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Here we provide additional implementation details and more experimental
comparisons. In Section 1 we describe details on how the angle loss is computed
and the joint angle interdependence is modeled. Section 2 repeats the ablation
study on additional datasets (HO-3D) to highlight the generalizability of results.
Section 3 demonstrates the effect of weak-supervision in two additional settings,
one using a real dataset as the fully-supervised data and the other using MPII in-
the-wild data as weak-supervision. Section 4 compares BMC to an adversarial loss.
Sections 5 and 6 provide additional results of bootstrapping via weak-supervision
with synthetic or real data. Section 7 shows further qualitative results of using
BMC. Sections 8 and 9 provide additional implementation details and results on
HANDS2019 challenge, respectively.

1 Joint angle loss

Joint angle ambiguity. The computation of the joint angles lead to ambiguities.
More specifically, two different vectors on the unit sphere may map to the same
joint angles.

For example, given two bones bFi,1
i = [1, 0, 1] and bFi,2

i = [−1, 0, 1] in a

coordinate frame Fi, we have using Pxz(bFi,1
i ) = [1, 0, 1] and Pxz(bFi,2

i ) =
[−1, 0, 1]:

θf,1
i = α(Pxz(bFi,1

i ), zi) = α([1, 0, 1], zi)

= π/4

θa,1
i = α(Pxz(bFi,1

i ),bFi,1
i )

= α([1, 0, 1], [1, 0, 1]) = 0

θf,2
i = α(Pxz(bFi,2

i ), zi) = α([−1, 0, 1], zi)

= π/4

θa,2
i = α(Pxz(bFi,2

i ),bFi,2
i )

= α([−1, 0, 1], [−1, 0, 1]) = 0

(1)
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Therefore, both bones map to the same angle pair (π/4, 0). To resolve this, we
perform an octant look up. Given the flexion angle θf

i and abduction angle θa
i

of bone i, we negate the respective angle if the bone lies within the negative
x-octant or negative y-octant:

θf
i =

{
−θf

i , if bFi
i,x < 0

θf
i , else

θa
i =

{
−θa

i , if bFi
i,y < 0

θa
i , else

(2)

Where bFi
i,x,bFi

i,y is the x/y-component of the bone vector given in coordinates of

its local coordinate frame Fi. This leads to angles in the range θf
i ∈ [−π, π] and

θa
i ∈ [−π/2, π/2] respectively.

Approximation of Convex Hull. Fig. 1 plots the distribution of the
pinkys MCP flexion/extension angles of the FH dataset, visualized as red
points. The red rectangle corresponds to the valid range of angles when con-
sidering both angle limits independently. Hence the corners correspond to
(minf

i ,mina
i ), (minf

i ,maxa
i ), (maxf

i ,maxf
i ), (maxf

i ,mina
i ) in counter-clockwise or-

der, where mink
i ,maxk

i corresponds to the minimum/maximum of angle θki , where
k ∈ {a, f}.

In order to take the dependence of the angle limits in account, we first compute
the convex hull of the angle points. However, depending on the shape of the
point cloud, the number of points lying on the hull can vary and be numerous. In
order to keep the number of hull points low and consistent for all joint angles, we
approximate this hull in two steps. We first employ the Ramer-Douglas-Peucker
algorithm, a polygon simplification algorithm. This significantly reduces the
number of vertices in the hull, but still results in a variable number. To ensure
consistency, we apply a greedy algorithm that iteratively removes points such
that the hull encompasses as many points as possible until we reach the desired
number of points, resulting in our approximation Hi. For all our experiments,
we set number of points to be 10. The green polygon in Fig. 1 displays this
approximation to the convex hull.

Distance computation. To compute the distance Hi, we compute two
values. The first indicates if an angle point θi is contained within the hull. The
second corresponds to the distance to the hull. Here we detail how we compute
both values. For ease of notation, we assume that the points in Hi are ordered
counter-clockwise beginning from any point in Hi. Let Hi,k be the k-th point in
Hi. An edge vk of the hull is given as:

vk = Hi,k+1 −Hi,k, for k ∈ [1, 10]

wk = θi −Hi,k, for k ∈ [1, 10]
(3)

Where we define Hi,11 = Hi,1 to wrap around the hull.
To compute if a point θi is contained within Hi, we exploit the convexity

of the hull and make use of the cross-product. Specifically, we compute the 2D
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Fig. 1: (θf , θa)-plane. Green: Hi. Red: min/max-box

cross-product between vk and wk. Intuitively, if the cross-product wk × vk is
positive for any given edge k, then the angle point lies outside of the hull. If its
negative for all, it is contained within. If it lies on the hull, we consider it to be
contained within it. More formally:

c =

10∏
k=1

1(wk×vk)≤0 (4)

To compute the distance of θi to the hull, we compute its distance to each
edge and take the minimum. Given edge vk and point θi, their distance is the
minimum distance between either endpoints of vk or the projection of wk onto
vk. Formally:

t = max(0,min(1,wT
k vk/||vk||22))

pk = Hi,k + tvk

D(vk,θi) = | cos(θi)− cos(pk)|+ | sin(θi)− sin(pk)|
(5)

Where the min/max ensures that we do not extend beyond the endpoints of vk.
Given the distance to the edge, we can compute the distance to the hull Hi:

D(θi,Hi) = min
k
D(vk,θi) (6)

This formulation computes the distance towards Hi, whether the point is con-
tained or not. We do not want to penalize points that lie within the hull, as that
constitutes our range of valid angles. Therefore we make use of the quantity c
computed in Eq. 4, which leads to the final angle loss function:

DA(θi,Hi) = (1− 1c)D(θi,Hi) (7)

This returns a loss of 0 if the angle point θi is contained, otherwise it returns
the distance to the approximation of the convex hull Hi. This constitutes our
angle loss for bone i.

2 Ablation study

We repeat the ablation study with the HO-3D dataset. All evaluations are done
on a custom split, where we manually extract two sequences for the test and use
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Fig. 2: (θf , θa)-plane. Green: Hi. Red: min/max-box

the remainder for the training set. Each error is computed for the root relative
case.

Refinement network. We train two models using full supervision on HO-3D
(3DHO3D). The first model (w/o refinement) does not use the proposed refinement
network, whereas the second does (w.refinement). We showcase the performance
difference in the first row of Tab. 1. We note a reduction of 2.97mm mean error
when using the refinement network.

BMC ablation. We study the individual contribution of the BMC losses. We
bootstrap the 3D annotation from synthetic data and use only the 2D annotation
of HO-3D. The first model constitutes our baseline, which is trained only on
that data (3DRHD + 2DHO3D). We incrementally add the bone length loss LBL,
the root bone loss LRB and lastly the angle loss LA. We train a fully supervised
model (3DRHD + 3DHO3D) which is our upper bound. We refer to the second
section of Tab. 1. Each loss contributes towards a reduction in mean error,
culminating in a total decrease of 5.21mm as compared to our 2D only baseline.

Co-dependency between angles. We train two models. The first models
the angle limits independently, whereas the second takes the dependency of the
limits into account. The resulting performance is shown in Tab. 1. We note a
minor performance degradation. We attribute this to the extremely limited angle
range contained in the HO-3D dataset. As it contains subjects holding various
object in a gripping pose while rotating it in front of the camera, the actual
angles of the fingers do not change. Therefore the range of angles across the
dataset is low, which leads to a very tight angle limit. This does not generalize
well, which in turn hurts performance. Fig. 2 displays the angle-plane plot for
HO-3D using the pinkys MCP flexion/extension angles. Comparing with Fig. 1,
which plots the plane for the same finger for FH, we see that the resulting range
of HO-3D is a lot more severely limited. This is to be expected, as HO-3D is a
very constrained dataset due to the aforementioned reason.

BMC limits. We study the effect of approximating the BMC limits when us-
ing a different dataset to compute these values. We compute the hand parameters
from RHD and perform the same weakly-supervised experiment as previously
(3DRHD + 2DHO3D). As can be seen in the last row of Tab. 1, we note a slight
increase in loss, however it still clearly outperforms the 2D baseline in mean error
(18.50 mm vs 23.71 mm).
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Table 1: Ablation studies on validation split of HO-3D. The models of the first section
was trained on our train split of HO-3D.

HO-3D
3D Pose Estimation (root-relative)

EPE (mm)
AUC ↑

mean ↓ median ↓

Effect of Zroot refinement

w/o refinement 25.34 24.39 0.79
w. refinement 22.37 23.01 0.83

Effect of BMC components

3DRHD + 2DHO3D 23.71 22.07 0.78
+ LBL 22.15 20.27 0.80

+ LRB 18.83 17.79 0.87
+ LA 18.50 17.41 0.87

3DRHD + 3DHO3D 16.74 16.94 0.89

Effect of angle co-dependency

Independent 18.30 17.40 0.87
Dependent 18.50 17.41 0.87

Effect of BMC limits

Approximated 19.21 17.88 0.86
Computed 18.50 17.41 0.87

3 Effect of Weak-Supervision

We repeat the experiments of Section 5.3 in the main paper using different
datasets. We show that the effect of weak-supervision also holds when using fully
labeled real data or weakly-labeled in-the-wild data.

STB. We reproduce the results of Section 5.3 in the main paper, but instead of
using RHD we use STB [4] as the fully supervised dataset. The weakly-supervised
dataset remains FH. The purpose of this experiment is to demonstrate that the
effect of weak supervision also takes place when using a real dataset for full
supervision. Table 2 (top) shows the result.

MPII - in-the-wild dataset. We reproduce the results of Section 5.3 in
the main paper, but using MPII [3] as our weakly-supervised dataset. This is
to demonstrate the effect of weak-supervision stemming from datasets collected
in-the-wild, a potentially useful supervision source. We evaluate on the validation
split of FH. Table 2 (bottom) shows the result. Note that as the MPII dataset
only contains 2D labels and no 3D annotation is provided, the fully supervised
upper bound cannot be performed and is therefor omitted from the table.

4 Comparison with Adversarial loss

It is intuitive to think of drawing parallels between BMC and an adversarial loss.
BMC can be interpreted as a discriminator penalizing poses that do not adhere
to the distribution of valid hand poses. However, BMC models the task at hand
more closely and only requires the limits, whereas a discriminator requires access
to a full dataset of 3D poses. In order to see how a discriminator performs against
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Table 2: This table show-cases the same effect of weak-supervision as Table 2 in
the main paper but evaluated in different settings. All models are evaluated on the
validation split of FH. (top) We use STB as the fully labeled dataset and supplement
is using weakly-labeled FH. (bottom) We use RHD as the fully labeled dataset and
MPII as the weakly-supervised data. The same trend can be observed in both settings.
Adding weakly-supervised data improves 3D prediction performance due to predicted
3D poses with the correct 2D projection. By incorporating our proposed biomechanically
constraints we significantly improve 3D pose accuracy due to more accurate Z. Note
that as the MPII dataset only contains 2D labels and no 3D annotation is provided,
the fully supervised upper bound cannot be performed and is therefor omitted from the
table.

Effect of weak-supervision Description mean ↓
2D (pixel) Z (mm) 3D (mm)

3D labels: STB

3DSTB + 3DFH Fully supervised, real 3.85 5.68 9.05
+ LBMC (ours) + BMC 3.83 5.50 8.89
3DSTB Fully sup. lower bound 20.45 36.80 54.92
+ 2DFH + Weakly supervised, real 3.86 35.41 42.02

+ LBMC (ours) + BMC 3.88 11.17 18.58

2D labels: MPII

3DRHD Fully supervised, synthetic only 12.35 20.02 30.82
+ 2DMPII + Weakly supervised, real 10.36 19.77 28.81

+ LBMC (ours) + BMC 10.35 17.72 27.10

BMC, we perform an experiment in the same setting as the ablation study. We
train on fully supervised RHD and weakly-supervised FH, and evaluate on the
validation split of FH. As it has not been shown if and how the adversarial loss
works for the task of 3D hand pose estimation, we adapt a model from literature
applied to 2D body pose [1]. In order to adjust to the new setting, we performed
a search for the optimal hyperparameters to improve the performance of the
discriminator. We show the results in Table 3. As can be seen, BMC outperforms
the adversarial loss. We hypothesise this is due to BMC modeling the task at
hand more closely.

5 Bootstrapping with Synthetic Data

We show the full results of the online evaluation on FH and HO-3D in Table 4.

6 Bootstrapping with Real Data

Tab. 5 shows the full result of Bootstrapping with real data, as evaluated by the
online submission system 3. Recall that we assume the remainder of the data to
be weakly-supervised, i.e it contains the 2D annotation. We list the exact number

3 https://competitions.codalab.org/competitions/21238
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Table 3: We compare using BMC to an adversarial loss adapted from [1]. BMC outper-
forms the adversarial loss. We hypothesise this is due to BMC modeling the task at
hand more closely.

Comparison to adversarial loss Description
3D Pose Estimation (root-relative)

EPE (mm)
AUC ↑

mean ↓ median ↓

3DRHD + 2DFH Baseline 20.92 16.93 0.81
3DRHD + 2DFH + LBMC BMC 15.48 13.49 0.91
3DRHD + 2DFH + Ladv Adversarial 17.60 14.38 0.87

Table 4: Bootstrapping results on the respective test split, as evaluated by the online
submission system. Results are given in mm.

FH Description
aligned unaligned

mean ↓ AUC ↑ mean ↓ AUC ↑

Zimmermann et al. [5] fully supervised FH 1.10 0.78 7.13 0.19
3DRHD + 3DFH fully supervised RHD/FH 0.90 0.82 7.54 0.20

3DRHD fully supervised RHD 1.60 0.69 15.15 0.06
+ 2DFH + weakly-supervised FH 1.26 0.75 13.02 0.14

+ LBMC + BMC 1.13 0.78 10.39 0.15

HO3D Description EXTRAP ↓ INTERP ↓ OBJECT ↓ SHAPE ↓

3DRHD + 3DHO3D fully supervised HO3D 18.22 5.02 16.56 10.79

3DRHD fully supervised RHD 20.84 33.57 35.08 23.94
+ 2DHO3D + weakly supervised HO3D 19.57 25.16 25.79 21.05

+ LBMC + BMC 18.42 10.31 19.91 12.51

of 3D labeled samples used, in addition to the percentage wrt. to the entire
dataset it corresponds to. Note that the percentage values have been rounded for
readability, but the number of samples is exact. We divide the table according to
three categories a) Aligned / Unaligned - Procrustes analysis is used to align
before computing the score b) Mean / AUC - The AUC is given for PCK values
that lie in an interval from 0 mm to 50 mm with 100 equally spaced thresholds.
c) With / Without BMC - Using our proposed biomechanical constraints.
We first focus on the aligned results. Using BMC, the required amount of 3D
annotated data for a given AUC is approximately halved. This trend continues for
labeling percentages up to ∼ 13%. For example, to achieve the same performance
as a model that is trained without BMC on 3810 3D labeled data samples, BMC
achieves the same performance with 1993 3D labeled samples, roughly half the
amount.

A similar trend can be observed for the unaligned score. For labeling per-
centages up to 6.8% (1993), the required amount of data to reach the same
performance is approximately halved (997).

7 Qualitative results

We show qualitative results of the Bootstrapping with Synthetic Data experiment
in Fig. 3. We display the predicted J3D of both 3DRHD + 2DFH (w/o BMC) and
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Table 5: Scores as evaluated on the online submission system. The first column denotes
the percentage (in brackets) of 3D annotated samples used during training, where the
remainder is annotated only with 2D labels. Note that the percentages are rounded,
but the number of samples are exact. + indicates the model trained with BMC,
− indicates the model trained without it.

FH
+: with BMC (ours)

−: without BMC
Aligned Unaligned

mean ↓ AUC ↑ mean ↓ AUC ↑
3D samples: Number 3D samples: Perc. − + − + − + − +

1 (3.4e−3%) 1.96 1.64 0.62 0.68 34.8618.40 0.08 0.11
5 (0.017%) 1.85 1.41 0.64 0.72 26.4015.26 0.11 0.13
14 (0.045%) 1.78 1.39 0.65 0.73 25.2412.98 0.11 0.13
27 (0.094%) 1.75 1.34 0.66 0.73 23.9011.93 0.12 0.14
127 (0.43%) 1.54 1.24 0.70 0.76 21.8312.08 0.13 0.16
499 (1.7%) 1.23 1.18 0.76 0.77 11.6810.88 0.17 0.18
997 (3.4%) 1.14 1.12 0.77 0.78 9.85 9.42 0.18 0.19
1993 (6.8%) 1.10 1.07 0.78 0.79 8.83 8.75 0.19 0.20
3810 (13%) 1.06 1.04 0.79 0.79 8.01 7.90 0.21 0.21
7327 (25%) 1.02 1.01 0.80 0.80 7.91 7.84 0.21 0.21
14653 (50%) 0.99 1.00 0.80 0.80 7.46 7.56 0.22 0.22
29305 (100%) 0.98 0.98 0.81 0.81 7.18 7.18 0.23 0.23

3DRHD + 2DFH + LBMC (w. BMC). Two views are shown. The first displays
the view from the front or camera view (looking in direction of the z-axis), the
second shows the view from the top of the world space, looking down (looking in
the opposite direction of the x-axis). Additionally, we plot the 2D predictions
of both models, where green corresponds to without BMC and red is the model
using BMC.

We see that despite both models predicting accurately the 2D pose, its pre-
dicted 3D pose are different. Not using BMC, the model predicts bio-physically
implausible poses. This is due to unseen 3D poses, views and occlusions. Addi-
tionally, the 3D component of the model has only been trained on synthetic data.
For example, RHD does not contain object occlusions or ego-centric views. Using
BMC, our model can better adapt its depth-component during training to these
unseen 3D poses, resulting in more accurate predictions.

8 Architecture and training

We use a standard ResNet-50 network for our backbone. We replace the last linear
layer to output a 21× 3 dimensional vector. The first two dimensions correspond
to the 2D keypoints, whereas the last layer corresponds to the root-relative depth
Zr.

Our Zroot refiner consists of a three layered MLP, using leaky ReLU non-
linearity. We used BatchNorm in between all layers except the last. For the
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Front view Top view

(a) Ĵ2D (b) w/o BMC (c) w. BMC (d) GT (e) w/o BMC (f) w. BMC (g) GT

Fig. 3: Qualitative results of the Boostrapping with Synthetic Data experiment. Testing
performed on custom split of FH. Fig. 3a: We see that the model trained without BMC
(green), as well as the model trained with BMC (red), perform equally well on the 2D
prediction task. Fig. 3d, Fig. 3g show the ground-truth joint skeleton from the camera
view, as well as the ”top” view looking down, respectively. Fig. 3b and Fig. 3e show the
3D predictions of the model trained fully supervised on RHD and weakly-supervised on
FH. Despite the accurate 2D predictions, the 3D pose is incorrect, displaying implausible
bio-physical poses. Fig. 3c and Fig. 3f show the result of incorporating BMC into the
model. The predictions are kinematically and structurally sound, and as a result closer
to the ground-truth predictions.
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Table 6: Architecture of the refinement network. It takes the predicted and calculated
values zr ∈ IR21, K−1J2D ∈ IR21×3, Zroot ∈ IR and outputs a residual term r such that
Ẑroot

ref = Ẑroot + r

Refinement Network

Linear(85, 128)

LeakyReLU(0.01)

BatchNorm

Linear(128, 128)

LeakyReLU(0.01)

BatchNorm

Linear(128, 1)

Table 7: HANDS2019 challenge results on the test split of HO-3D, as evaluated by
the online submission system. All methods were trained only on HO-3D. We show the
top four submission. The winner was selected based on the extrapolation score. Results
are given in mm.

HO-3D EXTRAP ↓ INTERP ↓ OBJECT ↓ SHAPE ↓

Ours 24.74 6.70 27.36 13.21
Nplwe 29.19 4.06 18.39 15.79
lin84 31.51 19.15 30.59 23.47
Hasson et al. [2] 38.42 7.38 31.82 15.61

cross-dataset evaluation, we empirically found that not using BatchNorm resulted
in better accuracy. The exact architecture using BatchNorm is listed in Tab. 6.

The network was trained for 70 epochs using SGD with a learning rate of
5e−3 and a step-wise learning rate decay of 0.1 after every 30 epochs.

We set the weight values as follows: λ2D = 1, λZr = 5, λZroot = 1. For all
experiments using BMC, we set the individual weights of the losses as follows:
λBL = 0.1, λRB = 0.1, λA = 0.01

9 HANDS2019 challenge

The HANDS2019 challenge4 was organized to evaluate cutting edge methods
for 3D hand pose estimation. The rules of challenge task #3 required us to
train solely on the HO-3D dataset. We trained the proposed model without
auxiliary losses. The refinement step was vital for achieving the first place of the
competition, demonstrating the performance of the underlying backbone model.

4 https://competitions.codalab.org/competitions/21116
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