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1 Full target results

For completeness with respect to the main submission, we extend the original
results on VOC→ AMD in Table 1 and Cityscapes→ FoggyCityscapes in Table
2, reporting the full target results of DivMatch [5] and SW [7]. Since we are
granting to those methods the access to a much larger set of data with respect
to OSHOT, the reported results can be only considered as an empirical upper-
bound. We highlight that OSHOT outperforms SW also in this Full Target case,
while remaining lower than DivMatch.

2 Pseudo-labeling

The role of rotation recognition on the whole image for classification across do-
mains was extensively discussed in [9]. The näıve application of this approach
would not lead to any advantage in detection: we deal with scenes and the stan-
dard position of sky and ground would steer the recognition, not providing useful
information. OSHOT uses rotation recognition by focusing explicitly on objects.
We consider cropped portions of the image features map to take advantage of the
adaptive power of rotation recognition on local information. Indeed, as discussed
in [7], local domain alignment is crucial for cross-domain detection.

Although [2,3,4] indicate that pseudo-labeling is a viable option for detection
across domains, this approach has some well-known issues, e.g . misclassified
outputs with high confidence need to be discarded [4]. OSHOT is based on a
new form of cross-task pseudo-labeling that avoids those issues: the pseudo-
labels produced by the source models are used for the self-supervised rotation
classifier. In this way we keep the advantage of model initialization through
pseudo-labeling with a reduced risk of error propagation. To provide a practical
example: using standard pseudo-labeling (SPS) on VOC → AMD we get the
results in the top part of Table 3, where the negative effect of SPS is clearly
visible.
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Table 1. mAP results for VOC → AMD

(a) VOC → Clipart

One-Shot Target

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Source Only

FRCNN 18.5 43.3 20.4 13.3 21.0 47.8 29.0 16.9 28.8 12.5 19.5 17.1 23.8 40.6 34.9 34.7 9.1 18.3 40.2 38.0 26.4

OSHOT (γ = 0) 23.1 55.3 22.7 21.4 26.8 53.3 28.9 4.6 31.4 9.2 27.8 9.6 30.9 47.0 38.2 35.2 11.1 20.4 36.0 33.6 28.3
OSHOT (γ = 10) 25.4 61.6 23.8 21.1 31.3 55.1 31.6 5.3 34.0 10.1 28.8 7.3 33.1 59.9 44.2 38.8 15.9 19.1 39.5 33.9 31.0
OSHOT (γ = 30) 25.4 56.0 24.7 25.3 36.7 58.0 34.4 5.9 34.9 10.3 29.2 11.8 46.9 70.9 52.9 41.5 21.1 21.0 38.5 31.8 33.9

Ten-Shot Target

DivMatch [5] 19.5 57.2 17.0 23.8 14.4 25.4 29.4 2.7 35.0 8.4 22.9 14.2 30.0 55.6 50.8 30.2 1.9 12.3 37.8 37.2 26.3
SW [7] 21.5 39.9 21.7 20.5 32.7 34.1 25.1 8.5 33.2 10.9 15.2 3.4 32.2 56.9 46.5 35.4 14.7 15.2 29.2 32.0 26.4

Full Target

DivMatch [5] 26.6 66.7 26.7 33.9 42.4 35.4 40.7 12.0 45.9 51.6 23.5 15.5 49.1 71.6 64.0 45.3 20.4 36.6 45.3 41.3 39.7
SW [7] 15.5 37.1 22.9 22.1 32.6 44.6 28.1 10.1 34.6 9.8 19.2 11.5 36.5 56.9 57.1 37.4 12.3 9.6 33.2 34.2 28.3

(b) VOC → Comic

One-Shot Target

Method bike bird car cat dog person mAP

FRCNN 25.2 10.0 21.1 14.1 11.0 27.1 18.1

OSHOT (γ = 0) 26.9 11.6 22.7 9.1 14.2 28.3 18.8
OSHOT (γ = 10) 35.5 11.7 25.1 9.1 15.8 34.5 22.0
OSHOT (γ = 30) 35.2 14.4 30.0 14.8 20.0 46.7 26.9

Ten-Shot Target

DivMatch [5] 27.1 12.3 26.2 11.5 13.8 34.0 20.8
SW [7] 21.2 14.8 18.7 12.4 14.9 43.9 21.0

Full Target

DivMatch [5] 59.3 20.5 35.5 21.0 30.6 54.6 36.9
SW [7] 39.9 16.2 23.0 11.5 13.5 44.5 24.8

(c) VOC → Watercolor

One-Shot Target

Method bike bird car cat dog person mAP

FRCNN 62.5 39.7 43.4 31.9 26.7 52.4 42.8

OSHOT (γ = 0) 70.2 46.7 45.5 31.2 27.2 55.7 46.1
OSHOT (γ = 10) 70.2 46.7 48.1 30.9 32.3 59.9 48.0
OSHOT (γ = 30) 77.1 44.7 52.4 37.3 37.0 63.3 52.0

Ten-Shot Target

DivMatch [5] 64.6 44.1 44.6 34.1 24.9 60.0 45.4
SW [7] 66.3 41.1 41.1 30.5 20.5 52.3 42.0

Full Target

DivMatch [5] 86.6 50.5 50.9 36.2 39.5 64.5 54.7
SW [7] 65.7 45.1 43.1 32.4 30.5 56.2 45.5

Table 2. mAP results for Cityscapes → FoggyCityscapes

One-Shot Target

Method person rider car truck bus train mcycle bicycle mAP

Source Only

FRCNN 30.4 36.3 41.4 18.5 32.8 9.1 20.3 25.9 26.8

OSHOT (γ = 0) 31.8 42.0 42.6 20.1 31.6 10.6 24.8 30.7 29.3
OSHOT (γ = 10) 31.9 41.9 43.0 19.7 38.0 10.4 25.5 30.2 30.1
OSHOT (γ = 30) 32.1 46.1 43.1 20.4 39.8 15.9 27.1 32.4 31.9

Ten-Shot Target

DivMatch [5] 27.6 38.1 42.9 17.1 27.6 14.3 14.6 32.8 26.9
SW [7] 25.5 30.8 40.4 21.1 26.1 34.5 6.1 13.4 24.7

Full Target

DivMatch [5] 32.3 43.5 47.6 23.9 38.0 23.1 27.6 37.2 34.2
SW [7] 31.3 32.1 47.4 19.6 28.8 41.0 9.8 20.1 28.8

3 Self-Supervision

For the auxiliary self-supervised task we set the loss weight λ = 0.05 in the
pretraining stage and increase it to λ = 0.2 for adaptation. This choice has the
same effect as increasing the learning rate during adaptation and helps to speed
up the inference stage. Using a lower weight for λ would require more finetuning
iterations, as shown in the middle part of Table 3.

Besides rotation recognition it is also possible to use other self-supervised
tasks for the OSHOT algorithm. In the last two rows of Table 3, we evaluate also
the suitability of self-supervised jigsaw puzzle [6]. The obtained results confirm
the effectiveness of our method.
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Table 3. Analysis on pseudo-labeling and self-supervised tasks

Method Clipart Comic Watercolor Avg

FRCNN 26.4 18.1 42.8 29.1

OSHOT (γ = 30) 33.9 26.9 52.0 37.6

Standard Pseudo-labeling

OSHOT SPS (γ = 10) 17.4 14.0 21.7 17.7
OSHOT SPS (γ = 30) 6.7 5.3 12.1 6.0

Self-Supervised Weight and Iterations

OSHOT (γ = 30, λ = 0.05) 33.8 23.4 50.7 36.0
OSHOT (γ = 70, λ = 0.05) 34.1 24.5 51.2 36.6
OSHOT (γ = 30, λ = 0.2) 33.9 26.9 52.0 37.6

Self-Supervised Jigsaw Task

OSHOT Jigsaw (γ = 0) 29.0 18.9 42.8 30.2
OSHOT Jigsaw (γ = 30) 27.1 16.0 40.5 27.9

4 Full Ablation Results

Detection error analysis We complete here the detection error analysis that
was only partially included in the main paper for space reasons. Specifically
we consider all the three domain shift cases of VOC → AMD together with
Cityscapes→ Foggy Cityscapes, KITTI→ Cityscapes and KITTI→ Cityscapes.
As reported in the main paper, for the first benchmark VOC → Clipart we
follow [1,5] considering the top 1k most confident detections and identifying
three error types: correct (IoUgt > 0.5), mislocalized (0.3 6 IoUgt < 0.5) and
background (IoUgt < 0.3). For VOC → Comic and VOC → Watercolor we
consider 2k most confident predictions, maintaining the same ratio of the first
case given that the number of target samples is twice that of Clipart. A similar
reasoning, that also takes care of the class cardinality, was applied to choose 6k
most confident predictions for Foggy Cityscapes → Cityscapes, 1.5k for KITTI
→ Cityscapes and 20k for Cityscapes → KITTI. From Figure 1 we can state
that for both Clipart and Watercolor the advantage of adding the self-supervised
task at training time is limited (γ = 0), while the gain becomes evident when the
number of adaptive iterations grows (γ = 30). For Comic the improvement in
performance appears already in the pretraining phase and further increases with
adaptation. Overall the false positive errors decrease, while the ratio between the
mislocalization error and correct localizations either decreases (Clipar, Comic) or
remains stable (Watercolor). A similar behaviour can be observed on the urban
scenes, both when testing on Foggy Cityscapes and Cityscapes, as shown in the
first two rows of Figure 2. For the last case of testing on KITTI, the results
remain almost stable, confirming the same trend observed on the overall mAP
performance discussed in the main paper. A neglegible drop of 0.7% correct
predictions appear when applying the adaptation phase for γ = 30.

Self-supervised iterations We report results of OSHOT at different number
of self-supervised iterations in Figure 3. We observe positive correlations between



4 A. D’Innocente et al.

VOC → Clipart
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VOC → Watercolor
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Fig. 1. Detection error analysis on the three cases of VOC → AMD

Citys. → Foggy Citys.
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KITTI → Citys.
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Citys. → KITTI
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Fig. 2. Detection error analysis on the three cases of urban scenes

the number of self-supervised iterations and the final mAP on all targets except
KITTI, for which the final results are minimally affected by our adaptation
procedure (as well as by any other adaptive method used as reference - see
Table 5 of the main paper). The first 10 iterations show the most significant
mAP change, while it gets to a stable plateau for further iterations.
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Fig. 3. OSHOT at different number of iterations for all testbeds

5 Qualitative Analysis

Image vs Box rotation To validate our choice of considering box rotation
over image rotation we set up a dedicated experiment. We ran the pretraining
stage of OSHOT on VOC by using either Gr(image) or Gr(boxcrop). Then
we tested the rotation classifier on whole images from the Clipart domain. In
Figure 4 we show the results obtained with Grad-CAM [8] for the two cases,
with heatmap indicating the most relevant regions responsible for recognizing the
correct orientation. The Grad-CAM maps refer to the last output of the backbone
feature extractor. We can see that, when the rotation classifier is trained on whole
images it learns to focus on the background (e.g . the sky and the ground) in order
to solve the task. On the contrary, when the boxcrop operation is implemented
to train the rotation classifier only on the relevant objects, it learns to look at
objects’ features even when it faces an entire image.

Detection results of OSHOT: baselines and self-supervised iterations
Figure 5 shows some examples of detections of OSHOT on images extracted
from all the datasets considered in our work. We present as reference also the
ground truth results as well as the predictions produced by DivMatch [5] and
SW [7] that appear less precise than OSHOT.

6 OSHOT pseudocode

The pseudocode for the adaptive phase of OSHOT is presented in Algorithm 1.
Here, Gf and Gd indicate the backbone feature extractor and detector, respec-
tively parametrized by θf and θd. FC is the fully connected layer of the rotation
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image boxcrop

Fig. 4. Visualization of the most relevant image regions produced by Grad-CAM when
classifying the correct rotation with Gr(image) and Gr(boxcrop)

classifier, parametrized by θr, and R is the rotator operator R(x, α) where α,
which indicates one random rotation to apply on x, is dropped for simplicity.
The pseudoboxcrop(·|b) operator applies cropping and ROI pooling on the input
feature map based on the corresponding location of pseudo-boxes b.



One-Shot Unsupervised Cross-Domain Detection Supplementary Material 7

Ground Truth DivMatch SW OSHOT γ = 0 OSHOT γ = 30

Fig. 5. Qualitative visualization of detections with DivMatch, SW and OSHOT on
Comic (first row), Foggy Cityscapes (second row), Watercolor (third row), Social Bikes
(fourth and fifth rows) and KITTI (sixth row). Numbers associated with bounding
boxes indicate the detector’s confidence

Algorithm 1: Adaptive phase of OSHOT

Data: Gf , Gd, FC, parameters θf , θr, θd, rotator R, target image xt

θ∗f ← θf
θ∗r ← θr
while still γ iterations do

bt, ct ← Gd(Gf (xt|θ∗f )|θd)
xtr ← R(xt)
btr ← R(bt)
minimize self-supervised loss Lr(FCθ∗r (pseudoboxcrop(Gf (xtr|θ∗f )|btr))
update θ∗f , θ

∗
r

end
predict label of test sample using Gf (·|θ∗f ),Gd
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