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Abstract. Super-resolution and denoising are ill-posed yet fundamental
image restoration tasks. In blind settings, the degradation kernel or the
noise level are unknown. This makes restoration even more challenging,
notably for learning-based methods, as they tend to overfit to the degra-
dation seen during training. We present an analysis, in the frequency do-
main, of degradation-kernel overfitting in super-resolution and introduce
a conditional learning perspective that extends to both super-resolution
and denoising. Building on our formulation, we propose a stochastic fre-
quency masking of images used in training to regularize the networks and
address the overfitting problem. Our technique improves state-of-the-art
methods on blind super-resolution with different synthetic kernels, real
super-resolution, blind Gaussian denoising, and real-image denoising.

Keywords: Image Restoration, Super-Resolution, Denoising, Kernel Over-
fitting

1 Introduction

Image super-resolution (SR) and denoising are fundamental restoration tasks
widely applied in imaging pipelines. They are crucial in various applications,
such as medical imaging [33,38,45], low-light imaging [12], astronomy [7], satel-
lite imaging [8,50], or face detection [24]. However, both are challenging ill-
posed inverse problems. Recent learning methods based on convolutional neu-
ral networks (CNNs) achieve better restoration performance than classical ap-
proaches, both in SR and denoising. CNNs are trained on large datasets, some-
times real [65] but often synthetically generated with either one kernel or a lim-
ited set [54,63]. They learn to predict the restored image or the residual between
the restored target and the input [27,56]. However, to be useful in practice, the
networks should perform well on test images with unknown degradation kernels
for SR, and unknown noise levels for denoising. Currently, they tend to overfit
to the set of degradation models seen during training [16].

We investigate the SR degradation-kernel overfitting with an analysis in the
frequency domain. Our analysis reveals that an implicit conditional learning is
taking place in SR networks, namely, the learning of residual high-frequency

∗ The first two authors have similar contributions.
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Fig. 1: Overview of Stochastic Frequency Masking (SFM). In the central mode,
two radii values are sampled uniformly to delimit a masking area, and in the
targeted mode, the sampled values delimit a quarter-annulus away from a target
frequency. The obtained mask, shown with inverted color, is applied channel-
wise to the discrete cosine transform of the image. We invert back to the spatial
domain to obtain the SFM image that we use to train SR and denoising networks.

content given low frequencies. We additionally show that this result extends to
denoising as well. Building on our insights, we present Stochastic Frequency
Masking (SFM), which stochastically masks frequency components of the im-
ages used in training. Our SFM method (Fig. 1) is applied to a subset of the
training images to regularize the network. It encourages the conditional learning
to improve SR and denoising networks, notably when training under the chal-
lenging blind conditions. It can be applied during the training of any learning
method, and has no additional cost at test time.

Our experimental results show that SFM improves the performance of state-
of-the-art networks on blind SR and blind denoising. For SR, we conduct ex-
periments on synthetic bicubic and Gaussian degradation kernels, and on real
degraded images. For denoising, we conduct experiments on additive white Gaus-
sian denoising and on real microscopy Poisson-Gaussian image denoising. SFM
improves the performance of state-of-the-art networks on each of these tasks.

Our contributions are summarized as follows. We present a frequency-domain
analysis of the degradation-kernel overfitting of SR networks, and highlight the
implicit conditional learning that, as we also show, extends to denoising. We
present a novel technique, SFM, that regularizes the learning of SR and denoising
networks by only filtering the training data. It allows the networks to better
restore frequency components and avoid overfitting. We empirically show that
SFM improves the results of state-of-the-art learning methods on blind SR with
different synthetic degradations, real-image SR, blind Gaussian denoising, and
real-image denoising on high noise levels.

Code available at: https://github.com/majedelhelou/SFM

https://github.com/majedelhelou/SFM
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2 Related work

Super-resolution. Depending on their image prior, SR algorithms can be di-
vided into prediction models [43], edge-based models [11], gradient-profile pior
methods [48] and example-based methods [21]. Deep example-based SR networks
hold the state-of-the-art performance. Zhang et al. propose a very deep architec-
ture based on residual channel attention to further improve these networks [63]. It
is also possible to train in the wavelet domain to improve the memory and time ef-
ficiency of the networks [64]. Perceptual loss [25] and GANs [30,54] are leveraged
to mitigate blur and push the SR networks to produce more visually-pleasing
results. However, these networks are trained using a limited set of kernels, and
studies have shown that they have poor generalization to unseen degradation ker-
nels [22,46]. To address blind SR, which is degradation-agnostic, recent methods
propose to incorporate the degradation parameters including the blur kernel into
the network [46,57,59,60]. However, these methods rely on blur-kernel estimation
algorithms and thus have a limited ability to handle arbitrary blur kernels. The
most recent methods, namely IKC [22] and KMSR [65], propose kernel estima-
tion and modeling in their SR pipeline. However, it is hard to gather enough
training kernels to cover the real-kernel manifold, while also ensuring effective
learning and avoiding that these networks overfit to the chosen kernels. Recently,
real-image datasets were proposed [10,61] to enable SR networks to be trained
and tested on high- and low-resolution (HR-LR) pairs, which capture the same
scene but at different focal lengths. These datasets are also limited to the degra-
dations of only a few cameras and cannot guarantee that SR models trained on
them would generalize to unseen degradations. Our SFM method, which builds
on our degradation-kernel overfitting analysis and our conditional learning per-
spective, can be used to improve the performance of all the SR networks we
evaluate, including ones that estimate and model degradation kernels.

Denoising. Classical denoisers such as PURE-LET [34], which is specifi-
cally aimed at Poisson-Gaussian denoising, KSVD [2], WNNM [23], BM3D [14],
and EPLL [66], which are designed for Gaussian denoising, have the limitation
that the noise level needs to be known at test time, or at least estimated [20].
Recent learning-based denoisers outperform the classical ones on Gaussian de-
noising [4,39,56], but require the noise level [58], or pre-train multiple models
for different noise levels [31,57], or more recently attempt to predict the noise
level internally [18]. For a model to work under blind settings and adapt to any
noise level, a common approach is to train the denoiser network while varying
the training noise level [4,39,56]. Other recent methods, aimed at real-image de-
noising such as microscopy imaging [62], learn image statistics without requiring
ground-truth samples on which noise is synthesized. This is practical because
ground-truth data can be extremely difficult and costly to acquire in, for in-
stance, medical applications. Noise2Noise [32] learns to denoise from pairs of
noisy images. The noise is assumed to be zero in expectation and decorrelated
from the signal. Therefore, unless the network memorizes it, the noise would
not be predicted by it, and thus gets removed [32,53]. Noise2Self [6], which is a
similar but more general version of Noise2Void [29], also assumes the noise to
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be decorrelated, conditioned on the signal. The network learns from single noisy
images, by learning to predict an image subset from a separate subset, again
with the assumption that the noise is zero in expectation. Although promising,
these two methods do not yet reach the performance of Noise2Noise. By regu-
larizing the conditional learning defined from our frequency-domain perspective,
our SFM method improves the high noise level results of all tested denoising
networks, notably under blind settings.

One example that uses frequency bands in restoration is the method in [5]
that defines a prior based on a distance metric between a test image and a
dataset of same-class images used for a deblurring optimization. The distance
metric computes differences between image frequency bands. In contrast, we ap-
ply frequency masking on training images to regularize deep learning restoration
networks, improving performance and generalization. Spectral dropout [26] regu-
larizes network activations by dropping out components in the frequency domain
to remove the least relevant, while SFM regularizes training by promoting the
conditional prediction of different frequency components through masking the
training images themselves. The most related work to ours is a recent method
proposed in the field of speech recognition [37]. The authors augment speech
data in three ways, one of which is in the frequency domain. It is a random sep-
aration of frequency bands, which splits different speech components to allow the
network to learn them one by one. A clear distinction with our approach is that
we do not aim to separate input components to be each individually learned.
Rather, we mask targeted frequencies from the training input to strengthen the
conditional frequency learning, and indirectly simulate the effect of a variety of
kernels in SR and noise levels in denoising. The method we present is, to the best
of our knowledge, the first frequency-based input masking method to regularize
SR and denoising training.

3 Frequency perspective on SR and denoising

3.1 Super-resolution

Preliminaries Downsampling, a key element in modeling SR degradation, can
be well explained in the frequency domain where it is represented by the sum
of shifted and stretched versions of the frequency spectrum of a signal. Let x
be a one-dimensional discrete signal, e.g., a pixel row in an image, and let z
be a downsampled version of x with a sampling interval T . In the discrete-time
Fourier transform domain, with frequencies ω ∈ [−π, π], the relation between
the transforms X and Z of the signals x and z, respectively, is given by Z(ω) =
1
T

∑T−1
k=0 X((ω+2πk)/T ). The T replicas of X can overlap in the high frequencies

and cause aliasing. Aside from complicating the inverse problem of restoring x
from z, aliasing can create visual distortions. Before downsampling, low-pass
filtering is therefore applied to attenuate if not completely remove the high-
frequency components that would otherwise overlap.

These low-pass filtering blur kernels are applied through a spatial convo-
lution over the image. The set of real kernels spans only a subspace of all
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mathematically-possible kernels. This subspace is, however, not well-defined an-
alytically and, in the literature, is often limited to the non-comprehensive sub-
space spanned by 2D Gaussian kernels. Many SR methods thus model the anti-
aliasing filter as a 2D Gaussian kernel, attempting to mimic the point spread
function (PSF) of capturing devices [15,44,55]. In practice, even a single imaging
device results in multiple kernels, depending on its settings [17]. For real images,
the kernel can also be different from a Gaussian kernel [16,22]. The essential point
is that the anti-aliasing filter causes the loss of high-frequency components, and
that this filter can differ from image to image.

Frequency visualization of SR reconstructions SR networks tend to overfit
to the blur kernels used in the degradation for obtaining the training images [59].
To understand that phenomenon, we analyze in this section the relation between
the frequency-domain effect of a blur kernel and the reconstruction of SR net-
works. We carry out the following experiment with a network trained with a
unique and known blur kernel. We use the DIV2K [1] dataset to train a 20-block
RRDB [54] x4 SR network with images filtered by a Gaussian blur kernel called
FLP1 (standard deviation σ = 4.1), shown in the top row of Fig. 2(a). We then
run an inference on 100 test images filtered with a different Gaussian blur kernel
called FLP2 (σ = 7.4), shown in the bottom row of Fig. 2(a), to analyze the
potential network overfitting.

We present a frequency-domain visualization in Fig. 2(b). The power spectral
density (PSD) is the distribution of frequency content in an image. The typi-
cal PSD of an image (green curve) is modeled as 1/fα, where f is the spatial
frequency, with α ∈ [1, 2] and varying depending on the scene (natural vs. man-
made) [9,19,51,52]. The 1/fα trend is visible in the PSD of HR images (green
fill). The degraded LR test images are obtained with a low-pass filter on the HR
image, before downsampling, and their frequency components are mostly low fre-
quencies (pink fill). The SR network outputs contain high-frequency components
restored by the network (red fill). However, these frequencies are mainly above
0.2π. This is only the range that was filtered out by the kernel used in creating
the training LR images. The low-pass kernel used in creating the test LR images
filters out a larger range of frequencies; it has a lower cutoff than the training
kernel (the reverse case is also problematic and is illustrated in Supplementary
Material). This causes a gap of missing frequency components not obtained in
the restored SR output, illustrated with a blue dashed circle in Fig. 2(b). The
results suggest that an implicit conditional learning takes place in the SR net-
work, on which we expand further in the following section. The results of the
network trained with 50% SFM (masking applied to half of the training set) are
shown in Fig. 2(c). A key observation is that the missing frequency components
are predicted to a far better extent when the network is trained with SFM.

Implicit conditional learning As we explain in the Preliminaries of Sec. 3.1,
the high-frequency components of the original HR images are removed by the
anti-aliasing filter. If that filter is ideal, it means that the low-frequency com-
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Fig. 2: (a) Overview of our experimental setup, with image border colors cor-
responding to the plot colors shown in (b,c). We train 2 versions of the same
network on the same degradation kernel (FLP1 anti-aliasing filter), one without
and one with SFM, and test them using FLP2 . (b) Average PSD (power spec-
tral density) of HR images in green fill, with a green curve illustrating a typical
natural-image PSD (α = 1.5 [52]). The pink fill illustrates the average PSD of
the low-pass filtered LR test images (∗shown before downsampling for better vi-
sualization). In red fill is the average PSD of the restored SR output image. The
blue dashed circle highlights the learning gap due to degradation-kernel overfit-
ting. (c) The same as (b), except that the output is that of the network trained
with SFM. Results are averaged over 100 random samples.

ponents are not affected and the high frequencies are perfectly removed. We
propose that the SR networks in fact learn implicitly a conditional probability

P
(
IHR ~ FHP | IHR ~ FLP

)
, (1)

where FHP and FLP are ideal high-pass and low-pass filters, applied to the
high-resolution image IHR, and ~ is the convolution operator. The low and high
frequency ranges are theoretically defined as [0, π/T ] and [π/T, π], which is the
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minimum condition (largest possible cutoff) to avoid aliasing for a downsampling
rate T . The components of IHR that survive the low-pass filtering are the same
frequencies contained in the LR image ILR, when the filters F are ideal. In other
words, the frequency components of IHR ~ FLP are those remaining in the LR
image that is the network input.

The anti-aliasing filters are, in practice, not ideal, resulting in: (a) some
low-frequency components of IHR being attenuated, (b) some high frequencies
surviving the filtering and causing aliasing. Typically, the main issue is the first
issue (a), because filters are chosen in a way to remove the visually-disturbing
aliasing at the expense of attenuating some low frequencies. We expand further
on this in Supplementary Material, and derive that even with non-ideal filters,
there is still conditional and residual learning components to predict a set of
high-frequencies. These frequencies are, however, conditioned on a set of low-
frequency components potentially attenuated by the non-ideal filter we call FLPo .
This filter fully removes aliasing artifacts but can affect the low frequencies. The
distribution can hence be defined by the components

P
(
IHR ~ FHP | IHR ~ FLPo

)
, P

(
IHR ~ FLP − IHR ~ FLP0 | IHR ~ FLPo

)
.

(2)
This is supported by our results in Fig. 2. The SR network trained with degrada-
tion kernel FLP1 (σ = 4.1 in our experiment) restores the missing high frequencies
of IHR that would be erased by FLP1 . However, that is the case even though the
test image is degraded by FLP2 6= FLP1 . As FLP2 (σ = 7.4) removes a wider
range of frequencies than FLP1 , not predicted by the network, these frequen-
cies remain missing. We observe a gap in the PSD of the output, highlighted
by a blue dashed circle. This illustrates the degradation-kernel overfitting issue
from a frequency-domain perspective. We also note that these missing frequency
components are restored by the network trained with SFM.

3.2 Extension to denoising

We highlight a connection between our conditional learning proposition and
denoising. As discussed in Sec. 3.1, the average PSD of an image can be approx-
imated by 1/fα. The Gaussian noise samples added across pixels are indepen-
dent and identically distributed. The PSD of the additive white Gaussian noise
is uniform. Fig. 3 shows the PSD of a natural image following a power law with
α = 2, that of white Gaussian noise (WGN), and the resulting signal-to-noise
ratio (SNR) when the WGN is added to the image. The resulting SNR decreases
proportionally to 1/fα.

The relation between SNR and frequency shows that with increasing fre-
quency, the SNR becomes exponentially small. In other words, high frequencies
are almost completely overtaken by the noise, while low frequencies are much less
affected by it. And, the higher the noise level, the lower the starting frequency
beyond which the SNR is significantly small, as illustrated by Fig. 3. This draws
a direct connection to our SR analysis. Indeed, in both applications there exists
an implicit conditional learning to predict lost high-frequency components given
low-frequency ones that are less affected.
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Fig. 3: Natural image PSD follows a power law as a function of spatial frequency.
The plotted examples follow a power law with α = 2 [52] and additive WGN
(σ2 = 3 on the left, and σ2 = 10 on the right). The resulting SNR in the noisy
image is exponentially smaller the higher the frequency, effectively causing a high
frequency loss. The higher the noise level, the more frequency loss is incurred,
and the more similar denoising becomes to our SR formulation.

4 Stochastic Frequency Masking (SFM)

4.1 Motivation and implementation

The objective of SFM is to improve the networks’ prediction of high frequencies
given lower ones, whether for SR or denoising. We achieve this by stochastically
masking high-frequency bands from some of the training images in the learn-
ing phase, to encourage the conditional learning of the network. Our masking
is carried out by transforming an image to the frequency domain using the Dis-
crete Cosine Transform (DCT) type II [3,47], multiplying channel-wise by our
stochastic mask, and lastly transforming the image back (Fig. 1). See Supple-
mentary Material for the implementation details of the DCT type we use. We
define frequency bands in the DCT domain over quarter-annulus areas, to clus-
ter together similar-magnitude frequency content. Therefore, the SFM mask is
delimited with a quarter-annulus area by setting the values of its inner and outer
radii. We define two masking modes, the central mode and the targeted mode.

In the central mode, the inner and outer radius limits rI and rO of the quarter-
annulus are selected uniformly at random from [0, rM ], where rM =

√
a2 + b2 is

the maximum radius, with (a, b) being the dimensions of the image. We ensure
that rI < rO by permuting the values if rI > rO. With this mode, the resulting
probability of a given frequency band rω to be masked is

P (rω = 0) = P (rI < rω < rO) = 2

(
rω
rM
−
(
rω
rM

)2
)
, (3)

meaning the central bands are the more likely ones to be masked, with the
likelihood slowly decreasing for higher or lower frequencies. In the targeted mode,
a target frequency rC is selected, with a parameter σ∆. The quarter-annulus is
delimited by [rC−δI , rC +δO], where δI and δO are independently sampled from
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the half-normal ∆ distribution f∆(δ) =
√

2/
√
πσ2

∆e
−δ2/(2σ2

∆), ∀δ ≥ 0. Therefore,
with this mode, the frequency rC is always masked, and the frequencies away
from rC are less and less likely to be masked, with a normal distribution decay.

We use the central mode for SR networks, and the targeted mode with a
high target rC for denoisers (Fig. 1). The former has a slow probability decay
that covers wider bands, while the latter has an exponential decay adapted for
targeting specific narrow bands. In both settings, the highest frequencies are
most likely to be masked. The central mode masks the highest frequencies in
SR, because central frequencies are the highest ones remaining after the anti-
aliasing filter is applied. It is also worth noting that SFM thus simulates the effect
of different blur kernels by stochastically masking different frequency bands.

4.2 Learning SR and denoising with SFM

We apply SFM only on the input training data. For the simulated-degradation
data, SFM is applied in the process of generating the LR inputs. We apply SFM
on HR images before applying the degradation model to generate the LR inputs
(blur kernel and downsampling). The target output of the network remains the
original HR images. For real images where the LR inputs are given and the
degradation model is unknown, we apply SFM on the LR inputs and keep the
original HR images as ground-truth targets. Therefore, the networks trained with
SFM do not use any additional data relative to the baselines. We apply the same
SFM settings for all deep learning experiments. During training, we apply SFM
on 50% of the training images, using the central mode of SFM, as presented in
Sec. 4.1. Ablation studies with other rates are in our Supplementary Material.
We add SFM to the training of the original methods with no other modification.

When training for additive white Gaussian noise (AWGN) removal, we apply
SFM on the clean image before the synthetic noise is added. When the training
images are real and the noise cannot be separated from the signal, we apply
SFM on the noisy image. Hence, we ensure that networks trained with SFM do
not utilize any additional training data relative to the baselines. In all denoising
experiments, and for all of the compared methods, we use the same SFM settings.
We apply SFM on 50% of training images, and use the targeted mode of our SFM
(ablation studies including other rates are in our Supplementary Material). We
use a central band rC = 0.85 rM and σ∆ = 0.15 rM . As presented in Sec. 4.1, this
means that the highest frequency bands are masked with high likelihood, and
lower frequencies are exponentially less likely to be masked the smaller they are.
We add SFM to the training of the original methods with no other modification.

5 Experiments

5.1 SR: bicubic and Gaussian degradations

Methods. We evaluate our proposed SFM method on state-of-the-art SR net-
works that can be divided into 3 categories. In the first category, we evaluate
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(a) Input (σ = 2.9) (b) RCAN [63] (c) ESRGAN [54] (d) IKC [22]

(e) Ground-truth (f) RCAN + SFM (g) ESRGAN+SFM (h) IKC + SFM

Fig. 4: Cropped SR results (x4) of different methods (top row), and with our SFM
added (bottom row), for image 0844 of DIV2K. The visual quality improves for
all methods when trained with SFM (images best viewed on screen).

Test blur kernel (gσ is a Gaussian kernel, standard deviation σ)
bicubic g1.7 g2.3 g2.9 g3.5 g4.1 g4.7 g5.3 g5.9 g6.5

RCAN [63] 29.18 23.80 24.08 23.76 23.35 22.98 22.38 22.16 21.86 21.72
RCAN+SFM 29.32 24.21 24.64 24.19 23.72 23.27 22.54 22.23 21.91 21.79

IKC [22] 27.81 26.07 26.15 25.48 25.03 24.41 23.39 22.78 22.41 22.08
IKC+SFM 27.78 26.09 26.18 25.52 25.11 24.52 23.54 22.97 22.62 22.35

RRDB [54] 28.79 23.66 23.72 23.68 23.29 22.75 22.32 22.08 21.83 21.40
RRDB+SFM 29.10 23.81 23.99 23.79 23.41 22.90 22.53 22.37 21.98 21.56

ESRGAN [54] 25.43 21.22 22.49 22.03 21.87 21.63 21.21 20.99 20.05 19.42
ESRGAN+SFM 25.50 21.37 22.78 22.26 22.08 21.80 21.33 21.10 20.13 19.77

Table 1: Single-image SR, with x4 upscaling factor, PSNR (dB) results on the
DIV2K validation set. RCAN, RRDB and ESRGAN are trained using bicubic
degradation, and IKC using Gaussian kernels (σ ∈ [2.0, 4.0]). Kernels seen in
training are shaded gray. The training setups of the networks are presented in
Sec. 5.1, and identical ones are used with SFM. We note that SFM improves
the results of the various methods, even the IKC method that explicitly models
kernels during its training improves by up to 0.27dB with SFM on unseen kernels.

RCAN [63] and RRDB [54], which are networks that target pixel-wise distortion
for a single degradation kernel. RCAN leverages a residual-in-residual structure
and channel attention for efficient non-blind SR learning. RRDB [54] employs a
residual-in-residual dense block as its basic architecture unit. The second cate-
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Dataset and upscaling factor
RealSR [10] SR-RAW [61]

Method x2 x3 x4 x4 x8

RCAN‡ [63] 33.24 30.24 28.65 26.29 24.18
RCAN 50% SFM 33.32 30.29 28.75 26.42 24.50

KMSR [65] 32.98 30.05 28.27 25.91 24.00
KMSR 50% SFM 33.21 30.11 28.50 26.19 24.31

IKC [22] 33.07 30.03 28.29 25.87 24.19
IKC 50% SFM 33.12 30.25 28.42 25.93 24.25

Table 2: PSNR (dB) results of blind image super-resolution on two real SR
datasets, for the different available upscaling factors. ‡RCAN is trained on the
paired dataset collected from the same sensor as the testing dataset.

gory covers perception-optimized methods for a single degradation kernel, and
includes ESRGAN [54]. It is a version of the RRDB network using a GAN for bet-
ter SR perceptual quality and obtains the state-of-the-art results in this category.
The last category includes algorithms for blind SR, we experiment on IKC [22],
which incorporates into the training of the SR network a blur-kernel estimation
and modeling to explicitly address blind SR. Setup. We train all the models
using the DIV2K [1] dataset, which is a high-quality dataset that is commonly
used for single-image SR evaluation. RCAN, RRDB, and ESRGAN are trained
with the bicubic degradation, and IKC with Gaussian kernels (σ ∈ [0.2, 4.0] [22]).
For all models, 16 LR patches of size 48 × 48 are extracted per training batch.
All models are trained using the Adam optimizer [28] for 50 epochs. The initial
learning rate is set to 10−4 and decreases by half every 10 epochs. Data augmen-
tation is performed on the training images, which are randomly rotated by 90◦,
180◦, 270◦, and flipped horizontally. Results. To generate test LR images, we
apply bicubic and Gaussian blur kernels on the DIV2K [1] validation set. We also
evaluate all methods trained with 50% SFM, following Sec. 4.2. Table 1 shows
the PSNR results on x4 upscaling SR, with different blur kernels. Results show
that the proposed SFM consistently improves the performance of the various SR
networks on the different degradation kernels, even up to 0.27dB on an unseen
test kernel for the recent IKC [22] that explicitly models kernels during training.
We improve by up to 0.56dB for the other methods. With SFM, RRDB achieves
comparable or better results than RCAN, which has double the parameters of
RRDB. Sample visual results are shown in Fig. 4.

5.2 SR: real-image degradations

Methods. We train and evaluate the same SR models as the networks we use in
Sec. 5.1, except for ESRGAN and RRDB, as ESRGAN is a perceptual-quality-
driven method and does not achieve high PSNR, and RCAN outperforms RRDB
according to our experiments in 5.1. We also evaluate on KMSR [65] for the
real SR experiments. KMSR collects real blur kernels from real LR images to
improve the generalization of the SR network on unseen kernels. Setup. We
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Test noise level (standard deviation of the stationary AWGN)

10 20 30 40 50 60 70 80 90 100
DnCNN-B [56] 33.33 29.71 27.66 26.13 24.88 23.69 22.06 19.86 17.88 16.35
DnCNN-B + SFM 33.35 29.78 27.73 26.27 25.09 24.02 22.80 21.24 19.46 17.87

Noise2Noise [32] 32.67 28.84 26.61 25.02 23.76 22.69 21.74 20.88 20.11 19.41
Noise2Noise + SFM 32.55 28.94 26.84 25.31 24.11 23.05 22.14 21.32 20.61 19.95

Blind‡ N3Net [39] 33.53 30.01 27.84 26.30 25.04 23.93 22.87 21.84 20.87 19.98
N3Net + SFM 33.41 29.86 27.84 26.38 25.19 24.15 23.20 22.32 21.51 20.78

Blind‡ MemNet [49] 33.51 29.75 27.61 26.06 24.87 23.83 22.67 21.00 18.92 17.16
MemNet + SFM 33.36 29.80 27.76 26.31 25.14 24.09 23.09 22.00 20.77 19.46

RIDNet [4] 33.65 29.87 27.65 26.04 24.79 23.65 22.25 20.05 18.15 17.09
RIDNet + SFM 33.43 29.81 27.76 26.30 25.12 24.08 23.11 22.08 20.74 19.17

Table 3: PSNR (dB) results on BSD68 for different methods and noise levels.
SFM improves the various methods, and the improvement increases with higher
noise levels, supporting our hypothesis. We clamp test images to [0,255] as in
camera pipelines. Denoisers are trained with levels up to 55 (shaded in gray),
thus half the test range is not seen in training. ‡Re-trained under blind settings.

train and evaluate the SR networks on two digital zoom datasets: the SR-RAW
dataset [61] and the RealSR dataset [10]. The training setup of the SR networks
is the same as in Sec. 5.1. Note that we follow the same training procedures
for each method as in the original papers. IKC is trained with Gaussian kernels
(σ ∈ [0.2, 4.0]) and KMSR with the blur kernels estimated from LR images in
the dataset. RCAN is trained on the degradation of the test data; a starting
advantage over other methods. Results. We evalute the SR methods on the
corresponding datasets and present the results in Table 2. Each method is also
trained with 50% SFM, following Sec. 4.2. SFM consistently improves all meth-
ods on all upscaling factors, pushing the state-of-the-art results by up to 0.23dB
on both of these challenging real-image SR datasets.

5.3 Denoising: AWGN

Methods. We evaluate different state-of-the-art AWGN denoisers. DnCNN-
B [56] learns the noise residual rather than the final denoised image. Noise2Noise
(N2N) [32] learns only from noisy image pairs, with no ground-truth data.
N3Net [39] relies on learning nearest neighbors similarity, to make use of dif-
ferent similar patches in an image for denoising. MemNet [49] follows residual
learning with memory transition blocks. Lastly, RIDNet [4] also does residual
learning, but leverages feature attention blocks. Setup. We train all methods on
the 400 Berkeley images [36], typically used to benchmark denoisers [13,42,56].
All methods use the Adam optimizer with a starting learning rate of 10−3, except
RIDNet that uses half that rate. We train for 50 epochs and synthesize noise
instances per training batch. For blind denoising training, we follow the settings
initially set in [56]: noise is sampled from a Gaussian distribution with standard
deviation chosen at random in [0, 55]. This splits the range of test noise levels
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into levels seen or not seen during training, which provides further insights on
generalization. We also note that we use a U-Net [40] for the architecture of N2N
as in the original paper. For N2N, we apply SFM on top of the added noise, to
preserve the particularity that N2N can be trained without ground-truth data.
Results. We evaluate all methods on the BSD68 [41] test set. Each method
is also trained with 50% SFM as explained in Sec. 4.2 and the results are in
Table 3. SFM improves the performance of a variety of different state-of-the-art
denoising methods on high noise levels (seen during training, such as 40 and 50,
or not even seen), and the results support our hypothesis presented in Sec. 3.2
that the higher the noise level the more similar is denoising to SR and the more
applicable is SFM. Indeed, the higher the noise level the larger the improvement
of SFM, and this trend is true across all methods. Fig. 5 presents sample results.

(a) Noisy (b) DnCNN (c) N2N (d) N3Net (e) MemNet (f) RIDNet

(g) GT (h) +SFM (i) +SFM (j) +SFM (k) +SFM (l) +SFM

Fig. 5: Denoising (σ = 50) results with different methods (top row), and with our
SFM added (bottom row), for the last image (#67) of the BSD68 benchmark.

5.4 Denoising: real Poisson-Gaussian images

Methods. Classical methods are often a good choice for denoising in the ab-
sence of ground-truth datasets. PURE-LET [34] is specifically aimed at Poisson-
Gaussian denoising, and KSVD [2], WNNM [23], BM3D [14], and EPLL [66]
are designed for Gaussian denoising. Recently, learning methods were presented
such as N2S [6] (and the similar, but less general, N2V [29]) that can learn from
a dataset of only noisy images, and N2N [32] that can learn from a dataset of
only noisy image pairs. We incorporate SFM into the learning-based methods.
Setup. We train the learning-based methods on the recent real fluorescence mi-
croscopy dataset [62]. The noise follows a Poisson-Gaussian distribution, and
the image registration is of high quality due to the stability of the microscopes,
thus yielding reliable ground-truth obtained by averaging 50 repeated captures.
Noise parameters are estimated using the fitting approach in [20] for all classical
denoisers. Additionally, the parameters are used for the variance-stabilization
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# raw images for averaging
Mixed test set [62] Two-photon test set [62]

Method 16 8 4 2 1 16 8 4 2 1
PURE-LET [34] 39.59 37.25 35.29 33.49 31.95 37.06 34.66 33.50 32.61 31.89
VST+KSVD [2] 40.36 37.79 35.84 33.69 32.02 38.01 35.31 34.02 32.95 31.91
VST+WNNM [23] 40.45 37.95 36.04 34.04 32.52 38.03 35.41 34.19 33.24 32.35
VST+BM3D [14] 40.61 38.01 36.05 34.09 32.71 38.24 35.49 34.25 33.33 32.48
VST+EPLL [66] 40.83 38.12 36.08 34.07 32.61 38.55 35.66 34.35 33.37 32.45
N2S [6] 36.67 35.47 34.66 33.15 31.87 34.88 33.48 32.66 31.81 30.51
N2S 50% SFM 36.60 35.62 34.59 33.44 32.40 34.39 33.14 32.48 31.84 30.92
N2N [32] 41.45 39.43 37.59 36.40 35.40 38.37 35.82 34.56 33.58 32.70
N2N 50% SFM 41.48 39.46 37.78 36.43 35.50 38.78 36.10 34.85 33.90 33.05

Table 4: PSNR (dB) results on microscopy images with Poisson-Gaussian noise.
We train under blind settings and apply SFM on noisy input images to preserve
the fact that N2S and N2N can be trained without clean images.

transform (VST) [35] for the Gaussian-oriented methods. In contrast, the learn-
ing methods can directly be applied under blind settings. We train N2S/N2N
using a U-Net [40] architecture, for 100/400 epochs using the Adam optimizer
with a starting learning rate of 10−5/10−4 [62]. Results. We evaluate on the
mixed and two-photon microscopy test sets [62]. We also train the learning meth-
ods with 50% SFM as explained in Sec. 4.2, and present the results in Table 4.A
larger number of averaged raw images is equivalent to a lower noise level. N2N
with SFM achieves the state-of-the-art performance on both benchmarks and
for all noise levels, with an improvement of up to 0.42dB. We also note that the
improvements of SFM are larger on the more challenging two-photon test set
where the noise levels are higher on average. SFM does not consistently improve
N2S, however, this is expected. In fact, unlike other methods, N2S trains to pre-
dict a subset of an image given a surrounding subset. It applies spatial masking
where the mask is made up of random pixels that interferes with the frequency
components. For these reasons, N2S is not very compatible with SFM, which
nonetheless improves results on the largest noise levels in both test sets.

6 Conclusion

We analyze the degradation-kernel overfitting of SR networks in the frequency
domain. Our frequency-domain insights reveal an implicit conditional learning
that also extends to denoising, especially on high noise levels. Building on our
analysis, we present SFM, a technique to improve SR and denoising networks,
without increasing the size of the training set or any cost at test time. We conduct
extensive experiments on state-of-the-art networks for both restoration tasks. We
evaluate SR with synthetic degradations, real-image SR, Gaussian denoising and
real-image Poisson-Gaussian denoising, showing improved performance, notably
on generalization, when using SFM.
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18. El Helou, M., Süsstrunk, S.: Blind universal Bayesian image denoising with Gaus-
sian noise level learning. IEEE Transactions on Image Processing 29, 4885–4897
(2020) 3

19. Field, D.J.: Relations between the statistics of natural images and the response
properties of cortical cells. JOSA 4(12), 2379–2394 (1987) 5

20. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-
Gaussian noise modeling and fitting for single-image raw-data. IEEE Transactions
on Image Processing 17(10), 1737–1754 (2008) 3, 13



16 Majed El Helou, Ruofan Zhou, and Sabine Süsstrunk
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