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Abstract. Recent pedestrian detection methods generally rely on ad-
ditional supervision, such as visible bounding-box annotations, to han-
dle heavy occlusions. We propose an approach that leverages pedestrian
count and proposal similarity information within a two-stage pedestrian
detection framework. Both pedestrian count and proposal similarity are
derived from standard full-body annotations commonly used to train
pedestrian detectors. We introduce a count-weighted detection loss func-
tion that assigns higher weights to the detection errors occurring at
highly overlapping pedestrians. The proposed loss function is utilized at
both stages of the two-stage detector. We further introduce a count-and-
similarity branch within the two-stage detection framework, which pre-
dicts pedestrian count as well as proposal similarity. Lastly, we introduce
a count and similarity-aware NMS strategy to identify distinct proposals.
Our approach requires neither part information nor visible bounding-
box annotations. Experiments are performed on the CityPersons and
CrowdHuman datasets. Our method sets a new state-of-the-art on both
datasets. Further, it achieves an absolute gain of 2.4% over the current
state-of-the-art, in terms of log-average miss rate, on the heavily occluded
(HO) set of CityPersons test set. Finally, we demonstrate the applica-
bility of our approach for the problem of human instance segmentation.
Code and models are available at: https://github.com/Leotju/CaSe.
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1 Introduction

Pedestrian detection is a challenging computer vision problem and serves as an
important component in many vision systems. Despite recent progress, detecting
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heavily occluded pedestrians remains a key challenge in real-world applications
due to the frequent occurrence of occlusions. The most common type of occlusion
in pedestrian detection is crowd occlusion caused by other pedestrians. This is
evident in recent benchmarks, such as CityPersons [30], where crowd occlusion
alone accounts for around 49%. In this work, we tackle the problem of heavily
occluded pedestrian detection.

Most existing pedestrian detection approaches either rely on part informa-
tion [25,36] or exploit visible bounding-box annotations [31,37,20] to handle oc-
clusions. Typically, part-based approaches are computationally expensive and
require a large number of part detectors. Recent approaches relying on visible
bounding-box supervision, in addition to standard full-body annotations, have
shown superior performance for occluded pedestrian detection. However, this
reliance on visible bounding-box annotations introduces another level of super-
vision. In this work, we propose an approach for occluded pedestrian detection
that requires neither part information nor visible bounding-box supervision.

State-of-the-art pedestrian detectors [3,16,2,27,20,5,6] are mostly based on
two-stage detection framework. One of the most commonly used two-stage object
detection frameworks is that of Faster R-CNN [21], later adapted for pedestrian
detection [30]. Here [21,30], a region proposal network (RPN) is employed in
the first stage to generate pedestrian proposals. The second stage, also known
as Fast R-CNN, consists of an RoI (region-of-interest) feature extraction from
each proposal followed by classification confidence prediction and bounding-box
regression. During inference, a post-processing strategy, such as non-maximum
suppression (NMS), is used to remove duplicate bounding-box predictions.

While promising results have been achieved when adapting Faster R-CNN for
standard pedestrian detection [30], its performance on heavily occluded pedes-
trians is far from satisfactory. This is likely due to the fact that the number of
overlapping pedestrian instances in an RoI pooled region are not explicitly taken
into account, during either training or inference. In this work, we argue that
pedestrian count and proposal similarities are useful cues for tackling crowd oc-
clusion with no additional annotation cost. Pedestrian count information within
an RoI is readily available with full-body annotations that are typically used in
pedestrian detection training. During training, a higher pedestrian count within
an RoI indicates a high level of crowd occlusion. In such crowd occlusion sce-
narios, multiple highly overlapping pedestrians need to be detected from a large
number of spatially adjacent duplicate proposals. A proposal similarity embed-
ding is desired to identify distinct proposals from multiple duplicate proposals
for each pedestrian. Count and similarity predictions at inference are expected
to aid accurate detection of highly overlapping pedestrians (crowd occlusion).

Contributions: To the best of knowledge, we are the first to leverage pedestrian
count and proposal similarity information in a two-stage framework for occluded
pedestrian detection. Our contributions are: (i) a count-weighted detection loss is
introduced for the classification and regression parts of both the RPN and Fast
R-CNN modules, during training. As a result, a higher weight is assigned to
proposals with a large number of overlapping pedestrians, improving the perfor-
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mance during heavy-occlusion. (ii) We introduce a count-and-similarity branch
to accurately predict both pedestrian count and proposal similarity, leading to a
novel multi-task setting in Faster R-CNN. (iii) Both the predicted count and pro-
posal similarity embedding are utilized in our count and similarity-aware NMS
strategy (CAS-NMS), to identify distinct proposals in a crowded scene. (iv) Ex-
tensive experiments are performed on CityPersons [30] and CrowdHuman [22].
Our count- and similarity-aware, R-CNN based pedestrian detection approach,
dubbed as CaSe, achieves state-of-the-art results on both datasets. On heavily
occluded (HO) set of the CityPersons test set, our detector improves the state-
of-the-art results [20], reducing the log-average miss rate from 41.0% to 38.6%.
Note that [20] requires both full-body and visible bounding-box annotations.
In contrast, our approach only utilizes full-body annotations. (v) Additionally,
we validate our proposed components by integrating them into Mask R-CNN
framework for person instance segmentation, achieving consistent improvement
in performance on OCHuman [33].

2 Related Work

Several pedestrian detectors apply a part-based approach [17,35,19,25,36], where
a set of part detectors is learned with each one designed for handling a specific
occlusion pattern. Different from these approaches, more recent works aim at
exploiting additional visible bounding-box (VBB) supervision to either output
visible part regions [37] or provide support for learning occlusion scenarios [20].
Here, we look into an alternative approach that neither uses part information
nor requires additional VBB annotation for occluded pedestrian detection.

Generally, object detectors [21,18] employ non-maximum suppression (NMS)
as a post processing strategy. Several previous works have investigated improv-
ing NMS for the generic object detection [1,26,12,11]. Despite being extensively
investigated for generic object detection, less attention has been paid to im-
prove NMS in the context of occluded pedestrian detection [10,13]. The work
of [13] proposes an approach that learns to predict the threshold according to
the instance-specific density. The work of [10] introduces an approach based on
the joint processing of detections and penalization for double detections. Improv-
ing NMS for occluded pedestrian detection is an open problem, as most existing
pedestrian detectors [14,27,20] still employ traditional post-processing strategy.

Recent works have investigated problem of improving bounding-box regres-
sion for crowd occlusion [27,32]. The work of [27] introduces repulsion losses that
penalize predicted boxes from shifting towards other ground-truth objects, re-
quiring each predicted box to be away from those with different ground-truths.
The work of [32] proposes an approach that learns to adapt the predicted boxes
closer to the corresponding ground-truths. Both of these approaches are em-
ployed on the regression part of the pedestrian detector. Instead, our proposed
count-weighted detection loss is designed for both classification and regression
parts of the two-stage Faster R-CNN detector. In addition to the count-weighted
detection loss, we introduce a parallel count-and-similarity branch within the
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Fast R-CNN module of Faster R-CNN to accurately predict both pedestrian
count and proposal similarity. Further, we use both predicted count and pro-
posal similarity embedding for distinct proposal identification during inference.

3 Baseline Two-Stage Detection Framework

In this work, we base our approach on the popular Faster R-CNN framework [21]
that is adopted in several two-stage pedestrian detectors [30,20,28] as their base
architecture. Faster R-CNN employs a region proposal network (RPN), during
the first stage, to generate class-agnostic proposals and their confidence scores,
respectively. In the second stage, also known as Fast R-CNN, RoI (region-of-
interest) features are extracted from each proposal, followed by a detection
branch that generates classification score (e.g., probability of a proposal being a
pedestrian) and regressed bounding-box coordinates for each proposal.

The detection problem can be formulated as a joint minimization of the
classification and regression losses, in both the RPN and Fast R-CNN modules
[21], where Ldet = Lrpn + Lfrc. Here, both Lrpn and Lfrc are computed as an
accumulation of the average classification and regression loss Lc and Lr, in their
respective modules. Lc and Lr are given by:

Lc =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) Lr = λ

1

Nreg

∑
i

Lreg(li, l
∗
i ), (1)

where i represents index of a proposal in a mini-batch, pi represents the predicted
probability of proposal i being a pedestrian, and p∗i is the ground-truth label of
the proposal. The predicted location of a positive proposal i is denoted by li
and l∗i denotes the associated ground-truth location. Ncls and Nreg are the total
number of proposals during classification and regression, respectively. λ is the
parameter to balance the two loss terms. The classification loss (Lcls), is a cross-
entropy loss for RPN and Fast R-CNN modules. The regression loss (Lreg), for
both RPN and Fast R-CNN modules, is Smooth-L1 loss function.

4 Our Approach

Motivation: The above-mentioned two-stage Faster R-CNN baseline is trained
using full-body pedestrian annotations. In recent methods [20,31,32,37,34], this
two-stage standard pedestrian detection framework, or Faster R-CNN, has been
extended to incorporate additional visible bounding-box annotations. Here, we
propose an approach that does not rely on additional visible bounding-box su-
pervision and instead utilizes pedestrian count information within an RoI, which
is readily available with standard full-body annotations.
Overall Architecture: Fig. 1 shows the overall network architecture. It consists
of a detection branch and a count-and-similarity branch. Both these branches
take the RoI feature of a proposal as input. Our approach leverages count in-
formation within the baseline pedestrian detection framework at two different
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Fig. 1. Overall architecture of the proposed count- and similarity-aware pedestrian
detector (CaSe). Our CaSe consists of a Detection Branch (sec. 4.1) and a Count-and-
Similarity branch (sec. 4.2). We introduce a count-weighted detection loss that employ a
count-weighting in regression and classification losses of both the RPN and Fast R-CNN
stages of Faster R-CNN. The detection branch predicts the pedestrian location (li) and
its probability (pi). The count-and-similarity branch introduced in our CaSe consists
of two outputs: the count prediction (ci) and similarity embedding (Fi). The count-
prediction estimates the number of ground-truth instances in a given RoI, whereas the
similarity embedding measures the similarity between all overlapping proposals. Both
these outputs are further used for distinct proposal identification during inference.

stages. First, our count-weighted detection loss integrate a count weighting into
the classification and regression losses of both modules (RPN and Fast R-CNN).
Second, a parallel network, which we call the count-and-similarity branch, is
introduced to improve bounding-box prediction by estimating the number of
pedestrian instances for a given pedestrian proposal and its similarity with over-
lapping proposals. Further, we use both predicted count and proposal similarity
embedding to identify distinct proposals during inference, by introducing a novel
post-processing strategy. Both the detection and count-and-similarity branches
in our network are jointly trained with the loss function L = L

′

det + Lcas. Here,

Lcas is the training loss for the count-and-similarity branch and L
′

det is the
proposed count-weighted detection loss, employed in both the RPN and Fast
R-CNN modules. Next, we describe the detection branch and the associated
count-weighted detection loss. Then, the proposed count-and-similarity branch
is presented in Sec. 4.2. Finally, inference of the proposed framework and our
novel post-processing strategy are described in Sec. 4.3.

4.1 Detection Branch

As described earlier(Sec. 3), our framework is based on two-stage Faster R-CNN,
employed in several pedestrian detection methods [30,20]. Next, we introduce a
novel count-weighted detection loss to improve both the localization and clas-
sification performance of the Faster R-CNN under heavy occlusion. Our count-
weighted detection loss is integrated in both RPN and Fast R-CNN modules.
Count-weighted Detection Loss: Different to detecting isolated pedestrians
in a sparse scene, pedestrian detection in crowded scenes is a more challeng-
ing problem due to the presence of multiple highly overlapping pedestrians. To
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counter this issue, we introduce a weight wi proportional to the ground-truth
count of a proposal in the classification and regression loss terms in Eq. 1. This
implies that a higher weight is assigned to detection errors occurring at highly
overlapping pedestrians (crowd occlusions). Our count-weighted detection loss
function L

′

det (CW-loss) has the following terms:

L
′

c =
1

Ncls

∑
i

wiLcls(pi, p
∗
i ) L

′

r = λ
1

Nreg

∑
i

wiLreg(li, l
∗
i ), (2)

where wi is the loss weight that assigns a higher weightage to a proposal overlap-
ping with a large number of ground-truth boxes. The weight wi of each proposal
box bi can be obtained from its ground-truth count c∗i as

wi = 1 + α ·max(c∗i − 1, 0), (3)

where α is a balancing factor, empirically set to 0.5. It can be observed that,
if a positive proposal bi overlaps with multiple ground-truth bounding-boxes, a
higher weight wi will be assigned to that sample. This implies that the propos-
als at crowded image regions will be assigned with a higher weightage during
training, compared to the proposals from less crowded regions. Next, we explain
how to compute the ground-truth count using the full-body bounding-box an-
notations which are readily available during training.
Ground-truth Count of a Proposal: The ground-truth count c∗i of a proposal
bi depends on the number of overlapping full-body (ground-truth) bounding-
boxes. First, we compute the intersection-over-union (IoU) between bi and all
its overlapping ground-truth bounding boxes. Then, c∗i is computed as the num-
ber of ground-truth bounding boxes with an IoU ≥ th. Here, th is empirically
set to 0.5. During training, the ground-truth count c∗i of a proposal is used to
compute the loss weight (Eq. 3). Further, it is used as a ground-truth count to
train our count-and-similarity branch.

4.2 Count-and-Similarity Branch

Combined Use of Count and Similarity: In the presence of crowd occlusion,
many highly overlapping duplicate proposals are generated and assigned a higher
classification score by the detector. This is problematic when using a fixed over-
lap threshold to remove duplicate proposals. Fig. 2 shows an example with two
highly overlapping pedestrians (crowd occlusion). In such a case, a count pre-
diction for an RoI can be used to obtain the number of overlapping pedestrians.
This count prediction can be utilized to adapt the overlap threshold, thereby re-
moving duplicate proposals based on their classification scores. However, count
alone is sub-optimal for identifying distinct proposals in crowd occlusion scenar-
ios since several proposals with higher classification scores may belong to the
same pedestrian instance. Therefore, it is desired to identify distinct proposals
belonging to different (overlapping) pedestrians. To this end, we utilize a similar-
ity embedding that projects RoI features into a low-dimensional representation,
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where the euclidean distance is inversely proportional to similarity between pro-
posals (see Fig. 2). Instead of calculating the euclidean distance for all pairs of
overlapping proposals (above a certain threshold), we use count prediction as
an indicator to compute the distance for only a subset of pairs having a pre-
dicted count more than one. This leads to speed-up during inference, compared
to exhaustively computing the distance for all pairs of overlapping proposals.

Our count-and-similarity branch is shown in Fig. 1. It has two parallel sub-
branches, where, the first predicts the number of pedestrians present within a
proposal (RoI), and the second outputs a similarity embedding for estimating
the proposal similarity. During training, we define the loss Lcas on each RoI as
Lcas = Lcp + Lse. Here Lcp denotes the counting loss for the first sub-branch
and Lse denotes the similarity embedding loss for the second sub-branch.
Proposal Count: The pedestrian count of a given proposal bi is predicted
by a sub-branch that consists of three fully-connected (fc) layers, where the
last layer outputs the pedestrian count ci. The three fc layers are separated
by a ReLU layer. The count loss Lcp is a mean-squared error (MSE) loss that
penalize the deviation of the predicted count from its ground truth. i.e., Lcp =
1

Ncp

∑Ncp

i=1 ‖ci − c∗i ‖
2
2, where Ncp denotes number of proposals used when training

with the count loss, and c∗i represents the ground-truth count of a proposal,
described in Sec. 4.1.
Proposal Similarity: As mentioned earlier, the predicted count alone is sub-
optimal to identify distinct proposals in a crowded scene. To address this issue,
we introduce a similarity embedding sub-branch that projects RoI feature of a
proposal bi to a low-dimensional feature embedding Fi. The similarity embed-
ding sub-branch has a structure similar to its parallel (count) sub-branch, except
its final fc layer outputs a 64-dimensional feature embedding Fi. The euclidean
distance between the feature embedding of two proposals is proportional to their
dissimilarity. Proposals with no pedestrians can be removed based on their pre-
dicted count. Hence, the euclidean distance between two overlapping proposals
only needs to be computed if both proposals contain at least one pedestrian.

For a given proposal bi, we first select its overlapping proposals with an
IoU ≥ 0.5. Let bj be one of the selected proposals that has a ground-truth count
c∗j ≥ 1, and a feature embedding Fj . We train the similarity embedding sub-
branch with proposals having a ground-truth count of at least one, using the
contrastive loss:

Lse =

∑
ij(yijd

2
ij + (1− yij) max(δ − dij , 0)

2
)

Nse

(4)

where dij = ‖Fi − Fj‖2 indicates the distance between the feature embeddings
Fi and Fj . The binary label yij indicates the ground-truth similarity, where
proposals of the same ground-truth bounding box are labelled as similar, i.e.,
yij = 1. Nse is the number of proposals used when training with the similarity
embedding loss. The margin δ is set to 2. Training of our similarity embed-
ding sub-branch using contrastive loss (Lse helps in projecting RoI features to
a low-dimensional feature embedding, where the distance between proposals of
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Fig. 2. An illustrative example showing operations during inference of our CaSe de-
tector. On left: Predictions from the detection and count-and-similarity branches. On
right: final output of our CaSe framework including a count and similarity-aware post-
processing step. The red box (bH) indicates the proposal with highest classification
confidence score, and all its overlapping proposals (bj) are shown with dotted boxes.
Although the yellow box b2 has a large count prediction (c2 = 1.7), it is highly similar
to bH , as indicated by the distance d2H = 0.01, and is thus removed by our count and
similarity-aware post-processing step. Similarly, cyan box is removed due to low count
prediction c3 = 0.4. The green box belonging to another pedestrian is predicted with
a high count (c1 = 1.6) and a higher distance d1H = 1.6, hence not removed.

two distinct overlapping instances is large.) Next, we describe the procedure to
identify distinct proposals, during inference.

4.3 Inference

During inference, our approach predicts both the count and similarity embedding
in addition to pedestrian classification and regression. This is followed by a count
and similarity-aware post-processing step for removing duplicate proposals. In
crowded scenes, there are multiple ground-truth boxes with a very high overlap.
Hence, the detected proposals are also expected to be highly overlapped. Tradi-
tional post-processing involves an NMS strategy where a fixed overlap thresh-
old is employed to eliminate overlapping bounding-box predictions. This often
results in a loss of correct target bounding-boxes. To counter this issue, we
introduce a post-processing step, named count and similarity-aware NMS (CAS-
NMS), that considers both the count and similarity between proposals.

Fig. 2 shows the procedure involved in our CAS-NMS. We first sort the
proposals based on their classification confidence scores. Let bH be the proposal
with the highest classification score. Similar to traditional NMS, all the proposals
overlapping with bH are selected as possible duplicate proposals (i.e., IoU ≥
0.5). Let bj be one such selected proposal that has IoU ≥ 0.5 with bH . In
scenarios where bj corresponds to a distinct pedestrian (i.e., different to the one
localized by bH), it is common that (i) there are more than one pedestrians
in bH , (ii) there is at least one pedestrian in bj , and (iii) both bH and bj are
dissimilar. Our CAS-NMS uses predicted count and similarity embedding of
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both bH and bj , and categorizes bj as a duplicate proposal, when any of the
three criteria mentioned above are not fulfilled. i.e., If predicted counts cH , cj
of the proposals are below thresholds t2, t1, or the distance djH = ‖Fj − FH‖2
between the similarity embeddings of both proposals is below a threshold Nst.
Since, the distance between proposals is required only in the third criterion, djH
is computed only for proposals satisfying the first two criteria. Our CAS-NMS
removes duplicate proposals and preserves only distinct proposals containing
at least one pedestrian. More details are available at https://github.com/

Leotju/CaSe.

5 Experiments

5.1 Datasets and Evaluation Metrics

Datasets: We perform experiments on two challenging datasets: CityPersons [30]
and CrowdHuman [22]. CityPersons contains 2975 training, 500 validation, and
1525 test images. It is suitable to evaluate performance on occluded pedestrians,
as around 70% of the pedestrians in the dataset depict various levels of occlu-
sions [30]. CrowdHuman contains crowded scenes and is therefore also suitable to
evaluate performance on crowd occlusions. It consists of 15000, 4370, and 5000
images in the training, validation and test sets, respectively. Further, it contains
more than 470K human instances in the training and validation sets, with many
images containing more than 20 person instances.
Evaluation Metrics: For both datasets, we report pedestrian detection perfor-
mance using average-log miss rate (MR), computed over the false positive per
image (FPPI) range of [10−2, 100] [8]. We select MR−2 to report the results and
its lower value to mirror better detection performance. On CityPersons dataset,
following [30,20], we report results on two different degrees of occlusions: Rea-
sonable (R), and Heavy Occlusion (HO) to evaluate our approach. In the R set,
the visibility ratio is larger than 65%, whereas the visibility ratio in the HO set
ranges from 20% to 65%. And the height of pedestrians over 50 pixels is taken
for detection evaluation, as in [31,20]. On CrowdHuman dataset, we follow the
same evaluation protocol as in [22].

5.2 Implementation Details

Our framework utilizes an ImageNet pre-trained backbone (e.g. VGG-16 [23]).
On CityPersons datasets, we follow the same experimental protocol as in [20].
On CrowdHuman datasets, we follow the same experimental protocol as in [22].
In case of CityPersons, the (×1) input scale is 1024× 2048 and ×1.3 input scale
is 1344× 2688. For CrowdHuman, the scale of input images is resized such that
the shorter side is at 800 pixels while the longer side does not exceed more than
1400 pixels. In our experiments, the hyper-parameters t2 = 1.5, t1 = 1 and
Nst = 1.5 are fixed for all datasets. Further, for the similarity sub-branch, the
number of dissimilar and similar pairs are set to 16 and 32, respectively, for all
the experiments. Our network is trained on NVIDIA GPUs and a mini-batch
comprises 2 images per GPU.

https://github.com/Leotju/CaSe
https://github.com/Leotju/CaSe
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Table 1. State-of-the-art comparisons (in terms of log-average miss rate) on the
CityPersons validation set. Best results are boldfaced in each case. For fair comparison,
we select the same set of ground-truth pedestrian examples and input scale when com-
paring our CaSe with each existing method. We also compare with existing methods
using additional visible bounding-box (VBB) supervision. Our CaSe detector sets a
new-state-of-the-art on both sets. Under heavy occlusions (HO set), our CaSe outper-
forms the state-of-the-art MGAN [20], reducing the error from 39.4% to 37.4%, without
using additional VBB supervision.

Method VBB
Training Setting

R HO
Visibility Input Scale

TLL [24] × - ×1 14.4 52.0

F.RCNN+ATT-vbb [31] X ≥ 65% ×1 16.4 57.3
F.RCNN+ATT-part [31] × ×1 16.0 56.7

Repulsion Loss [27] × ×1 13.2 56.9
Adaptive-NMS [13] × ×1 11.9 55.2

MGAN [20] X ×1 11.5 51.7
CaSe (Ours) × ×1 11.0 50.3

OR-CNN [32] X ≥ 50% ×1 12.8 55.7
MGAN [20] X ×1 10.8 46.7

CaSe (Ours) × ×1 10.1 45.2

ALFNet [14] × ≥ 0% ×1 12.0 51.9
CSP [15] × ×1 11.0 49.3

MGAN [20] X ×1 11.3 42.0
CaSe (Ours) × ×1 10.5 40.5

Repulsion Loss [27] × ≥ 65% ×1.3 11.6 55.3
Adaptive-NMS [13] × ×1.3 10.8 54.0

MGAN [20] X ×1.3 10.3 49.6
CaSe (Ours) × ×1.3 9.6 48.2

OR-CNN [32] X ≥ 50% ×1.3 11.0 51.3
MGAN [20] X ×1.3 9.9 45.4

CaSe (Ours) × ×1.3 9.1 43.6

Bi-box [37] X ≥ 30% ×1.3 11.2 44.2
FRCN +A +DT [34] X ×1.3 11.1 44.3

MGAN [20] X ×1.3 10.5 39.4
CaSe (Ours) × ×1.3 9.8 37.4

5.3 CityPersons Dataset

State-of-the-art Comparison: We compare our CaSe detector with the recent
state-of-the-art methods, namely Repulsion Loss [27], F.RCNN+ATT-vbb [31],
F.RCNN+ATT-part [31], OR-CNN [32], TLL [24], Bi-Box [37], Adaptive-NMS
[13], FRCN +A +DT [34], and MGAN [20] on the CityPersons validation set.
Tab. 1 shows the state-of-the-art comparison on the validation set. Note that
different set of ground-truth pedestrian examples are used for training by existing
state-of-the-art pedestrian detection methods. For fair comparison, we therefore
select the same set of ground-truth pedestrian examples that are at least 50
pixels tall with different visibility (mentioned in ‘Training Setting’ column of
Tab 1) and an input scale, when comparing with each existing method.
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Table 2. State-of-the-art comparison (in terms of log-average miss rate) on the
CityPersons test set. Note that the test set is withheld. The results are obtained by
sending our detection predictions to the authors of CityPersons [30] for evaluation. Our
approach achieves state-of-the-art results on both the R and HO sets. On the HO set,
our approach significantly outperforms the recently introduced MGAN [20], reducing
the error from 41.0% to 38.6%.

Method R HO

Adaptive Faster RCNN [30] 13.0 50.5
MS-CNN [4] 13.3 51.9

Rep. Loss [27] 11.5 52.6
OR-CNN [32] 11.3 51.4

Cascade MS-CNN [4] 11.6 47.1
Adaptive-NMS [13] 11.4 -

MGAN [20] 9.3 41.0
CaSe (Ours) 9.2 38.6

Among recently introduced pedestrian detectors, ATT-vbb [31], OR-CNN
[32], Bi-Box [37], FRCN+A+DT [34], and MGAN [20] utilize full-body and
additional visible bounding-box (VBB) supervision. Our CaSe outperforms all
these approaches on both the R and HO sets, without using VBB supervision.
When using an input scale of ×1, Repulsion Loss [27] achieves a log-average miss
rate of 13.2% and 56.9% on the R and HO sets, respectively. Our CaSe provides
superior detection performance compared to [27] with a log-average miss rate of
11.0% and 50.3% on the R and HO sets, respectively. Similarly, a consistent
improvement in performance is obtained over [27], when using an input scale of
×1.3 and the same training settings.

On the validation set, the best reported result for the HO subset is 39.4%,
in terms of a log-average miss rate, obtained by the recently introduced MGAN
[20] with an input scale of ×1.3. Our CaSe sets a new state-of-the-art on the
HO set with a log-average miss rate of 37.4%. Our detector also outperforms
existing methods on the R set. Additionally, we present the results on the test
set in Tab 2. Note that the test set is withheld and the results are obtained by
sending our detector predictions to the authors of CityPersons [30]. Our detector
outperforms all reported methods on both sets of the test set. Fig. 3 shows the
qualitative detection comparisons between Repulsion Loss approach [27] and
our CaSe. Note that similar to our approach, Repulsion Loss method [27] also
specifically targets at handling occlusions.
Comparison with PedHunter and APD: Other than methods exploiting addi-
tional VBB information, the work of [7], termed as PedHunter, utilizes extra
head annotations. PedHunter [7] integrates three novel training strategies to the
pedestrian detector training stage, achieving promising results. We integrate the
PedHunter training strategies by re-implementing them in our framework and
observe this to further improve the performance‡. Through the integration of

‡ Thanks to the PedHunter [7] authors for sharing head annotation on CityPersons
validation set through email correspondence.
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Fig. 3. Qualitative detection results on CityPersons validation set using Repulsion loss
[27] (top) and our proposed CaSe (bottom). Detection results from the Repulsion loss
and our CaSe are shown in green and red bounding-boxes, respectively. False negative
detection results are shown with dashed orange bounding-boxes.

Table 3. Comparison (in log-average miss rate) of our CaSe with the baseline on
the CityPersons validation set. We report results using two training settings: visibility
≥ 65% with ×1.3 and ×1.0 input scales. In both settings, we observe a consistent
improvement in performance due to progressively integrating one contribution at a
time. Note that Baseline + CW-loss + CSB just shows the impact of joint training
the detection branch (using CW-loss) and the count-and-similarity branch (CSB). The
predictions from CSB are further utilized in CAS-NMS, resulting in a significant im-
provement in our overall results (CaSe: Baseline + CW-loss + CSB + CAS-NMS).

Input Scale Baseline CW-Loss CSB CAS-NMS R HO

×1.3

X 12.2 53.5
X X 11.3 51.5
X X X 10.8 49.3
X X X X 9.6 48.2

×1.0
X 13.8 57.0
X X X X 11.0 50.3

PedHunter modules, our CaSe can achieve a log-average miss rate of 8.0% and
41.2% on R and HO subsets of CityPersons validation set. APD [29] uses a
stronger backbone (DLA-34), instead of VGG-16. For a fair comparison with
APD, we re-train our model using DLA-34 backbone. Our method outperforms
APD on both R and HO sets of CityPersons validation set and achieves log-
average miss rates of 8.3% and 43.2%, respectively.

Ablation Study: Here, we analyze our CaSe approach on the CityPersons
benchmark by demonstrating impact of progressively integrating our contri-
butions: count-weighted detection loss (CW-loss), count-and-similarity branch
(CSB), and count and similarity-aware NMS (CAS-NMS). Tab. 3 shows the re-
sults. For an extensive comparison, we report results using two standard settings.
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Table 4. Comparison (in log-average miss
rate) with other loss function on CityPer-
sons Val. set. Our CW-loss outperforms
other approaches on both R and HO.

Scale Visiblity R HO

Agg. Loss [32] ×1.3 ≥ 50% 11.4 52.6
CW Loss (Ours) ×1.3 ≥ 50% 10.8 47.1

Rep. Loss [27] ×1.3 ≥ 65% 11.6 55.3
CW Loss (Ours) ×1.3 ≥ 65% 11.3 51.5

Table 5. Comparison (in log-average
miss-rate) with state-of-the-art methods
[13] that improves NMS on CityPersons
validation sets.

Scale R HO

Adaptive NMS [13] ×1.0 11.9 55.2
Our CaSe ×1.0 11.0 50.3

Adaptive NMS [13] ×1.3 10.8 54.0
Our CaSe ×1.3 9.6 48.2

We use pedestrians with a height larger than 50 and visibility larger than 65%
as training data and an input image scale of 1.3× and 1.0×. Note that we use
same network backbone (VGG) for all the experiments in Tab. 3. Our approach
yields a significant improvement in performance over the baseline.

We further compare our CW-loss with other loss function [27,32] on CityPer-
sons validation sets. For fair comparison, we use the same set of ground-truth
pedestrian examples (visibility) and input scale for training our CaSe when com-
paring with each method. Tab. 4 shows that our CW-loss outperforms both the
Rep. Loss [27] and Agg. loss [32], on R and HO sets. The results in Tab. 5 demon-
strate the effectiveness of our method compared to the Adaptive-NMS[13] using
same ground-truth pedestrian examples, input scale and backbone.

As described in Sec. 4.2, both the count prediction and similarity embedding
are crucial for our CAS-NMS. To validate the impact of the similarity embedding,
we perform an experiment by removing the similarity prediction from our CAS-
NMS. This leads to inferior results (53.1), likely due to multiple false positive
detections, compared to using both count prediction and similarity embedding
(50.3) on the HO set. Removing the count prediction in our CAS-NMS leads to
lower inference speed, highlighting the importance of count §.
Inference time: For a 1024 × 2048 input, baseline and our CaSe operates at
an inference time of 305, 330 milliseconds, respectively. There is only a slight
increase in inference time of our CaSe compared to baseline, thanks to the com-
bined utilization of predicted count and similarity embedding in our CAS-NMS.
For a fair comparison, both methods are evaluated on a single Titan X GPU.

5.4 CrowdHuman Dataset

Tab. 6 shows the state-of-the-art comparison on the recently introduced Crowd-
Human dataset. We use the same protocol to report the results as used in the
original dataset [22]. Note that all the methods in Tab. 6 employ the same back-
bone (ResNet50 + FPN). The Adaptive-NMS [13] and MGAN methods [20]
obtain a log-average miss rate of 49.7% and 49.3%, respectively. Our approach
sets a new state-of-the-art on this dataset by outperforming both Adaptive-NMS
and MGAN methods with a log-average miss rate of 47.9%.

§ More results are available at https://github.com/Leotju/CaSe.

https://github.com/Leotju/CaSe
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Table 6. State-of-the-art comparison (in log-average miss rate) on the CrowdHuman
dataset. Note that all methods employ the same network backbone (ResNet50 + FPN).
Best results are boldfaced. Our detector significantly outperforms the state-of-the-art
MGAN, achieving a log-average miss rate of 47.9%.

Method FPN [22] Adaptive NMS [13] MGAN [20] CaSe (Ours)

MR−2 50.4 49.7 49.3 47.9

Table 7. Comparison on OCHuman for person instance segmentation. Here, APM

indicates accuracy (AP ) on moderately overlapped ground-truths (IoU with other
ground-truths are between 0.5 and 0.75), while APH indicates accuracy on heavily
overlapped ground-truths (IoU with other ground-truths are larger than 0.75). Our
CaSe achieves consistent improvements, on both val and test sets, over Mask R-CNN.

Method
val sets test sets

AP APM APH AP APM APH

Mask RCNN [9,33] 16.3 19.4 11.3 16.9 18.9 12.8
CaSe (Ours) 17.5 20.2 13.0 18.0 20.1 13.9

5.5 Results on Person Instance Segmentation

Finally, we also evaluate our approach for the person instance segmentation task.
We integrate our novel components (CW-loss, CSB and CAS-NMS) into Mask-
RCNN [9]. We report the results on OCHuman [33], following the same protocol
as in [33]. Note that the state-of-the-art [33] for person instance segmentation
relies on additional human pose annotation. Tab. 7 shows the comparison of
our approach with the baseline Mask RCNN on OCHuman. The results for the
baseline and our approach are shown without using human pose information.
Our approach outperforms the baseline, in terms of mask AP.

6 Conclusion

We propose an approach by leveraging pedestrian count and proposal similarity
information within a two-stage pedestrian detection framework. We introduce
a count-weighted detection loss for both the RPN and Fast R-CNN modules
of two stage Faster R-CNN. Further, we propose a count-and-similarity branch
that predicts both pedestrian count and proposal similarity. Lastly, we intro-
duce a count and similarity-aware NMS strategy to remove duplicate proposals
in crowded scenes. Experiments are performed on CityPersons and CrowdHuman
datasets. Our results clearly show the effectiveness of our pedestrian detection
approach towards handling heavy occlusions. Additionally, we demonstrate the
applicability of our components for the problem of human instance segmentation.
Acknowledgment: The work is supported by the National Key R&D Program
of China (Grant # 2018AAA0102800 and 2018AAA0102802) and National Nat-
ural Science Foundation of China (Grant # 61632018).
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