
Conditional Entropy Coding for Efficient Video
Compression

Jerry Liu1, Shenlong Wang1,2, Wei-Chiu Ma1,3, Meet Shah1,
Rui Hu1, Pranaab Dhawan1, Raquel Urtasun1,2

Uber ATG1, University of Toronto2, MIT3

{jerryl, slwang, weichiu, meet.shah, rui.hu, pdhawan, urtasun}@uber.com

Abstract. We propose a very simple and efficient video compression
framework that only focuses on modeling the conditional entropy be-
tween frames. Unlike prior learning-based approaches, we reduce com-
plexity by not performing any form of explicit transformations between
frames and assume each frame is encoded with an independent state-of-
the-art deep image compressor. We first show that a simple architecture
modeling the entropy between the image latent codes is as competitive
as other neural video compression works and video codecs while being
much faster and easier to implement. We then propose a novel internal
learning extension on top of this architecture that brings an additional
∼ 10% bitrate savings without trading off decoding speed. Importantly,
we show that our approach outperforms H.265 and other deep learn-
ing baselines in MS-SSIM on higher bitrate UVG video, and against all
video codecs on lower framerates, while being thousands of times faster
in decoding than deep models utilizing an autoregressive entropy model.

1 Introduction

The efficient storage of video data is vitally important to a large number of
settings, from online websites such as Youtube and Facebook to robotics settings
such as drones and self-driving cars. This necessitates the use of good video
compression algorithms. Both image and video compression are fields that have
been extensively researched in the past few decades. Traditional image codecs
such as JPEG2000, BPG, and WebP, and traditional video codecs such as HEVC
H.265, AVC/H.264 [38, 28] are widely used and hand-engineered to work well in
a variety of settings. But the lack of learning involved in the algorithm leaves
room open for more end-to-end optimized solutions.

Recently, there has been an explosion of deep-learning based image compres-
sors that have been demonstrated to outperform BPG on a variety of evaluation
datasets across both MS-SSIM and PSNR as evaluation metrics [18, 23, 9, 19].
This explosion has also recently happened in video compression on a somewhat
smaller scale, with the latest advances being able to outperform H.265 on MS-
SSIM and PSNR in certain cases [25, 14, 12, 20]. Many of these approaches [39,
25, 12] involve learning-based generalizations of the traditional video compression
techniques of motion-compensation, frame interpolation and residual coding.



2 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
Runtime (ln(ms), lower is better)

14.50

14.75

15.00

15.25

15.50

15.75

16.00

16.25

16.50

M
S-

SS
IM

 (d
b,

 h
ig

he
r i

s b
et

te
r)

Wu et al. (417 ms)

Habibian et al. (663 ms)
Lu et al. (666 ms)

Ours base (343 ms) Ours IL (14,500ms)

Encoding GPU Runtime vs. MS-SSIM dB

6 8 10 12 14 16
Runtime (ln(ms), lower is better)

14.50

14.75

15.00

15.25

15.50

15.75

16.00

16.25

16.50

M
S-

SS
IM

 (d
b,

 h
ig

he
r i

s b
et

te
r)

Wu et al. (~800,000 ms)

Habibian et al. (~6,000,000 ms)

Lu et al. (556 ms)

Ours base (191 ms)
Ours IL (191 ms)

Decoding GPU Runtime vs. MS-SSIM dB

Fig. 1: Plots indicating the GPU runtime vs. MS-SSIM of our model vs. other deep
approaches at bitrate 0.2, averaged over a 1920 × 1080 UVG frame. Runtimes are
shown independent of the entropy coding implementation. We interpolate to obtain
the MS-SSIM estimate at the exact bitrate.

Frame t-1

Frame t

Reconstructed 
Frame t

•Motion warp
• Interpolation
•Neural network
•…

Residual

Storage

Frame t-1

Frame t

Storage

Conditional 
Entropy Model

Reconstruction-
Focused Compression

Entropy-focused 
Compression

Entropy 
Model

Entropy 
Model

Fig. 2: An illustration of the explicit transformations used in removing redundant in-
formation in subsequent frames vs. probabilistic modeling used in entropy coding. A
typical lossy compression algorithm will contain elements of both approaches.

While achieving impressive distortion-rate curves, there are several major
facts blocking the wide adoption of these approaches for real-world, generic video
compression tasks. First, most aforementioned approaches are still slower than
standard video codecs at both encoding and decoding stage; moreover, due to the
the fact that they explicitly perform interpolation and residual coding between
frames, a majority of the computations cannot be parallelized to accelerate cod-
ing speed; finally, the domain bias of the training dataset makes it difficult to
generalize well to a wide range of different type of videos.

In this paper, we address these issues by creating a remarkably simple entropy-
focused video compression approach that is not only competitive with prior
state-of-the-art learned compression, but also significantly faster (see Fig. 1),
rendering it a practical alternative to existing video codecs. Such an entropy-
focused approach focuses on better capturing the correlations between frames
during entropy coding rather than performing explicit transformations (e.g. mo-
tion compensation). Our contributions are two-fold (illustrated in Fig. 3). First,
we propose a base model consisting only of a conditional entropy model
fitted on top of the latent codes produced by a deep single-image compressor.
The intuition for why we don’t need explicit transformations can be visualized



Conditional Entropy Coding for Efficient Video Compression 3

Frame t-1

Frame t

Frame t+1

Encoder 
(Sec 3.1)

Conditional Entropy 
(Sec 3.2) Entropy Coding

Decoder 
(Sec 3.1)

Internal Learning (Sec 4)

Conditional Entropy 
(Sec 3.2)

Fig. 3: Overview of the architecture of our approach. We highlight our key contribu-
tion, namely the conditional entropy model and internal learning in blue and yellow,
respectively.

in Fig. 2: given two video frames, prior works would code the first frame to
store the full frame information while coding the second frame to store explicit
motion information from frame 1 as well as residual bits. On the other hand,
our approach encodes both frames as independent image codes, and reduces the
joint bitrate by fitting probability model (an entropy model) to maximize the
probability of the second image code given the first. We can thus extend this to
a full video sequence by still encoding every frame independently, and simply
considering every adjacent pair of frames for the probability model. While en-
tropy modeling has been a subcomponent of prior works [25, 14, 20, 39, 16], they
have tended to be very simple [25], only dependent on the image itself [20, 12], or
use costly autoregressive models that are intractably expensive during decoding
[14, 39]; here our conditional entropy model provides a viable means for video
compression purely within itself.

Our second contribution is to propose internal learning of the latent code
during inference. Prior works in video compression operate by using a fixed
encoder during the inference/encoding stage. As a result, the latent codes of
the video is not optimized towards reconstruction/entropy estimation for the
specific test video. We observe as long as the decoder is fixed, we can trade off
encoding runtime to further optimize the latent codes along the rate-distortion
curve, while not affecting decoding runtime (Fig. 1, right).

We validate the performance of the proposed approach over several datasets
across various framerates. We show that at standard framerates, our base model
is much faster and easier to implement than most state-of-the-art deep video
benchmarks, while matching or outperforming these benchmarks as well as H.265
on MS-SSIM. Adding internal learning provides additional ∼ 10% bitrate gains
with the same decoding time. Additionally, on lower framerates, our models
outperform H.265 by a wide margin at higher bitrates. The simplicity of our
method indicates that it is a powerful approach that is widely applicable across
videos spanning a broad range of content, framerates, and motion.



4 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

2 Background and Related Work

2.1 Deep Image Compression

There is an abundance of work on learned, lossy image-compression [32, 33, 8,
9, 31, 21, 24, 23]. In general, these works follow a general autoencoder architec-
ture minimizing the rate-distortion tradeoff. Typically, an encoder transforms
the image into a latent space, quantizes the symbols, and applies entropy coding
(typically arithmetic/range coding) on the symbols to output a compressed bit-
stream. During decoding, the recovered symbols are then fed through a decoder
for image reconstruction.

Recent works approximate the rate-distortion tradeoff `(x, x̂) + βR(ŷ) in a
differentiable manner by replacing the bitrate term R with the cross-entropy
between the code distribution and a learned “prior” probability model: R ≈
Ex∼pdata

[log p(E(x);θ)]. Shannon’s source coding theorem [26] indicates that the
cross-entropy is an asymptotic lower bound of the bitrate. One way to achieve
this optimal bitrate during entropy coding is to use the learned “’prior” model
as the probability map during arithmetic coding or range coding to code the
symbols. Hence, the smaller the cross-entropy term, the more the bitrate can be
reduced. This then implies that the more expressive the prior model in modeling
the true distribution of latent codes, the smaller the overall bitrate.

Sophisticated prior models have been designed for the quantized represen-
tation in order to minimize the cross-entropy with the code distribution. Au-
toregressive models [23, 21, 33], hyperprior models [9, 23], and factorized models
[31, 8, 9] have been used to model this prior. [23] and [22] suggest that using
an autoregressive model is intractably slow in practice, as it requires a pass
through the model for every single pixel during decoding. [22] suggests that the
hyperprior approach presents a good tradeoff between speed and performance.

A recent model by Liu et al.[17] presents an extension of [23] using residual
blocks in the encoder/decoder, outperforming BPG and other deep models on
both PSNR and MS-SSIM on Kodak.

2.2 Video Compression

Conceptually, traditional video codecs such as H.264 / H.265 exploit temporal
correlations between frames by categorizing the frames as follows [28, 38]:

– I-frames: compressed as an independent image
– P-frames: predicted from past frames using block-based flow estimate, then

encode residual.
– B-frames: similar to P-frames but predicted from both past and future

frames.

In order to predict P/B-frames, the motion between frames is predicted via
block matching (and the flow is uniformly applied within blocks), and then
the resulting difference is separately encoded as the ”residual.” Generally, if



Conditional Entropy Coding for Efficient Video Compression 5

neighboring frames are temporally correlated, encoding the motion and residual
vectors requires fewer bits than recording the subsequent frame independently.

Recently, several deep-learning based video compression frameworks [39, 25,
18, 20, 12, 15] have been developed. Both Wu et al.[39] and Lu et al.[20] attempt
to generalize various parts of the motion-compensation and residual learning
framework with neural networks, and get close to H.265 performance (on very-
fast setting). Rippel et al.[25] achieved state-of-the-art results in MS-SSIM by
generalizing flow/residual coding with a global state, spatial multiplexing, and
more. Djelouah et al.[12] jointly decode motion and blending coefficients from
references frames, and represent residuals in latent space. Habibian et al.[14]
utilizes a 3D convolutional architecture to avoid motion compensation, as well
as an autoregressive entropy model to outperform [39, 20].

These prior works generally require specialized modules and explicit trans-
formations, with the entropy model being an oftentimes intractable autoregres-
sive subcomponent [39, 12, 14]. A more closely related work is that of Han et
al. [15], who propose to model the entropy dependence between codes with an
LSTM: p(yi|y<i). In contrast to these prior works, we focus on a entropy-only
approach, with no explicit transformations across time. More importantly, our
base approach carefully exploits the parallel nature of frame encoding/decoding,
rendering it orders of magnitude faster than other state-of-the-art while being
just as competitive.

2.3 Internal Learning

The concept of internal learning is not new. It is similar to the sample-specific
nature of transductive learning [35, 29]. “Internal Learning” is a term proposed
in [6, 13], which exploits the internal recurrence of information within a single-
image to train an unsupervised super-resolution algorithm. Many related works
have also trained deep networks on a single example, from DIP [34] to GANs
[27, 30, 40]. Also related is Sun et al. [29] who propose “test-time training” on
an auxiliary function for each test instance on supervised classification tasks.
Concurrently and independently from our work, Campos et al. propose con-
text adaptive optimization in image compression [10], which has demonstrated
promising results on finetuning each latent code towards its test image.

In our setting, we leverage the fact that in video compression the ground-
truth is simply the video itself, and we apply internal learning in a way that obeys
codebook consistency while decreasing the conditional entropy between video
frames during decoding. There are unique advantages to using internal learning
in our entropy-only video compression setting: it can optimize for conditional
entropy between codes in a way that an independent frame encoder cannot (see
Section 4).

3 Entropy-focused Video Compression

Our base model consists of two components: we first encode each frame xi of
a video x with a straightforward, off-the-shelf image compressor consisting of



6 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

a deep image encoder/decoder (Section 3.1) to obtain discrete image codes yi.
Then, we capture the temporal relationships between our yi’s with a conditional
entropy model that approximates the joint entropy of the video sequence (Section
3.2). The model is trained end-to-end with respect to the rate-distortion loss
function (Section 3.3).

3.1 Single-image Encoder/Decoder

We encode every video frame xi separately with a deep image compressor into
a quantized latent code yi; note that each yi contains full information to re-
construct each frame i and does not depend on previous frames. Our choice of
architecture for single-image compression borrows heavily from the state-of-the-
art model presented by Liu et al. [17], which has shown to outperform BPG
on both MS-SSIM and PSNR. The architecture consists of the image encoder,
quantizer, and image decoder. We simplify the model in two ways compared
to the original paper: we remove all non-local layers for efficiency/memory rea-
sons, and we remove the autoregressive context estimation due to its decoding
intractability ([23, 21], also see Fig. 1).

More details about the image encoder/decoder architecture are found in
supplementary material. In our video compression model, we use the image
encoder/quantizer to produce the quantized code yi, and the image decoder
to produce the reconstruction x̂i. We do not use the existing entropy model
(inspired from [9], [23]) which are only designed for modeling the intra-image
entropy; instead we design our own conditional entropy model, as detailed next.

3.2 Conditional Entropy Model for Video Encoding

Our entropy model models the joint entropy of the video frame codes with a
deep network in order to reduce the overall bitrate of the video sequence; this
is because the cross-entropy between our entropy model and the actual code
distribution is a tight lower bound of the bitrate [26]. Our goal is to design our
entropy model to capture the temporal correlations as well as possible between
the frames such that it can minimize the cross-entropy with the code distri-
bution. Put another way, the bitrate for the entire video sequence code R(y)
is tightly approximated by the cross-entropy between the code distribution in-
duced by the encoder y = E(x),x ∼ pdata and our probability model p(·|θ):
Ex∼pdata

[log p(y;θ)].
If y = {y1,y2, ...} represents the sequence of frame codes for the entire video

sequence, then a natural factorization of the joint probability p(y) would be to
have every subsequent frame depend on the previous frames:

R(y) ≥ Ex∼pdata
[log p(y;θ)] = Ex∼pdata

[

n∑
i=0

log p(yi|y<i;θ)] (1)

While other approaches (e.g. B-frames) model dependence in a hierarchical man-
ner, our factorization makes sense in online and low-latency settings, where we



Conditional Entropy Coding for Efficient Video Compression 7

μi,σi,wi
μi,σi,wi

Im
ag

e 
En

co
de

r

C
on

v 
↑2

x
IG

D
N

C
on

v 
↑2

x
IG

D
N

C
on

v 
↑2

x
IG

D
N

C
on

v 
↑2

x
C

on
v 

↓2
x

C
on

v 
↓2

x
G

D
N

C
on

v 
↓2

x
G

D
N

C
on

v 
↓2

x

G
D

N

μi,σi,wi

ziyi

Hyperprior 
Encoder

H
yp

er
pr

io
r D

ec
od

er

x3

C
on

v 
↑2

x
IG

D
N

C
on

v 
↑2

x
IG

D
N

C
on

v 
↑2

x
IG

D
N

C
on

v 
↑2

x

R
es

B
lo

ck

R
es

B
lo

ck

C
on

v 
↑2

x

yi-1

R
es

B
lo

ck

R
es

B
lo

ck

C
on

v 
↓2

x

C
on

v 
↓2

x

Q
ua

nt
iz

er

Im
ag

e 
En

co
de

r
Frame i code

Frame i-1 
code

x3

Hyperprior Decoder

GMM 
parameters

Fig. 4: Diagram of our conditional entropy model, consisting of both a hyperprior en-
coder (top) and decoder (bottom).

want to decode frames sequentially. We further make a 1st-order Markov as-
sumption such that each frame yi only depends on the previous frame yi−1

1

and a small hyperprior code zi. Note that zi counts as side information, in-
spired from [9], and must also be counted in the bitstream. We encode it with a
hyperprior encoder with yi and yi−1 as input (see Fig. 4). We thus have

R(y) ≥ Ex∼px [

n∑
i=0

log p(yi|yi−1, zi;θ) + log p(zi;θ)]

We assume that the hyperprior code distribution p(zi;θ) is modeled as a
factorized distribution, p(zi;θ) =

∏
j p(zij |θz), where j represents each di-

mension of zi. Since each zij is a discrete value, we design each p(zij |θz) =
cj(zij + 0.5;θz) − cj(zij − 0.5;θz), where each cj(·;θz) is a cumulative den-
sity function (CDF) parametrized as a neural network similar to [9]. In the
meantime, we also model each p(yi|yi−1, zi;θ) as a conditional factorized distri-
bution:

∏
j p(yij |yi−1, zi;θ), with p(yij |yi−1, zi;θ) = gj(yij + 0.5|yi−1, zi;θy)−

gj(yij −0.5|yi−1, zi;θy), where gj is modeled as the CDF of a Gaussian mixture
model:

∑
k wjkN (µjk, σ

2
jk). wjk, µjk, σjk are all learned parameters depending

on yi−1, zi;θy. Similar to [9, 23, 19], the GMM parameters are outputs of a deep
hyperprior decoder.

Note that our entropy model is not autoregressive either at the pixel level
or the frame level - mixture parameters for each latent “pixel” yij are predicted
independently given yi−1, zi, hence requiring only one GPU pass per frame dur-
ing decoding. Also, all yi’s are produced independently with our image encoder,
removing the need to specify keyframes. All these aspects are advantageous in
designing a fast, online video compressor. Yet we also aim to make our model ex-
pressive such that our prediction for each pixel p(yij |yi−1, zi;θ) can incorporate
both local and global structure information surrounding that pixel.

We illustrate this architecture in Fig. 4. Our hyperprior encoder encodes our
hyperprior code zi as side information given yi and yi−1 as input. Then, our
hyperprior decoder takes zi and yi−1 as input to predict the Gaussian mixture

1 When i = 0, yi−1 doesn’t exist and can be represented as a zeroed-out vector.



8 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

parameters for yi: σi, µi, and wi. We can effectively think of zi as providing
supplemental information to yi−1 to better predict yi. The hyperprior decoder
first upsamples zi to the spatial resolution of yi−1 with residual blocks; then,
it uses deconvolutions and IGDN nonlinearities [7] to progressively upsample
both yi−1 and zi to different resolution feature maps, and fuses the zi feature
to the yi−1 at each corresponding upsampled resolution. This helps to incor-
porate changes between yi−1 to yi, encapsulated by zi, at multiple resolution
levels from more global features at the lower resolution to finer features at higher
resolutions. Then, downsampling convolutions and GDN nonlinearities are ap-
plied to match the original spatial resolution of the image code and produce the
mixture parameters for each pixel of the code.

3.3 Rate-distortion Loss Function

We train our base compression models end-to-end to minimize the rate-distortion
tradeoff objective used for lossy compression:

L(x) = Ex∼pdata
[

n∑
i=0

||xi − x̂i||2]︸ ︷︷ ︸
Distortion

+λEx∼pdata
[

n∑
i=0

log p(yi|yi−1, zi;θ) + log p(zi;θ)]︸ ︷︷ ︸
Rate

(2)
where each xi, x̂i,yi, zi is a full/reconstructed video frame and code/hyperprior
code respectively. The first term describes the reconstruction quality of the de-
coded video frames, and the second term measures the bitrate as approximated
by our conditional entropy model. Each yi, x̂i is produced via our image en-
coder/decoder, while our conditional entropy model captures the dependence
of yi on yi−1, zi. We can additionally clamp the rate term to enforce a target
bitrate Ra: max(Ex∼pdata

[
∑n

i=0 log p(yi|yi−1, zi;θ) + log p(zi;θ)], Ra).

4 Internal Learning of the Frame Code

We additionally propose an internal learning extension of our base model, which
leverages every frame of a test video sequence as its own example for which we
can learn a better encoding, helping to provide more gains in rate-distortion
performance with our entropy-focused approach.

The goal of a compression algorithm is to find codes that can later be decoded
according to a codebook that does not change during encoding. This is also
intuitively why we can not overfit our entire compression architecture to a single
frame in a video sequence; this would imply that every video frame would require
a separate decoder to decode. However, we make the observation that in our
models, the trained decoder/hyperprior decoder represent our codebook; hence
as long as the decoder and hyperprior decoder parameters remain fixed, we
can actually optimize the encoder/hyperprior parameters or the latent codes
themselves, yi and zi, for every frame during inference. In practice we do the
latter to reduce the number of parameters to optimize.



Conditional Entropy Coding for Efficient Video Compression 9

One benefit of internal learning in our video compression setting is similar to
that suggested by Campos et al. [10]: the test distribution during inference is of-
tentimes different than the training distribution. This is especially true in videos,
where the test distribution may have different artifacts, framerate, etc. Our base
conditional entropy model may predict a higher entropy for test videos due to
distributional shift - internal learning might help account for the shortcomings
of out-of-distribution prediction by the encoder/hyperprior encoder.

The second benefit is unique to our video compression setting: we can opti-
mize each frame code to reduce the joint entropy in a way that the base approach
cannot. In the base approach, there is a restriction of assuming that yi is pro-
duced by an independent single-image compression model without accounting
for past frames as input. Yet there exist configurations of yi with the same re-
construction quality that are more easily predictive from yi−1 in our entropy
model p(yi|yi−1, zi). Performing internal learning allows us to more effectively
search for a more optimal configuration of the frame code and hyperprior code
z∗i , y∗

i such that y∗
i can be more easily predicted by y∗

i−1, z
∗
i in the entropy

model. As a result, internal learning helps open up a wider search space of frame
codes that can potentially have a lower joint entropy.

To perform internal learning during inference, we optimize against a similar
rate-distortion loss as in Eq. 2:

Linternal(x) =

n∑
i=0

`(xi, x̂i) + λ

[
n∑

i=0

log p(yi|yi−1, zi;θ) + log p(zi;θ)

]
(3)

where x denotes the test video sequence that we optimize over, and ` represents
the reconstruction loss function. We first initialize yi and zi as the output from
the trained encoder/hyperprior encoder. Then we backpropagate gradients from
(Eq. 2) to yi and zi for a set number of steps, while keeping all decoder param-
eters fixed. We can additionally customize λ in Eq. (3) depending on whether
we want to tune more for bitrate or reconstruction. If the newly optimized codes
are denoted as y∗

i and z∗i , then we simply store y∗
i and z∗i during encoding and

discard the original yi and zi.

We do note that internal learning during inference prevents the ability to
perform parallel frame encoding, since y∗

i , z
∗
i now depend on y∗

i−1 as an output of
internal learning rather than the image encoder; the gradient steps also increase
the encoding runtime per frame. However, after zi, yi are optimized, they are
fixed during decoding, and hence decoding runtime does not increase. We analyze
the tradeoff of increased computation vs. reduced bitrates in the next section.

5 Experiments

We present a detailed analysis of our video compression approach on numerous
datasets, varying factors such as frame-rate and video codec quality.



10 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

5.1 Datasets, Metrics, and Video Codecs

Kinetics, CDVL, and UVG, and others: We train on the Kinetics dataset [11].
Then, we benchmark our method against standard video test sets which are
commonly used for evaluating video compression algorithms. Specifically, we
run evaluations on video sequences from the Consumer Digital Video Library
(CDVL) [2] as well as the Ultra Video Group (UVG) [4]. UVG consists of 7
video sequences of 3900 frames total, each 1920× 1080 and 120fps. Our CDVL
dataset consists of 78 video sequences, each 640× 480 and either 30fps or 60fps.
The videos span a wide range of natural image settings as well as motion. For
further analysis of our approach, we benchmark on video sequences from MCL-
JVC [36] and Video Trace Library (VTL) [5], shown in supplementary material.

NorthAmerica: We collect a video dataset by driving our self-driving fleet in
several North American cities and collecting monocular, frontal camera data.
The framerate is 10 Hz. Our training set consists of 1160 video sequences of 300
frames each, and our test set consists of 68 video sequences of 300 frames each.
All frames are 1920 × 1200 in resolution, and we train on 240 ×150 crops. We
focus both on full street driving sequences as well as only on sequences where
ego-vehicle is moving (so no red-lights or stop signs).

Metrics: We measure runtime in milliseconds on a per-frame basis for both
encoding and decoding. Moreover we plot the rate-distortion curve for multi-
scale structural similarity (MS-SSIM) [37], which is a commonly-used perceptual
metric that captures the overall structural similarity in the reconstruction. We
report the MS-SSIM curve at log-scale similar to [9], where log-scale is defined
as −10 log10(1 −MS-SSIM). Additionally, we report some curves using PSNR:
−10 log10(MSE), where MSE is mean-squared error, and hence measuring the
absolute error in the reconstructed image.

Note from Sec. 3.3 that all our base models are trained/optimized with mean-
squared error (MSE), and we show that our base models are robust in both MS-
SSIM and PSNR. However with internal learning, we demonstrate the flexibility
of tuning to different metrics during test-time, so we optimize reconstruction
loss towards MS-SSIM and MSE separately (see Sec. 4).

Video Codecs and Baselines: We benchmark with both libx265 (HEVC/H.265)
and libx264 (AVC/H.264). To the best of our knowledge all prior works on
learned video compression [14, 25, 39, 12, 20] have artificially restricted codec per-
formance either by using a faster setting or by imposing additional limitations on
the codecs (such as removing B-frames). In contrast, we benchmark both H.265
and H.264 on the veryslow setting in ffmpeg in order to maximize the perfor-
mance of these codecs. For the sake of illustration (and also to have a consistent
comparison in Fig. 5 with other authors) we also plot H.265 with the medium
preset for benchmarking. We additionally include the official HEVC HM [3] and
AVC JM [1] implementations in Fig. 5. We also incorporate corresponding num-
bers from the learned compression methods of [39], [20], [14]. Finally, we add
our single-image compression model, inspired by [17], as a baseline.



Conditional Entropy Coding for Efficient Video Compression 11

0.0 0.1 0.2 0.3 0.4 0.5
Bitrate

12

13

14

15

16

17

18

M
S-

SS
IM

 (d
b)

MS-SSIM dB (UVG)

HEVC/H.265 (medium)
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
HEVC HM
AVC JM
Wu et al.
Habibian et al.
Lu et al.
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Bitrate

33

34

35

36

37

38

39

PS
NR

PSNR (UVG)

HEVC/H.265 (medium)
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
HEVC HM
AVC JM
Wu et al.
Habibian et al.
Lu et al.
Single-image (Liu et al.)
Ours (base)
Ours (IL)

Fig. 5: Rate-distortion plot of our model against competing deep compression works
[39, 14, 20]. Results are on full 1920 × 1080 UVG video.

In addition, we remove Group of Picture (GoP) restrictions when running
H.265/H.264, such that the maximum GoP size is equivalent to the total number
of frames of each video sequence. We note that neither our base approach nor
internal learning require an explicit notion of GoP size: in the base approach,
every frame code is produced independently with an image encoder, and with
internal learning we optimize every frame sequentially.

Ours

[UVG] BPP: 0.076, MS-SSIM: 0.948

H.265 (veryslow)

[UVG] BPP: 0.121, MS-SSIM: 0.943

H.264 (veryslow)

[UVG] BPP: 0.082, MS-SSIM: 0.930

Ours

[NorthAmerica] BPP: 0.087, MS-SSIM: 0.969

H.265 (veryslow)

[NorthAmerica] BPP: 0.107, MS-SSIM: 0.944

H.264 (veryslow)

[NorthAmerica] BPP: 0.097, MS-SSIM: 0.962

Ours

[CDVL] BPP: 0.158, MS-SSIM: 0.969

H.265 (veryslow)

[CDVL] BPP: 0.171, MS-SSIM: 0.967

H.264 (veryslow)

[CDVL] BPP: 0.206, MS-SSIM: 0.960

Fig. 6: Demonstration of our approach vs H.265 / H.264 on 10 Hz 1920 × 1200
NorthAmerica video, 12 Hz 1920 × 1080 UVG video, and 6 Hz 640×480 CDVL video.
Even at lower bitrates, our approach demonstrates significant reductions in bitrate and
distortion on lower framerate video.



12 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

Implementation Details: We use a learning rate of 7 · 10−5 to 2 · 10−4 for our
models at different bitrates, and optimize parameters with Adam. We train with
a batch size of 4 on two GPU’s. For test/runtime evaluations, we use a single
Intel Xeon E5-2687W CPU and 1080Ti GPU. For internal learning we run 10-12
steps of gradient descent per frame. Our range coding implementation is written
in C++ interfacing with Python; during encoding/decoding we compute the codes
and distributions on GPU, then pass the data over to our C++ implementation.

5.2 Runtime and Rate-distortion on UVG

We showcase runtime vs. MS-SSIM plots of our method (both the base model
and internal learning extension) against related deep compression works on UVG
1920 × 1080 video: Wu et al. [39], Lu et al. [20], and Habibian et al. [14]. 2 Results
are shown in Fig. 1, and detail the frame encoding/decoding runtimes on GPU
excluding the specific entropy coding implementation. 3

Overall our base approach is significantly faster than most deep compression
works. During decoding, our base approach is orders of magnitude faster than
approaches that use an autoregressive entropy model (Habibian et al. [14], Wu
et al. [39]). We note that closest works in the GPU runtime and MS-SSIM is Lu
et al., [20] who reported 666 ms/556 ms for encoding/decoding. Nevertheless,
our GPU-only pass is still faster (340ms/ 191ms for encoding/decoding). Our
entropy coding implementation has room for optimization; the C++ algorithm
itself is fast (140 ms/139 ms for range encoding/decoding of a 1080p frame)
though the Python binding interfacing brings the time up to 1.19/0.65 s for
encoding/decoding. Additionally, we benchmark against prior works’ entropy
coding runtime as well as codec runtime in supplementary.

While the optional internal learning extension improves the rate-distortion
trade-off in all the benchmarks, it brings overhead in encoding runtime. We
note that our implementation of internal learning is unoptimized with the back-
ward operator in PyTorch. However, it brings no overhead in decoding runtime,
meaning our approach is still faster than all other approaches during decoding.

In addition, we evaluate all the competing algorithms’ performance and plot
the rate-distortion curve on UVG test dataset, as shown in Fig. 5. The results
demonstrate that our approach is competitive or even outperforms existing ap-
proaches, especially on MS-SSIM. 4 Between bitrate ranges 0.1-0.3, which is
where other deep baselines present their numbers, our base approach is as com-
petitive as a motion-compensation approach [20] or one that uses autoregressive
entropy models [14]. At higher bitrates, the base approach outperforms H.265
veryslow in both MS-SSIM and PSNR. Internal learning further improves upon
all bitrates by ∼ 10%.

2 We don’t show the results of Djelouah et al. [12] and Rippel et al. [25] because we
were unable to get consistent MS-SSIM metrics on the UVG dataset.

3 We thank the authors for providing us detailed runtime information.
4 HEVC HM performs much better in PSNR, but as we see in supplementary, HEVC

HM/AVC JM are significantly slower than ffmpeg codecs and our method.



Conditional Entropy Coding for Efficient Video Compression 13

5.3 Rate-distortion on NorthAmerica

0.0 0.5 1.0 1.5
Bitrate

34

36

38

40

42

44

46

48

50

PS
N

R

PSNR (NorthAmerica)

JPEG2000
BPG
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.0 0.5 1.0 1.5
Bitrate

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

M
S-

SS
IM

 d
B

MS-SSIM dB (NorthAmerica)

JPEG2000
BPG
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.0 0.5 1.0 1.5
Bitrate

34

36

38

40

42

44

46

48

PS
N

R

PSNR (NorthAmerica, Vehicle is Moving)

JPEG2000
BPG
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.0 0.5 1.0 1.5
Bitrate

14

16

18

20

22

24

26

28

30

M
S-

SS
IM

 (d
b)

MS-SSIM dB (NorthAmerica, Vehicle is Moving)

JPEG2000
BPG
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

Fig. 7: Plot of our approaches compared against compression baselines for NorthAmer-
ica, both over the entire dataset as well as only when the ego-vehicle has positive
velocity.

We show our conditional entropy model and internal learning extension on
the NorthAmerica dataset, in Fig. 7. The graph shows that even our single-image
Liu model baseline [17] outperforms H.265 on MS-SSIM at higher bitrates and
approaches H.265 in PSNR. Our conditional entropy model demonstrates bitrate
improvements of 20-50% across bitrates, and internal learning demonstrates an
additional 10% improvement.

Fig. 7 also shows graphs in which we only analyze video sequences where
the autonomous vehicle is in motion, which creates a fairly large gap in H.265
performance. In this setting, both our video compression algorithm as well as the
single-image model outperform H.265 by a wide margin on almost all bitrates in
MS-SSIM and at higher bitrates in PSNR.

0.0 0.5 1.0 1.5
Bitrate

12

14

16

18

20

22

M
S-

SS
IM

 (d
b)

MS-SSIM dB (UVG)

HEVC/H.265 (medium)
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.0 0.5 1.0 1.5
Bitrate

12

14

16

18

20

22

M
S-

SS
IM

 (d
b)

MS-SSIM dB (UVG 40Hz)

HEVC/H.265 (medium)
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.0 0.5 1.0 1.5
Bitrate

12

14

16

18

20

22

M
S-

SS
IM

 (d
b)

MS-SSIM dB (UVG 20Hz)

HEVC/H.265 (medium)
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.0 0.5 1.0 1.5
Bitrate

12

14

16

18

20

22

M
S-

SS
IM

 (d
b)

MS-SSIM dB (UVG 12Hz)

HEVC/H.265 (medium)
HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.0 0.5 1.0 1.5
Bitrate

14

16

18

20

22

24

M
S-

SS
IM

 (d
b)

MS-SSIM dB (CDVL)

HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
HEVC/H.265 (medium)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.5 1.0 1.5
Bitrate

14

16

18

20

22

24

M
S-

SS
IM

 (d
b)

MS-SSIM dB (CDVL /3)

HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
HEVC/H.265 (medium)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.5 1.0 1.5
Bitrate

14

16

18

20

22

24

M
S-

SS
IM

 (d
b)

MS-SSIM dB (CDVL /6)

HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
HEVC/H.265 (medium)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

0.5 1.0 1.5
Bitrate

14

16

18

20

22

24

M
S-

SS
IM

 (d
b)

MS-SSIM dB (CDVL /10)

HEVC/H.265 (veryslow)
AVC/H.264 (veryslow)
HEVC/H.265 (medium)
Single-image (Liu et al.)
Ours (base)
Ours (IL)

Fig. 8: Plot of our conditional entropy + internal learning adaptations against various
baselines for UVG and CDVL. A separate graph is shown for each framerate.



14 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

5.4 Varying Framerates on UVG and CDVL

We can additionally control the framerate by dropping frames for CDVL and
UVG. We follow a scheme of keeping 1 out of every n frames, denoted as /n. We
analyze UVG and CDVL video in 1/3, 1/6, and 1/10 settings. Since all UVG
videos are 120 Hz, the corresponding framerates are 40 Hz, 20 Hz, 12 Hz.

The effects of our conditional entropy model and internal learning, evaluated
at different framerates, are shown in separate graphs, in Fig. 8. The conditional
entropy model is competitive with H.265 at the original framerate for UVG, and
outperforms video codecs at lower framerates. In fact, we found that single-image
compression matches H.265 veryslow on lower framerates! We find a similar effect
on CDVL at lower framerates as well, where both single-image compression and
our approach far outperform H.265 at lower framerates.

Our base conditional entropy model generally demonstrates a 20%-50% re-
duction of bitrate compared to the single-image model. The effect of internal
learning on each frame code provides an additional 10-20% reduction in bitrate,
demonstrating that internal learning of the latent codes during the inference
stage provides additional gains.

5.5 Qualitative Results

We showcase qualitative outputs of our model vs H.265 and H.264 veryslow in
Fig. 6, demonstrating the power of our model on lower framerate video. On 10Hz
NorthAmerica, 12Hz UVG video, and 6Hz CDVL video, our model contains big
reductions in bitrate compared to video codecs, while producing results that are
more even and with fewer artifacts.

6 Conclusion

We propose a novel entropy-focused video compression architecture consisting
of a base conditional entropy model as well as an internal learning extension.
Rather than explicitly transforming information across frames as in prior work,
our model aims to model the correlations between each frame code, as well as
perform internal learning of each frame code during inference to better optimize
this entropy model. We show that our lightweight, entropy-focused method is
competitive with prior work and video codecs as well as being much faster and
conceptually easier to understand. With internal learning, our approach out-
performs H.265 in numerous video settings, especially at higher bitrates and
lower framerates. Our adaptations are anchored against single-image compres-
sion which is robust against varied framerates, whereas video codecs such as
H.265 / H.264 are not. Hence, we demonstrate that such a video compression
approach can have wide applicability in a variety of settings.



Conditional Entropy Coding for Efficient Video Compression 15

References

1. Avc jm reference software, available at http://iphome.hhi.de/suehring/. Accessed
2020/05/01.

2. Consumer digital video library, available at https://www.cdvl.org/. Accessed
2019/11/01.

3. Hevc hm reference software, available at https://vcgit.hhi.fraunhofer.de/jct-
vc/HM. Accessed 2020/05/01.

4. Ultra video group, available at http://ultravideo.cs.tut.fi/#testsequences. Ac-
cessed 2019/11/01.

5. Video trace library, available at http://trace.kom.aau.dk/. Accessed 2019/11/01.

6. Assaf Shocher, Nadav Cohen, M.I.: ”zero-shot” super-resolution using deep internal
learning. CVPR (2018)

7. Ballé, J., Laparra, V., Simoncelli, E.P.: Density modeling of images using a gener-
alized normalization transformation. ArXiv (2015)

8. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression.
ICLR (2017)

9. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image
compression with a scale hyperprior. ICLR (2018)

10. Campos, J., Meierhans, S., Djelouah, A., Schroers, C.: Content adaptive optimiza-
tion for neural image compression (2019)

11. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset (2017)

12. Djelouah, A., Campos, J., Schaub-Meyer, S., Schroers, C.: Neural inter-frame com-
pression for video coding. ICCV (2019)

13. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. ICCV
(2009)

14. Habibian, A., van Rozendaal, T., Tomczak, J.M., Cohen, T.S.: Video compression
with rate-distortion autoencoders. ICCV (2019)

15. Han, J., Lombardo, S., Schroers, C., Mandt, S.: Deep generative video compression
(2019)

16. Lee, J., Cho, S., Beack, S.K.: Context-adaptive entropy model for end-to-end op-
timized image compression. ICLR (2019)

17. Liu, H., Chen, T., Guo, P., Shen, Q., Cao, X., Wang, Y., Ma, Z.: Non-local Atten-
tion Optimized Deep Image Compression. ArXiv (2019)

18. Liu, H., Chen, T., Lu, M., Shen, Q., Ma, Z.: Neural Video Compression using
Spatio-Temporal Priors. ArXiv (2019)

19. Liu, J., Wang, S., Urtasun, R.: Dsic: Deep stereo image compression. ICCV (2019)

20. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: Dvc: An end-to-end deep
video compression framework. CVPR (2019)

21. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Gool, L.V.: Conditional
probability models for deep image compression. CVPR (2018)

22. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., Gool, L.V.: Practical full
resolution learned lossless image compression. CVPR (2019)

23. Minnen, D., Ballé, J., Toderici, G.: Joint autoregressive and hierarchical priors for
learned image compression. NIPS (2018)

24. Rippel, O., Bourdev, L.: Real-time adaptive image compression. ICML (2017)

25. Rippel, O., Nair, S., Lew, C., Branson, S., Anderson, A.G., Bourdev, L.: Learned
video compression. ICCV (2019)



16 J. Liu, S. Wang, W.C. Ma, M. Shah, R. Hu, P. Dhawan, R. Urtasun

26. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal (1948)

27. Shocher, A., Bagon, S., Isola, P., Irani, M.: Ingan: Capturing and remapping the
”dna” of a natural image. ICCV (2019)

28. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency
video coding (hevc) standard. IEEE Transactions on Circuits and Systems for
Video Technology (2012)

29. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A.A., Hardt, M.: Test-time training
for out-of-distribution generalization (2019)

30. Tamar Rott Shaham, Tali Dekel, T.M.: Singan: Learning a generative model from
a single natural image. ICCV (2019)

31. Theis, L., Shi, W., Cunningham, A., Huszar, F.: Lossy image compression with
compressive autoencoders. ICLR (2017)

32. Toderici, G., O’Malley, S.M., Hwang, S.J., Vincent, D.: Variable rate image com-
pression with recurrent neural networks. ICLR (2016)

33. Toderici, G., Vincent, D., Johnston, N., Hwang, S.J., Minnen, D., Shor, J., Cov-
ell, M.: Full resolution image compression with recurrent neural networks. CVPR
(2017)

34. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Deep image prior. CVPR (2018)
35. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, Berlin,

Heidelberg (1995)
36. Wang, H., Gan, W., Hu, S., Lin, J.Y., Jin, L., Song, L., Wang, P., Katsavounidis, I.,

Aaron, A., Kuo, C.C.J.: Mcl-jcv: A jnd-based h.264/avc video quality assessment
dataset. ICIP (2016)

37. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image
quality assessment. ACSSC (2003)

38. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the
h.264/avc video coding standard. IEEE Transactions on Circuits and Systems for
Video Technology (2003)

39. Wu, C.Y., Singhal, N., Krahenbuhl, P.: Video compression through image interpo-
lation. ECCV (2018)

40. Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary
texture synthesis by adversarial expansion. SIGGRAPH (2018)


