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1 Implementation Details

1.1 Subsampling for image sequence adaptation

We subsample the corrections in the guidance maps to avoid trivial solutions. If
all corrections were used equally in the loss and guidance maps, the model could
eventually degrade to predict the corrections given the corrections themselves.
Specifically it could degrade to only use the information in the guidance maps as
its prediction, without relying on image appearance. We avoid this by subsam-
pling the clicks given to the network as guidance, but using all clicks to compute
the adaptation loss (Eq. (4)). This forces the network to rely on appearance for
propagating the corrections to the rest of the image, where the loss is sparsely
evaluated at the pixel locations which were corrected.

1.2 Robustness to image order

Since our image sequence adaptation (SA) and combined adaptation (IA+SA)
methods are processing images sequentially, we tested our method’s sensitivity
to the image order. We repeated all our experiments 10 times by randomising the
image order and computed the variance of the results. We found the variance to
be minimal (≤ 0.01 standard deviation) verifying that our adaptation methods
are not sensitive to the order in which the images are processed. Hence, we only
report averages to improve readability.

1.3 Adaptation parameters

Our adaptation methods use Adam optimizer [8] with learning rate of 10−6 and
batch size 1. For single image adaptation we do 10 SGD steps and regularize
with λ = 1 and γ = 1. For image sequence adaptation we do 1 SGD step and
use λ = 0.5 and γ = 2. For the DRIONS-DB dataset we use a learning rate of
10−5.
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1.4 Model details

We use DeeplabV3+ [3] with Xception-65 [4] as our backbone architecture (pre-
trained on ImageNet [5] and PASCAL VOC12 [6]). We extend this model with
2 extra channels for the guidance maps and train it for interactive segmentation
model using SGD with momentum and an initial learning rate 0.0002 with poly-
nomial decay. We use a batch size of 2, and atrous rates {12, 24, 36}. We use in
input image resolution of 513×513 and an output stride of 8 for the encoder and
4 for the decoder, respectively. For generating corrections, we sample at most 5
foreground and 5 background corrections for stage one of training (see Sec. 3.3
in the main paper). Corrections are encoded with disks of radius 3.

2 Comparison on the COCO dataset

We have showed that all our adaptation methods are exhibiting substantial
improvement compared to the frozen model in many datasets including the
COCO dataset. The improvement is especially large on the unseen classes of
COCO (16.8% improvement, Table 1 in the main paper) and on adaptation to
a particular unseen class (44% improvement for the donut class, Table 2 in the
main paper), two cases where adaptation is particularly useful.

While we outperform all existing methods on PASCAL VOC12, GrabCut,
Berkeley and DAVIS16, some existing works report better clicks@q% than us on
COCO. e.g. [9] reports 7.86 compared to 9.69 for our method. We however note
that these results are not directly comparable. 10 instances are sampled per class
to form a test set and the selected instances have not been made available by
previous works. But how the selection is done is crucial, as segmenting smaller
objects is more challenging. If we ignore objects smaller than 80 × 80 pixels
as in [2], for example, our IA+SA improves from 9.9 to 5.4 (4.5 clicks less).
Optimizing the architecture to better handle small objects is however not the
focus of our work, as our adaptation methods work with any network architecture
and can hence be combined with architectural improvements easily.
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3 Single image adaptation algorithm

Algorithm 1 Single image adaptation.
1: function SingleImageAdaptation(input x, labels y, target iou J t, initial parameters θ∗, learn-

ing rate λ, number of steps k)
2: θ ← θ∗ . Initialize adaptation model
3: c← −1 . Start with no corrections
4: for i← 0..20 do . Iterate predicting and correcting
5: p← f(x; θ) . Predict mask
6: J ← IoU(p,y) . Compute the IOU
7: if J ≥ J t then . Stop if mask has required IOU
8: return (p, |1[c 6= −1]|,J )
9: end if
10: c← c ∪ GetCorrection(x,p, c) . User input
11: x← UpdateGuidance(x, c)
12: for step← 1..k do . Update model parameters
13: θ ← θ − λ d

dθLADAPT(x,p, c; θ)

14: end for
15: end for
16: return (p, |1[c 6= −1]|,J )
17: end function

4 Number of corrections as proxy for segmentation time

As is common practice [15,10,1,12,9,7], we rely on simulated user corrections
to evaluate our method. The number of corrections required to reach a certain
segmentation quality serves as a proxy for the total time a user requires to
segment an object. When less corrections are needed, segmenting an object is
generally faster. But the time for making a correction might vary, as it comprises
user interaction time (the time it takes for a user to make a correction) and
computation time. We now contrast these two factors for our method.

Benenson [2] performed a rigorous user study on interactive segmentation.
There, they find that a user spends ≈ 3 seconds per click correction (not includ-
ing computation time). For the network used in our work, a single update step
takes 0.16 seconds (Sec. 4.6 in the main paper) and the forward pass takes 0.04
seconds. Thus, single image adaptation requires a computation time of ≈ 0.5s
with 3 update steps. Image sequence adaptation is even faster as it only requires
a single update step, which is done after an object is segmented. Hence, given
these timings, user interaction time is the dominating factor for the total seg-
mentation time. Reducing the number of corrections required, as in our work, is
therefore an effective way to save user time.

5 Additional Qualitative Results

We show additional results for our two adaptation methods compared to the
frozen model in Fig. 1.
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Frozen model (53.8%) Image adaptation (91.3%) Sequence adaptation (88.3%) Ground truthFrozen Model (53.8%) IA (91.3%) SA (88.3%) GT

(a) Rooftop Aerial dataset [14]

Frozen model (37.8%) Image adaptation (91.7%) Sequence adaptation (91.2%) Ground truthFrozen Model (37.8%) IA (91.7%) SA (91.2%) GT

(b) COCO dataset [11]

Frozen Model (81.3%) IA (94.6%) SA (93.8%) GT

(c) GrabCut [13]

Fig. 1: Additional results. For each image we show results for our two adaptation
methods (IA and SA) and the frozen model for the same number of user corrections
(IoU@5 is given in parenthesis). When the frozen model is applied to classes that are
unseen during training, it sometimes produces segmentation masks that span multiple
objects (1a & 1b) or do not respect object boundaries (1c). Single image adapta-
tion (IA) handles such cases much better, by adapting the model parameters to that
specific object and its background. This allows it to correctly segment objects even
when the foreground and background have similar appearance (1b). Image sequence
adaptation (SA) optimizes the model parameters for the test sequence. This allows it
to produce good masks from very few clicks, and additional clicks are only required
close to the object to refine the exact boundary (1a & 1c).
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