hyperparameters {Ci}Ri=1 are tuned while the corresponding kernel
parameters are all fixed as σ2

k (optimized for f0), to facilitate the computation of
‖w−wi‖ (Eq. 27). We fixed N ′ at 500 and selected the basis vectors {bi}N

′

i=1 as
the cluster centers of input data points X, estimated using k-means clustering.

Note that this setting violates the application conditions of predictor combi-
nation: It requires access to the forms of all predictors {f,g1,...,gR} and, further,
1 The RKHS Fk corresponding to a Gaussian kernel k is infinite-dimensional.
Therefore, each parameter vector w∈Fk is an infinite-dimensional object, making
the direct evaluation of ‖wf−wj‖ infeasible.
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it assumes that all predictors share the same form (Eqs. 25 and 26). We show
in Sec. 3 that the latter homogeneity requirement poses a severe limitation on
predictor combination performance. Even when GL took advantage of known
predictor forms, except for a few cases, the other predictor combination algo-
rithms significantly outperformed GL. Often, the results of GL are even worse
than the initial predictors f0 that are obtained by selecting the best predictors
(via validation) from the heterogeneous predictor pools.

3 Complete ranking results

Table 1 summarizes the results for the relative attributes ranking experiments
(see Tables 2–6 for complete results). Our algorithm NPC performs best for
87% (162/186) of attributes. In particular, it showed statistically significant im-
provement on 74 out of 80 AWA2 attributes, while the baselines OPC and MTL
achieved significant performance gains only on 8 and 33 attributes, respectively.2

Overall, our algorithm NPC is often statistically significantly better than
these methods and – apart from only one attribute (for CUB) out of 186 – ours
is not statistically significantly worse than the other methods. This demonstrates
that the baselines OPC and MTL are limited in that they can only capture
pairwise dependence between the target predictor and each reference. Taking
into account the dependence present among the references, and thereby jointly
exploiting them in improving the target predictor, our algorithm NPC (Ours)
significantly improves the performance.

References

1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed opti-
mization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning 3(1), 1–122 (2010).
https://doi.org/10.1561/2200000016 4

2. Hein, M., Maier, M.: Manifold denoising. In: NIPS. pp. 561–568 (2007) 5, 6
3. Jitkrittum, W., Szabó, Z., Gretton, A.: An adaptive test of independence with

analytic kernel embeddings. In: PMLR (Proc. ICML). pp. 1742–1751 (2017) 4
4. Kim, K.I., Chang, H.J.: Joint manifold diffusion for combining predictions on

decoupled observations. In: CVPR. pp. 7549–7557 (2019) 1, 6
5. Kim, K.I., Tompkin, J., Richardt, C.: Predictor combination at test time. In: ICCV.

pp. 3553–3561 (2017) 1
6. Mejjati, Y.A., Cosker, D., Kim, K.I.: Multi-task learning by maximizing statistical

dependence. In: CVPR. pp. 3465–3473 (2018) 1, 4

2 We used a t-test with α = 0.95. Note that statistical significance tests do not
necessarily evaluate how significant the improvements are in an absolute scale:
Even when the improvements are marginal, if they are consistent, the result of
statistical significant tests can be positive. For instance, for AWA2 attribute 4, MTL
achieved rather moderate improvements (with mean 0.05) but the test of statistical
significance is positive as the results consistently improved the performance from
the baseline, as indicated by the small standard deviation.

https://doi.org/10.1561/2200000016


Combining Task Predictors via Enhancing Joint Predictability 9

Table 1. A summary of the results of statistical significance tests of our method NPC
compared to baseline f0, GL, OPC and MTL, based on a t–test with α=0.95. For
each method, we show #attributes where our NPC is statistically significantly better
(first column), on par with (second column), and statistically significantly worse (third
column).

Dataset vs. baseline f0 vs. GL vs. OPC vs. MTL # total attr.

Shoes 9 1 0 10 0 0 8 2 0 9 1 0 10

Pubfig 11 0 0 11 0 0 11 0 0 11 0 0 11

OSR 6 0 0 2 4 0 4 2 0 5 1 0 6

OSR (ResNet) 6 0 0 6 0 0 6 0 0 6 0 0 6

aPascal 25 4 0 16 13 0 9 20 0 19 10 0 29

CUB 31 9 0 23 17 0 26 14 0 12 27 1 40

AWA2 74 6 0 73 7 0 71 9 0 72 8 0 80

Zap50K 0 4 0 0 4 0 0 4 0 0 4 0 4

# total attr. 162 24 0 141 45 0 135 51 0 134 51 1 186
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(2002) 7
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Table 2. Ranking accuracies of different predictor combination algorithms on the Shoes,
Pubfig, OSR, and OSR (ResNet) datasets. For each dataset, we repeated experiments
10 times with different training, validation, and test set splits. For baseline f0 (second
column), Kendall’s Tau correlations×100 (standard deviations in parentheses) are
presented. For the remaining algorithms (third to sixth columns), the accuracy offsets
from f0 are presented. The best and second best results are highlighted with bold and
italic fonts, respectively. The results of statistical significance test based on a t–test
with α=0.95 are highlighted in green (significantly positive) and orange (significantly
negative). The last three columns show the results of statistical significance test of our
algorithm with GL, OPC, and MTL, respectively (+/−: significantly positive/negative).

Shoes

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 72.09 (1.71) -0.36 (1.44) 2.36 (0.79) 2.03 (0.49) 3.21 (0.86) + + +
2 63.84 (1.87) -2.04 (2.94) 1.57 (1.25) 0.70 (0.39) 2.26 (1.38) + 0 +
3 38.07 (2.11) -1.38 (2.43) -0.24 (0.65) 0.16 (0.70) 4.58 (2.45) + + +
4 50.10 (2.75) -2.45 (2.59) -0.88 (3.29) -0.08 (0.51) 1.63 (2.25) + + +
5 65.76 (1.20) -1.11 (1.84) -0.05 (0.16) 0.13 (0.34) 0.92 (2.46) + 0 0
6 65.02 (1.83) -0.86 (1.13) 0.68 (0.87) 0.81 (0.86) 4.18 (1.54) + + +
7 59.38 (2.06) -3.31 (1.59) 0.78 (1.16) 0.45 (0.42) 4.14 (3.20) + + +
8 56.85 (2.04) -2.57 (1.46) 0.19 (0.46) 0.40 (0.51) 2.62 (0.87) + + +
9 65.15 (1.94) 0.35 (1.94) 2.49 (1.27) 1.40 (0.72) 4.58 (1.72) + + +
10 72.10 (1.24) -1.26 (1.55) 1.71 (0.77) 1.47 (0.77) 2.75 (1.05) + + +

Pubfig

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 67.13 (2.75) 4.89 (2.48) 8.37 (3.84) 9.37 (2.94) 15.45 (2.59) + + +
2 62.49 (2.41) -0.96 (2.62) -0.31 (0.91) 2.24 (1.55) 13.78 (3.23) + + +
3 68.31 (2.33) 2.27 (3.27) 3.06 (2.52) 6.25 (3.04) 11.33 (3.10) + + +
4 63.98 (3.46) 8.44 (4.26) 4.88 (3.14) 7.84 (3.49) 17.80 (4.26) + + +
5 61.27 (2.96) 6.15 (2.92) 3.33 (4.23) 3.26 (3.70) 16.62 (6.02) + + +
6 81.60 (1.26) -1.09 (2.67) -0.03 (1.25) 0.44 (1.58) 6.17 (2.03) + + +
7 64.23 (2.88) 2.87 (3.13) 1.68 (2.67) 3.14 (4.61) 15.66 (3.14) + + +
8 66.10 (3.53) 0.38 (2.66) 0.19 (0.21) 0.10 (0.49) 12.16 (3.17) + + +
9 59.73 (4.79) 3.58 (3.78) -0.11 (1.89) 1.96 (3.20) 17.74 (4.68) + + +
10 63.58 (3.48) 5.79 (3.55) 3.24 (1.92) 4.06 (2.23) 14.16 (2.58) + + +
11 69.12 (2.87) 7.76 (2.73) 9.30 (2.48) 9.49 (2.73) 15.20 (2.87) + + +

OSR

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 88.57 (0.93) 3.16 (1.07) 2.06 (0.83) 2.19 (1.03) 2.72 (1.39) 0 0 0
2 87.52 (0.89) -1.17 (1.06) -0.00 (0.19) 0.03 (0.12) 0.93 (0.69) + + +
3 76.12 (0.95) 0.50 (1.32) 1.31 (0.92) 1.99 (1.26) 3.25 (1.49) + + +
4 77.67 (0.92) 1.29 (1.11) 0.69 (0.70) 0.90 (0.68) 2.10 (1.29) 0 + +
5 79.58 (0.65) 2.50 (0.72) 2.26 (0.68) 1.43 (0.86) 2.89 (1.04) 0 0 +
6 80.49 (1.22) 0.70 (1.00) 0.09 (0.52) 0.03 (0.43) 1.46 (0.84) 0 + +

OSR (ResNet)

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 96.12 (0.59) -0.07 (0.14) 0.39 (0.33) 0.26 (0.37) 1.33 (0.48) + + +
2 84.73 (0.87) 0.00 (0.27) -0.11 (0.25) 0.10 (0.25) 2.51 (1.14) + + +
3 84.46 (1.08) -0.01 (0.03) 0.43 (0.30) 0.89 (0.66) 2.56 (1.21) + + +
4 85.14 (1.27) -0.09 (0.44) -0.03 (0.10) 0.57 (0.89) 2.45 (0.78) + + +
5 88.00 (0.78) 0.03 (0.24) 0.55 (0.82) 0.62 (0.93) 3.52 (1.66) + + +
6 90.88 (0.88) -0.08 (0.17) 0.06 (0.25) 0.71 (0.57) 1.56 (1.08) + + +
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Table 3. Ranking accuracies of different predictor combination algorithms on the
aPascal and Zap50K datasets. For each dataset, we repeated experiments 10 times
with different training, validation, and test set splits. For baseline f0 (second column),
Kendall’s Tau correlations×100 (standard deviations in parentheses) are presented. For
the remaining algorithms (third to sixth columns), the accuracy offsets from f0 are
presented. The best and second best results are highlighted with bold and italic fonts,
respectively. The results of statistical significance test based on a t–test with α=0.95
are highlighted in green (significantly positive) and orange (significantly negative). The
last three columns show the results of statistical significance test of our algorithm with
GL, OPC, and MTL, respectively (+/−: significantly positive/negative).

aPascal

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 59.44 (4.19) 3.11 (2.88) 3.38 (2.31) 0.87 (0.64) 6.04 (3.43) + + +
2 68.21 (4.50) -0.02 (0.12) 0.42 (0.87) 0.27 (0.13) 1.19 (2.17) 0 0 0
3 14.45 (4.62) 1.15 (2.40) 2.09 (5.79) 0.69 (0.33) 4.24 (4.67) 0 0 +
4 65.20 (3.20) 0.23 (0.57) 1.82 (1.38) 0.07 (0.04) 1.19 (2.67) 0 0 0
5 57.87 (4.38) 2.08 (1.69) 4.10 (2.03) 1.19 (0.67) 4.10 (2.26) + 0 +
6 57.37 (5.76) 3.21 (1.49) 4.18 (1.23) 1.36 (0.70) 3.90 (2.28) 0 0 +
7 71.34 (2.69) 0.05 (0.36) 2.29 (2.27) 1.05 (0.53) 2.91 (1.85) + 0 +
8 67.08 (4.56) 2.25 (1.79) 3.78 (3.30) 1.65 (0.51) 3.79 (3.11) + 0 +
9 62.36 (4.83) 2.54 (1.51) 3.91 (2.27) 2.03 (0.55) 4.69 (1.34) + 0 +
10 57.09 (4.36) 4.79 (2.25) 5.38 (2.86) 2.92 (1.55) 7.00 (2.74) + + +
11 62.25 (3.59) 2.05 (1.54) 2.61 (1.39) 1.76 (0.75) 4.12 (3.01) 0 0 +
12 60.58 (4.76) 3.48 (2.13) 4.25 (2.38) 1.54 (0.67) 3.43 (2.63) 0 0 +
13 46.71 (4.95) 3.41 (3.54) 4.20 (4.16) 1.47 (0.60) 4.86 (3.99) 0 0 +
14 52.31 (3.52) 3.52 (2.89) 4.37 (1.68) 2.29 (1.07) 6.75 (2.27) + + +
15 52.07 (6.42) 2.14 (2.77) 2.34 (2.77) 1.46 (0.77) 5.65 (3.71) + + +
16 47.33 (4.15) 0.46 (0.72) 1.55 (1.22) 1.16 (0.41) 2.76 (2.55) + 0 0
17 49.53 (4.57) -0.18 (0.96) 0.42 (1.70) 0.95 (0.45) 2.49 (2.44) + 0 0
18 82.22 (3.20) 0.60 (0.81) 1.37 (0.70) 1.10 (0.36) 1.53 (0.88) + 0 0
19 70.22 (3.21) 1.04 (1.05) 1.01 (1.37) 1.42 (0.61) 2.40 (2.19) 0 0 0
20 79.62 (2.60) 1.87 (0.88) 2.10 (1.19) 1.44 (0.58) 2.09 (2.31) 0 0 0
21 53.01 (5.18) 0.69 (1.34) 0.02 (0.37) 0.37 (0.25) 3.70 (4.07) + + +
22 55.52 (3.98) 2.83 (2.30) 3.04 (1.78) 2.22 (0.71) 6.41 (3.92) + + +
23 70.53 (5.23) 2.31 (2.23) 2.03 (1.14) 2.34 (1.11) 3.82 (2.24) + + +
24 38.48 (5.51) 1.12 (2.63) 0.95 (3.22) 0.91 (0.43) 1.81 (4.71) 0 0 0
25 48.45 (3.52) 0.89 (2.29) 0.76 (1.65) 0.58 (0.51) 2.48 (2.88) 0 + +
26 49.93 (3.91) 2.53 (2.56) 3.60 (3.00) 2.31 (0.55) 6.00 (2.57) + + +
27 72.87 (3.05) 0.04 (0.31) 1.07 (1.49) 0.91 (0.29) 1.65 (1.55) + 0 0
28 64.35 (2.27) 0.30 (0.66) 1.39 (1.33) 0.42 (0.42) 0.43 (3.09) 0 0 0
29 53.84 (3.47) 3.97 (2.36) 4.16 (2.19) 2.53 (0.78) 5.17 (2.20) 0 0 +

Zap50K

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 87.97 (0.99) -0.00 (0.38) 0.27 (0.60) -0.20 (0.67) 0.27 (0.75) 0 0 0
2 89.43 (1.56) 0.13 (0.82) -0.27 (1.10) 0.40 (0.86) 0.03 (0.95) 0 0 0
3 90.67 (1.29) 0.43 (0.80) 0.80 (0.83) 0.70 (0.84) 0.67 (1.23) 0 0 0
4 90.33 (1.56) 0.23 (1.14) 0.17 (0.98) 0.03 (0.82) 0.37 (0.87) 0 0 0
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Table 4. Ranking accuracies of different predictor combination algorithms on the
CUB dataset. We repeated experiments 10 times with different training, validation,
and test set splits. For baseline f0 (second column), Kendall’s Tau correlations×100
(standard deviations in parentheses) are presented. For the remaining algorithms (third
to sixth columns), the accuracy offsets from f0 are presented. The best and second best
results are highlighted with bold and italic fonts, respectively. The results of statistical
significance test based on a t–test with α=0.95 are highlighted in green (significantly
positive) and orange (significantly negative). The last three columns show the results
of statistical significance test of our algorithm with GL, OPC, and MTL, respectively
(+/−: significantly positive/negative).

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 68.80 (3.98) -0.02 (0.07) -0.07 (0.28) 0.16 (0.24) 1.47 (1.05) + + +
2 74.83 (3.89) 0.64 (0.66) 1.12 (0.64) 0.87 (1.53) 2.00 (1.10) + + +
3 78.59 (2.36) 0.86 (0.66) 1.49 (1.10) 1.93 (1.23) 2.22 (1.10) + + 0
4 73.92 (2.51) -0.17 (0.39) 0.27 (0.42) 1.82 (1.72) 1.38 (2.03) + 0 0
5 74.61 (3.37) 1.30 (1.35) 0.98 (1.35) 2.36 (1.46) 2.73 (2.01) + + 0
6 63.86 (5.24) -0.00 (0.41) 0.58 (0.91) 1.48 (1.99) 0.89 (1.34) 0 0 0
7 76.97 (2.21) 1.02 (0.70) 0.54 (0.34) 1.18 (0.66) 1.06 (0.79) 0 + 0
8 62.97 (3.05) -0.00 (0.04) 0.26 (0.45) 0.20 (0.49) 0.76 (1.11) 0 0 0
9 72.52 (2.57) 1.05 (0.99) 1.06 (0.57) 1.53 (1.19) 3.08 (1.84) + + +
10 63.62 (2.99) 0.09 (0.35) 0.50 (1.69) 0.75 (0.86) 2.30 (1.47) + 0 +
11 59.70 (3.69) 0.02 (0.30) 0.02 (0.29) 0.66 (0.98) 0.54 (1.30) 0 0 0
12 71.08 (2.09) 0.17 (0.40) -0.04 (0.74) 0.87 (0.95) 0.87 (0.72) + + 0
13 78.10 (2.31) 0.25 (0.31) 0.11 (0.41) 1.88 (1.09) 1.31 (1.27) + + −
14 74.13 (1.90) 1.08 (0.89) 0.48 (0.39) 1.59 (1.32) 1.85 (1.93) 0 + 0
15 72.23 (3.07) 0.02 (0.62) 0.04 (0.30) 1.25 (0.92) 1.84 (1.28) + + +
16 73.32 (1.97) 1.02 (1.13) 0.67 (0.67) 1.65 (1.81) 1.54 (2.30) 0 0 0
17 58.11 (4.61) 0.09 (0.15) 0.18 (0.39) 0.51 (0.61) 1.16 (0.95) + + +
18 57.35 (4.92) -0.04 (0.23) 0.29 (0.65) 0.55 (0.92) 0.71 (1.85) 0 0 0
19 76.67 (3.06) 1.28 (1.15) 0.43 (0.98) 1.30 (0.94) 1.92 (1.47) 0 + 0
20 76.31 (2.10) 0.28 (0.47) -0.06 (0.48) 0.81 (1.37) 0.72 (1.53) 0 0 0
21 75.45 (3.03) 1.21 (0.93) 1.35 (1.54) 1.88 (1.55) 2.28 (1.50) 0 0 0
22 75.28 (4.13) 1.01 (0.64) 0.49 (0.84) 1.66 (1.08) 1.30 (1.45) 0 + 0
23 69.67 (3.00) 0.12 (0.43) 0.02 (0.72) 1.99 (1.36) 2.07 (1.74) + + 0
24 76.24 (2.55) 0.87 (0.57) 1.17 (0.87) 0.77 (0.74) 2.16 (1.49) + 0 +
25 70.57 (1.93) -0.04 (0.08) 0.43 (0.76) 0.94 (1.60) 1.21 (1.20) + + 0
26 63.59 (2.97) -0.09 (0.19) 0.07 (0.42) 0.52 (1.15) 0.82 (0.53) + + 0
27 72.15 (3.19) 0.39 (0.56) 0.19 (0.49) -0.06 (0.41) 0.41 (0.49) 0 0 +
28 64.40 (3.29) 0.00 (0.54) 0.29 (0.92) 1.21 (0.97) 1.27 (1.27) + + 0
29 57.52 (2.78) 0.09 (0.24) 0.76 (0.96) 2.20 (2.42) 2.50 (2.58) + + 0
30 56.73 (2.86) 0.41 (0.72) 0.78 (0.93) 1.98 (1.72) 1.89 (2.30) 0 0 0
31 73.27 (2.96) 1.13 (1.11) 1.14 (0.67) 1.91 (0.97) 2.00 (1.09) + + 0
32 52.82 (3.71) -0.12 (0.53) -0.12 (0.55) -0.00 (0.47) 0.64 (0.81) + + +
33 69.13 (2.63) 0.14 (0.34) 0.21 (0.54) 0.52 (0.66) 0.27 (0.98) 0 0 0
34 58.15 (4.74) -0.07 (0.48) 0.06 (0.44) 0.46 (0.55) 0.90 (1.10) + + 0
35 58.61 (3.93) 0.52 (1.35) 0.48 (1.58) -0.10 (1.16) 1.64 (1.26) 0 + +
36 58.91 (3.40) 0.35 (0.59) 0.15 (0.79) 0.78 (1.84) 1.73 (1.16) + + 0
37 52.60 (4.12) 0.14 (0.42) 0.08 (0.26) 0.27 (0.38) 0.67 (1.01) 0 0 0
38 67.73 (3.67) 2.08 (2.28) 1.64 (0.93) 3.37 (2.68) 3.34 (2.47) + + 0
39 76.39 (2.22) -0.25 (1.44) 0.29 (0.41) 0.67 (0.72) 1.19 (0.92) 0 + +
40 70.58 (3.12) -0.04 (0.28) 0.09 (0.38) 1.06 (0.64) 1.95 (0.80) + + +
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Table 5. Ranking accuracies of different predictor combination algorithms on the
first 40 attributes of AWA2 dataset. We repeated experiments 10 times with different
training, validation, and test set splits. For baseline f0 (second column), Kendall’s Tau
correlations×100 (standard deviations in parentheses) are presented. For the remaining
algorithms (third to sixth columns), the accuracy offsets from f0 are presented. The best
and second best results are highlighted with bold and italic fonts, respectively. The
results of statistical significance test based on a t–test with α=0.95 are highlighted in
green (significantly positive) and orange (significantly negative). The last three columns
show the results of statistical significance test of our algorithm with GL, OPC, and
MTL, respectively (+/−: significantly positive/negative).

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

1 77.86 (3.70) 0.45 (0.92) 0.12 (0.26) 0.15 (0.29) 7.25 (2.73) + + +
2 83.79 (3.18) 0.05 (0.11) -0.17 (0.41) 0.33 (0.60) 6.22 (2.14) + + +
3 98.55 (0.65) 0.02 (0.11) 0.04 (0.07) -0.01 (0.06) 0.02 (0.46) 0 0 0
4 88.21 (3.47) 0.03 (0.32) 0.13 (0.29) 0.05 (0.05) 5.22 (2.27) + + +
5 88.53 (1.90) 0.21 (0.49) 0.12 (0.21) 0.04 (0.29) 3.55 (2.17) + + +
6 97.94 (1.07) -0.07 (0.17) -0.02 (0.07) -0.12 (0.29) 0.69 (0.65) + + +
7 99.22 (0.34) -0.05 (0.11) -0.02 (0.06) -0.00 (0.09) 0.24 (0.23) + + +
8 82.30 (1.69) -0.03 (0.12) 0.12 (0.39) 0.13 (0.21) 4.32 (1.88) + + +
9 79.33 (4.37) -0.01 (0.35) 0.17 (0.42) 0.04 (0.14) 7.05 (1.65) + + +
10 98.58 (0.85) 0.08 (0.31) 0.03 (0.13) 0.01 (0.03) 0.26 (0.40) 0 0 0
11 97.44 (0.97) -0.03 (0.23) 0.01 (0.10) 0.06 (0.17) 0.90 (0.35) + + +
12 94.46 (1.91) 0.00 (0.25) 0.04 (0.31) 0.47 (0.52) 1.13 (0.70) + + +
13 93.52 (1.05) -0.14 (0.24) 0.08 (0.31) 0.05 (0.19) 2.43 (0.68) + + +
14 94.50 (1.64) 0.04 (0.15) 0.33 (0.49) 0.55 (0.43) 2.29 (0.64) + + +
15 95.04 (1.21) 0.00 (0.07) 0.25 (0.40) 0.13 (0.19) 1.70 (0.68) + + +
16 85.91 (2.85) -0.02 (0.03) 0.05 (0.23) 1.39 (1.03) 5.88 (2.32) + + +
17 87.00 (2.60) 0.48 (0.64) 0.01 (0.36) 1.64 (0.76) 4.33 (1.84) + + +
18 99.25 (0.55) 0.01 (0.03) 0.08 (0.18) 0.02 (0.10) 0.18 (0.26) 0 0 0
19 99.75 (0.22) -0.00 (0.01) -0.02 (0.04) -0.02 (0.05) -0.05 (0.31) 0 0 0
20 97.88 (0.99) 0.03 (0.15) 0.07 (0.26) 0.27 (0.40) 0.79 (0.59) + + +
21 92.36 (2.33) 0.08 (0.13) 0.30 (0.62) 0.13 (0.37) 2.44 (1.35) + + +
22 96.81 (1.03) 0.01 (0.06) 0.20 (0.35) 0.18 (0.18) 1.40 (0.77) + + +
23 91.60 (2.67) 0.11 (0.36) 0.15 (0.23) 0.07 (0.14) 3.57 (0.88) + + +
24 95.46 (1.41) 0.02 (0.30) 0.06 (0.23) 0.01 (0.14) 1.43 (1.24) + + +
25 89.94 (2.52) -0.02 (0.08) 0.07 (0.43) 0.14 (0.45) 3.55 (1.68) + + +
26 84.78 (3.62) 0.03 (0.28) 0.61 (1.16) 0.23 (0.34) 3.77 (1.15) + + +
27 90.67 (2.26) -0.27 (1.30) 0.92 (1.09) 1.09 (1.05) 3.91 (1.80) + + +
28 90.67 (1.67) 0.00 (0.03) 0.05 (0.23) -0.00 (0.10) 4.51 (1.59) + + +
29 95.73 (1.49) 0.16 (0.30) -0.04 (0.16) -0.11 (0.34) 0.15 (0.80) 0 0 0
30 94.97 (1.58) 0.04 (0.11) 0.12 (0.42) 0.06 (0.17) 1.21 (1.10) + + +
31 94.39 (2.23) 0.41 (0.45) 0.40 (0.27) 0.41 (0.48) 2.52 (0.99) + + +
32 96.92 (1.17) -0.02 (0.13) 0.14 (0.33) 0.04 (0.11) 0.86 (0.86) + 0 +
33 85.97 (4.63) 0.08 (0.21) 0.16 (0.53) 0.02 (0.20) 6.68 (3.30) + + +
34 98.58 (0.83) 0.00 (0.01) 0.07 (0.14) -0.07 (0.12) 0.25 (0.60) 0 0 0
35 98.69 (0.47) 0.03 (0.07) 0.30 (0.34) 0.26 (0.28) 0.45 (0.45) + 0 0
36 97.71 (0.82) -0.01 (0.14) -0.02 (0.15) -0.07 (0.13) 0.44 (0.27) + + +
37 97.19 (1.48) -0.04 (0.12) 0.22 (0.59) 0.34 (0.42) 1.17 (1.18) + + +
38 95.21 (0.97) 0.05 (0.10) -0.00 (0.16) 0.04 (0.17) 1.95 (0.75) + + +
39 89.66 (1.83) -0.02 (0.05) 0.13 (0.75) 1.17 (0.94) 4.01 (1.53) + + +
40 95.33 (1.58) -0.04 (0.17) 0.20 (0.26) 0.64 (0.45) 2.60 (1.27) + + +
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Table 6. Ranking accuracies of different predictor combination algorithms on the last
40 attributes of AWA2 dataset. For each dataset, we repeated experiments 10 times
with different training, validation, and test set splits. For baseline f0 (second column),
Kendall’s Tau correlations×100 (standard deviations in parentheses) are presented. For
the remaining algorithms (third to sixth columns), the accuracy offsets from f0 are
presented. The best and second best results are highlighted with bold and italic fonts,
respectively. The results of statistical significance test based on a t–test with α=0.95
are highlighted in green (significantly positive) and orange (significantly negative). The
last three columns show the results of statistical significance test of our algorithm with
GL, OPC, and MTL, respectively (+/−: significantly positive/negative).

Attr. Baseline f0 GL OPC MTL NPC (ours) vs. GL vs. OPC vs. MTL

41 95.21 (1.26) -0.06 (0.16) 0.01 (0.13) 0.07 (0.19) 1.03 (0.60) + + +
42 84.32 (3.88) 0.21 (0.49) -0.06 (0.17) -0.07 (0.27) 2.86 (1.72) + + +
43 95.78 (1.49) 0.06 (0.12) -0.10 (0.19) 0.13 (0.20) 2.57 (1.12) + + +
44 98.22 (0.78) -0.05 (0.25) -0.00 (0.04) -0.00 (0.17) 0.62 (0.50) + + +
45 88.71 (2.33) 0.07 (0.20) 0.42 (0.65) 0.65 (0.83) 2.92 (2.09) + + +
46 83.63 (2.01) 0.01 (0.04) 0.43 (0.74) 0.77 (0.41) 8.15 (1.08) + + +
47 89.57 (2.34) 0.39 (0.59) 0.16 (0.33) 0.13 (0.34) 3.66 (2.15) + + +
48 91.92 (2.16) 0.18 (0.24) 0.51 (0.83) 0.51 (0.43) 2.70 (1.81) + + +
49 89.56 (3.03) 0.05 (0.27) -0.03 (0.25) 0.34 (0.40) 3.65 (1.79) + + +
50 95.20 (1.24) -0.01 (0.05) -0.06 (0.25) 0.11 (0.21) 2.23 (0.82) + + +
51 90.78 (2.72) -0.34 (1.72) 1.01 (1.61) 0.91 (0.81) 3.16 (1.46) + + +
52 94.00 (1.48) -0.14 (0.19) 0.08 (0.70) 0.28 (0.29) 3.11 (0.97) + + +
53 94.51 (1.71) 0.10 (0.17) -0.00 (0.17) -0.02 (0.18) 1.25 (0.78) + + +
54 91.17 (1.73) 0.15 (0.39) 0.22 (0.51) 0.16 (0.47) 4.19 (1.20) + + +
55 93.07 (1.87) 0.07 (0.29) -0.00 (0.38) 0.30 (0.33) 2.95 (0.86) + + +
56 88.30 (3.12) 0.29 (0.51) 0.57 (1.21) 1.26 (1.36) 3.32 (2.47) + + +
57 92.34 (2.15) 0.34 (0.61) 0.03 (0.30) 0.05 (0.18) 2.59 (0.92) + + +
58 96.10 (1.78) 0.16 (0.18) 0.11 (0.17) 0.43 (0.75) 1.13 (1.02) + + +
59 92.12 (3.24) 0.30 (0.42) 0.16 (0.25) 0.23 (0.23) 3.07 (1.47) + + +
60 89.37 (1.95) 0.12 (0.25) 0.44 (0.75) 0.14 (0.23) 2.37 (1.45) + + +
61 92.43 (1.97) -0.10 (0.22) 0.04 (0.27) 0.17 (0.28) 2.37 (0.88) + + +
62 98.16 (1.08) 0.08 (0.27) 0.07 (0.24) 0.18 (0.23) 0.39 (0.53) 0 0 0
63 90.95 (3.52) -0.04 (0.10) 0.33 (0.51) 0.15 (0.49) 3.91 (2.55) + + +
64 92.31 (2.46) -0.06 (0.13) 0.19 (0.24) 0.39 (0.52) 2.80 (1.80) + + +
65 90.41 (3.04) 0.14 (0.30) -0.01 (0.29) 0.57 (0.49) 3.53 (1.25) + + +
66 89.81 (2.71) 0.80 (0.89) 0.58 (1.30) 0.00 (0.27) 3.12 (1.38) + + +
67 94.72 (2.26) -0.02 (0.13) 0.11 (0.77) 0.07 (0.15) 2.38 (0.83) + + +
68 85.60 (2.43) 0.18 (0.83) 0.47 (1.06) 0.11 (0.14) 6.41 (1.36) + + +
69 98.79 (0.41) 0.02 (0.05) 0.14 (0.27) 0.14 (0.22) 0.50 (0.41) + + +
70 97.09 (1.19) -0.04 (0.12) 0.14 (0.18) 0.27 (0.35) 0.93 (0.83) + + +
71 99.02 (0.47) 0.01 (0.02) 0.26 (0.20) 0.16 (0.11) 0.49 (0.32) + + +
72 96.69 (0.57) -0.11 (0.29) 0.23 (0.44) 0.18 (0.19) 1.79 (0.72) + + +
73 94.18 (1.34) 0.09 (0.28) -0.00 (0.06) 0.00 (0.13) 2.48 (0.98) + + +
74 83.62 (3.96) -0.02 (0.41) 0.16 (0.84) 0.56 (0.62) 5.06 (3.19) + + +
75 82.00 (3.99) -0.06 (0.11) 0.54 (0.64) 1.43 (1.62) 6.32 (2.62) + + +
76 83.13 (3.21) 0.08 (0.45) 0.23 (0.64) 0.29 (0.65) 6.38 (2.76) + + +
77 85.16 (1.97) 0.09 (0.29) 0.08 (0.40) 0.76 (0.67) 5.58 (2.22) + + +
78 85.83 (2.74) 0.14 (0.48) -0.11 (0.50) 0.43 (0.81) 4.48 (2.19) + + +
79 87.37 (2.77) 0.08 (0.34) 0.05 (0.29) 0.50 (0.30) 5.25 (1.86) + + +
80 85.30 (2.93) 0.04 (0.21) 0.18 (0.53) 0.44 (0.30) 6.05 (2.39) + + +


