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Key-step Localization Network. To build the key-step localization network (KLN), we
make connection between our goal, which is to take a T` input vectors and output T`

outputs each of dimension M , and semantic image segmentation whose goal is to take
an input image and produce an output image where each pixel takes one of few discrete
values corresponding to a category. Thus, we take the network in [1] and, given that we
are working with sequential data instead of 2D images, we convert 2D convolutions,
2D pooling and 2D deconvolutions to 1D temporal convolutions, 1D pooling and 1D
deconvolutions, respectively, see Figure 1.

Fig. 1: Our key-step localization network (KLN) takes T` input vectors, corresponding to feature
vectors from T` segments/frames of video `, and generates T` outputs each of dimension M ,
where the t-th output encodes the assignment probabilities of segment/frame t to each of the M
latent states obtained from videos.

As the figure shows, our KLN consists of multiple consecutive layers of 1D con-
volutions and 1D pooling, forming the encoding part of the network, followed by 1D
deconvolutions, forming the decoding part of the network. The KDN is organized sim-
ilar to [1]. The first five convolutional subnetworks (conv1 to conv5) each consist of
multiple temporal convolutional layers, where each temporal convolution is followed
by batch normalization and ReLU activation. Each convolutional subnetwork is fol-
lowed by a temporal max-pooling. The subnetworks conv6 and conv7, each consists of
a temporal convolution followed by ReLU and dropout. The subnetwork conv8 consists
of 1×1 convolution with batch normalization. We apply deconvolution along the time
axis on the output of conv8. We also apply a 1×1 convolution and batch normaliza-
tion to the output of pool4 and add (element-wise) the result with deconv1 features.
This skip connection, used in semantic segmentation to produce better visual features,
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Fig. 2: Visualization of the self-supervised learned attention model on two videos from the task
‘assemble clarinet’ (left) and ‘perform CPR’ (right) from ProceL. Notice that our method suc-
cessfully learns to focus on important region of each frame. For example, for clarinet, it focused
on cork, ligature, screws, lower and upper joints in the associated key-steps.

is also useful in key-step discovery, as it helps to recover temporal information for key-
step and video classification. Finally, we apply a temporal deconvolution and obtain the
final predictions, which are T` outputs each of dimension M .

More Results from Visual Attention. Figure 2 shows more results for the visualization
of our self-supervised learned attention model on two videos from the task ‘assemble
clarinet’ (left) and ‘perform CPR’ (right) from ProceL. Notice that our method success-
fully learns to focus on important region of each frame. For example, for clarinet, it
focuses on cork, ligature, screws, lower and upper joints in the associated key-steps.
This is particularly vital for localization of key-steps and recognition of the task, as also
demonstrated by our quantitative results.
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