
CosyPose: Consistent multi-view multi-object

6D pose estimation

Yann Labbé1,2, Justin Carpentier1,2, Mathieu Aubry3, and Josef Sivic1,2,4

1 École normale supérieure, CNRS, PSL Research University, Paris, France
2 INRIA, Paris

3 LIGM (UMR 8049), École des Ponts, UPE, France
4 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical

University in Prague
{yann.labbe,justin.carpentier,josef.sivic}@inria.fr,

mathieu.aubry@imagine.enpc.fr

Supplementary material

The supplementary material is organized as follows. In Sec. 1 we present ad-
ditional qualitative results of our multi-view multi-object 6D pose estimation
approach. We discuss in detail some examples to illustrate key benefits of our
method as well as point out the main limitations. We then provide more exam-
ples randomly selected from the results on the T-LESS and YCB-Video datasets.
In Sec. 2, we give more details of our single-view single-object 6D object pose
estimator. In Sec. 3 we illustrate the object candidate matching strategy on a
simple 2D example. In Sec. 4, we give additional details about our parametriza-
tion and initialization of the object-level bundle adjustment problem, introduced
in Sec. 3.4 of the main paper. Finally, Sec. 5 presents the datasets used in the
main paper and recalls the metrics that are used for each dataset.

1 Additional multi-view multi-object results

Each scene reconstruction is presented with a dedicated figure and we provide
close-ups on various parts of the visualization to illustrate the different aspects
in detail. The explanation is provided in the caption of each figure.

Layout of the figures. In each figure presented below, four (on T-LESS) or
five (on YCB-Video) RGB images were used to reconstruct each scene. In each
figure, each row corresponds to results associated with one image and different
columns present the results of different stages of our method. The last column
shows the ground truth scene. The different columns are described next.

– “Input image” is the (RGB) image used as input to the method.
– “2D detections” shows the detections obtained by the object detector (Reti-

naNet on T-LESS, PoseCNN on YCB-Video), after removing detections that

2 Y. Labbé et al.

have scores below 0.3. The color of each 2D bounding box illustrates the ob-
ject label predicted for this detection, each color is associated with a unique
type of 3D object in the object database. Note that the colors for each type
of 3D object are shared for all visualizations corresponding to one scene
(one figure) but not shared across the figures because of the high number of
objects in the database.

– “Object candidates” illustrates the 6D object poses predicted for each 2D
detection. The candidates considered as outliers (those who have not been
matched with a candidate from another view and are discarded) are marked
with red color and are transparent. The candidates considered inliers are
shown in green. Inliers are used in the final scene reconstruction. Note that
the red and green colors in this (3rd) column are only used to indicate inliers
and outliers and there is no correspondence with red and green colors in the
4th column that denote the different object types.

– “Scene reconstruction” illustrates the scene reconstructed by our method
using all the views presented in the figure. Once the scene is reconstructed,
we use the recovered 6D poses of physical objects and cameras to render
the scene imaged from each of the predicted viewpoints. The renderings are
overlaid over the input image.

– “Ground truth” corresponds to the ground truth scene viewed from the
ground truth viewpoints. These images are shown to enable visual compari-
son with the results of our method. The ground truth information (number
of objects, types of objects, poses of cameras, poses of objects) is not used
by our method.

In the following, we illustrate the main capabilities of our system.

1.1 Highlights of the capabilities of our system

Large number of objects, robustness to occlusions, symmetric objects.

Our method is able to recover the state of complex scenes that contain multiple
objects, even if parts or the scene are partially or completely occluded in some
of the views. The poses of cameras and objects can be correctly recovered even
if all objects in the scene are symmetric. An example is presented in Fig. 1. Note
how some objects are missing in each individual view but our method is able to
recover correctly all objects.

Multiple object instances. Our method is able to successfully identify the
correct number of objects and their labels even if there are multiple objects of
the same type in the image, objects are partially occluded in some views and
multiple types of objects have very similar visual appearance. An example is
presented in Fig. 2

Cluttered scenes with distractors. Our method is also robust to distractor
objects that are not in the database of objects. We present in Fig. 3 a complex

CosyPose: Consistent multi-view multi-object 6D pose estimation 3

Input image 2D detections Object candidates Ground truthReconstruction

(a)

(b)

(d)(c)

(a) (b) (c) (d)

Fig. 1. Highlight I: Scene with many symmetric objects and occlusions. Our
method is able to correctly identify and predict the poses of the 8 symmetric objects
present in the scene. Please note how object poses and labels/colors are similar in the
output of our method, shown in close-up (c), and the ground truth, shown in close-up
(d). This is particularly challenging because of the high object density, varying level
of occlusions and the fact that all objects of the scene are symmetric, as shown in
close-ups (a) and (b).

4 Y. Labbé et al.

Input image 2D detections Object candidates Ground truthReconstruction

(a) (b) (c)

(a) (b) (c)

(d)

(d)

Fig. 2. Higlight II: Scene with multiple object instances of the same object

type. Note how our method is able to correctly identify all objects in this challenging
scene. Object poses and labels/colors predicted by our method, shown in close-up
(b) are very similar to the ground truth, shown in close-up (c). This is particularly
challenging because the green and orange objects have similar visual appearance, are
close to each other in the scene, and objects are partially occluded in some of the views,
as shown in close-ups (a) and (d).

CosyPose: Consistent multi-view multi-object 6D pose estimation 5

example with many distractors where our method is able to successfully recover
all objects in the scene, which are in the object database while filtering out
the other ones. This is especially important for robotic applications in unstruc-
tured environments where the objects of interests are known and should not be
confused with other background objects.

High accuracy. One of the key components of our approach is scene refinement
(section 3.4 in the main paper), which significantly improves the accuracy of
pose predictions using information from multiple views. In Fig 4, we show an
example of a reconstruction that highlights the accuracy that can be reached by
our method using only 4 input images.

1.2 Detailed examples

We now explain in detail few simpler examples that demonstrate how our system
works and how it achieves the kind of results presented in the previous section.

Robustness to missing detections. In some situations, objects are partially
or completely occluded in some of the views. As a result, 2D detections for one
physical object are missing in some views. If this physical object is visible in
other views, our reconstruction method is able to estimate it’s pose with respect
to the other objects. If all cameras can be positioned with respect to the rest of
the scene using other non-occluded objects, our approach can also position the
partially occluded object with respect to all cameras, even if there were initially
no candidates corresponding to the object in these views. An example is shown
in Fig. 5.

Robustness to incorrect detections. In T-LESS, many objects have similar
visual appearance. As a result, the 2D detector often makes mistakes, predicting
incorrect labels for some of the detections in some views. Our method is able
to handle multiple 2D detections that have different labels at the same location
in the image. In this case, a pose hypothesis is generated for each of the label
hypothesis. If the object candidate cannot be matched with another view - either
because the incorrect label is predicted in only one view or because the poses are
not consistent - our method is able to discard this object candidate. An example
is shown in Fig. 6. Please see the discussion “Duplicate objects” and Fig. 7 for
examples where an object is consistently mis-identified across multiple views.

Duplicate objects. When multiple objects share the same visual appearance
as it is the case in the T-LESS dataset, there are often multiple label hypothe-
ses that are consistent across views for the same physical object. Because these
objects look similar to each other and match the observed image, the pose es-
timation network (which tries to match a rendering with the observed image,
regardless of the object type) predicts reasonable poses for each label that are

6 Y. Labbé et al.

Input image 2D detections Object candidates Ground truthReconstruction

(c)(b)(a)

(a) (b) (c)

Fig. 3. Highlight III: Scene with multiple distractors. Our method is also ro-
bust to distractor objects that are not in the database of objects. Our method correctly
localizes and estimates the pose of all databse objects in the scene (cf. our reconstruc-
tion (4th column) and the ground truth (5th column)) despite the presence of several
distractor objects (objects not colored in the ground truth). A single-view approach
(Object candidates, 3rd column) incorrectly detects three of the distractor objects and
places them in the scene because they look similar to some objects of the database,
as shown in the close-up (a). Our robust multi-view approach is able to filter these
outliers: the objects estimated at the positions of the distractors are marked in red in
(a). Distractor objects have been filtered in the final reconstruction as shown in the
close-up (b) (cf. ground truth close-up (c)).

CosyPose: Consistent multi-view multi-object 6D pose estimation 7

Input images (a) (b)

Fig. 4. Highlight IV: Accuracy of our approach. Left: input images. Then (a) and
(b) shows the output scene imaged from two viewpoints different from the views used
for the reconstruction. Please note in (a) how the yellow object is accurately estimated
to only touch the green objects, and in (b) how the brown object is correctly plugged
inside the yellow object.

Fig. 5. Example I: robustness to missing detections. One of the objects (marked
by purple circle) in the scene is detected in two views (b) (d), but not in the other two
views due to partial (c) or complete (a) occlusion. Our method is able to (i) position
the views 1 and 3 with respect to the scene using the other visible candidate objects
and (ii) position the purple object with respect to these other objects using views 2
and 4, where the purple object is visible. Once the scene is reconstructed, it is also
possible to directly recover the pose of the purple object with respect to views, where
it was not originally detected, like in (e).

8 Y. Labbé et al.

Input image 2D detections Object candidates Ground truthReconstruction

(a)

(b)

(c)

(d)

(e)

(a) (b) (c) (d) (e)

Fig. 6. Example II: Robustness to incorrect detection labels. One of the objects
that is correctly identified in two views (a) (c), has two label hypotheses in view (b) and
is not detected in view (d). Our method keeps the two hypotheses in (b) and predicts
two 6D object candidates (e) but it is able to discard one of them because it’s label
is not consistent with the other views: one of the two object candidates is marked as
an outlier (red) in (e). In our final scene reconstruction, the gray object is correctly
recognized (it has the same color (gray) in out output “Reconstruction” and in the
“Ground truth”).

CosyPose: Consistent multi-view multi-object 6D pose estimation 9

consistent across different views. These candidates are matched across views and
multiple objects with different labels are predicted in the final scene at the same
spatial position. In our visualization, we remove these duplicate objects by us-
ing a simple 3D non-maximum suppression (NMS) strategy on the estimated
physical objects of the final scene. If multiple objects are too close to each other
in the 3D scene, we keep the object with the highest score – the sum of the
2D detection scores of all inlier object candidates that are associated with one
physical 3D object. Duplicate objects and 3D non-maximum suppression are il-
lustrated in Fig. 7, including one correct and one incorrect example. The column
“Reconstruction” in all figures corresponds to the output of our method after

the 3D NMS.

Robustness to distractors and false positives. The complex scenes in the
T-LESS dataset also have background distractor objects that are not in the
object database. Some of these distractors look similar to objects in the database
and can be incorrectly detected, sometimes in multiple images. In these cases,
the pose estimator most often produces 6D pose estimates that are not consistent
across views because the input real images are outside of the training distribution
(they display objects that are not used to generate the training data). Because
these estimates are not consistent across views, our method is able to filter them
and mark them as outliers (red), thus gaining robustness with respect to these
distractors. An example is shown in Fig. 8.

1.3 Limitations

We now describe the most challenging scenarios that our method is currently not
able to recover from. For each of these, we briefly discuss possible improvements.

Limitation I: consistent mistakes If two incorrect 6D object candidates are
consistent across at least two views, an (incorrect) object will be present in the
reconstructed scene. Such failure case typically happens when two viewpoints
are similar to each other. An example is shown in Fig. 9. If two views are very
similar, the incorrect candidates will be matched together. Note that this failure
mode could be resolved by using a higher number of views, and by only consid-
ering physical objects that have a sufficiently high number of associated object
candidates.

Limitation II: Objects missing in the final reconstruction. Our current
approach requires that a candidate in one view is matched with at least one
candidate from another view. If a candidate detection and pose estimate is cor-
rect in one view but not in any other view, it will be missing from the final
reconstruction. An example is presented in Fig. 10. Note that in this case, all
camera poses are still estimated correctly. An interesting direction to overcome
this problem would be to grow the number of object candidates in each view by
reprojecting the detection from other views, as done in guided matching.

10 Y. Labbé et al.

Input image 2D detections
Reconstruction

After 3D NMS

Object

candidates

Reconstruction

Before 3D NMS
Ground truth

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 7. Example III: Duplicate objects. 2D detections with two different labels
(grey and pink) are predicted for the same object consistently across two views, (a)
and (c). Because the 3D models of the pink and grey objects are similar, the poses
predicted in both views are consistent and thus both pairs of object candidates are
associated to separate objects. In the final scene reconstruction, two objects (grey and
pink) overlap at the same 3D location (e). We use a 3D non-maximum suppression
strategy to retain only a single hypothesis. In the final output (after NMS), the correct
object is retained (pink), c.f. the ground truth column. In some cases, incorrectly
identified objects are kept as shown in (b), (d), (f), (h).

CosyPose: Consistent multi-view multi-object 6D pose estimation 11

Input image 2D detections Object candidates Ground truthReconstruction

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 8. Example IV: Robustness to false positive detections. One of the dis-
tractor objects is incorrectly detected in three views, see close-up (a), (b) and (c),
with a consistent label (brown). For each of these detections, a 6D object candidate
is generated, see close-ups (d), (e) and (f), but the poses are inconsistent across views
because the pose estimation network has not been trained for this object. These can-
didates are filtered by our robust candidate matching strategy and considered outliers
(red), see (d), (e) and (f). Note how this distractor is not present in the final scene
reconstruction, as shown in close-up (g).

12 Y. Labbé et al.

Input image 2D detections Object candidates Ground truthReconstruction

(a)

(b)

(c)

(d)

(e)
(f)

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Limitation I: Consistent mistakes. One of the distractors is incorrectly
detected as an orange object (from the object database), as shown in close-ups (a) and
(c). The two viewpoints are quite similar and as a result the two estimated object poses
are consistent, as shown in (c) and (d). The object is present in the final reconstruction
(e) but it does not correspond to the ground truth object (f).

CosyPose: Consistent multi-view multi-object 6D pose estimation 13

Input image 2D detections Object candidates Ground truthReconstruction

(a)

(b)

(c)

(a)

(d) (e)

(a) (b) (c) (d) (e)

Fig. 10. Limitation II: missing objects. An object is detected correctly in one
view as shown in the close-up (b), but the detection is missing in other views, shown in
close-up (a), or the detection is incorrect and inconsistent, as shown in close-up (c). The
object candidate (b) cannot be matched with another candidate and thus is missing
from the final reconstruction, as shown in close-up (d) of the output (cf. ground truth
close-up (e)).

14 Y. Labbé et al.

Limitation III: Incorrect estimates of camera pose. To position the cam-
era with respect to the scene, our method requires that there are at least three
object candidate inliers in the view: two for positioning the camera with respect
to the scene, and another one to validate the camera pose hypothesis. Some-
times, however, there is insufficient number of inliers. This typically happens if
only two objects are visible, or if there is a small number of objects visible and
some of the detections are incorrect. An example is shown in Fig. 11.

1.4 Random examples

At the end of the PDF, we provide four examples (sets of 4 or 5 images and
associated output reconstructions) randomly selected for each scene of the T-
LESS and YCB-Video datasets.

On YCB-Video, we adopt a slighlty different visualization because the objects
are textured. For clarity and because objects are mostly visually distinct, we
remove object colors to distinguish between different object types. To distinguish
inlier and outlier object candidates, we mark the color of the initial 2D detection
with green (inlier) or red (outlier). Again, note that the red and green colors
from this column are only used to indicate inliers and outliers and there are no
correspondences with other red and green colors depicting the labels of objects.

2 Single-view single-object baseline

We now detail our single-view single-object pose estimation network introduced
in Sec. 4.1 of the main paper. Our method builds on DeepIM [1] but includes
several extensions and improvements.

Given a single image Ia and a 2D detection Da,α associated with an object
label la,α, our method outputs an hypothesis for the pose of the object with
respect to the camera. This pose is noted TCa,Oaα

. In this section, we focus on
one view and one object and thus omit the a and α subscripts.

Similar to DeepIM [1], we use a deep neural network that takes as input
two images and iteratively refines the pose. The first image is the (real) input
image I cropped on a region of the image showing the object, denoted Ic. At
iteration k, the second image is a (synthetic) rendering of the object with label
l rendered in a pose T k−1

C,O that corresponds to the object pose estimated at

the previous iteration. The network outputs an updated refined pose T k
C,O. The

initial pose T 0
C,O can be provided by any coarse 6D pose estimation method

(such as PoseCNN [2]) but we also show that we can simply use a canonical pose
of the object for T 0

C,O as explained in the “Coarse estimation” pagraph below.
We now detail our method and present the main differences with [1].

Network architecture. The network takes as input the concatenation of the
synthetic and real cropped images. Both images are resized to the input resolu-
tion: 320× 240. The backbone is EfficientNet-B3 [3] followed by spatial average

CosyPose: Consistent multi-view multi-object 6D pose estimation 15

Input image 2D detections Object candidates Ground truthReconstruction

(a)

(b)

(c)

(d)

(a)

(b) (d)

(c)

(e)

(e)

Fig. 11. Limitation III: incorrect estimates of camera pose. If one view has
only two visible objects, as shown in close-up (a), the corresponding camera view with
respect to the rest of the scene cannot be estimated as it requires at least three correctly
estimated objects. As a result the objects are not reprojected in the image (c). This
also happens if three candidates are detected in one view, as shown in close-up (b),
but one of the object candidates is not consistent with the other views (here red object
instead of green object).

16 Y. Labbé et al.

pooling. The prediction layer is a simple fully connected layer which outputs 9
values corresponding to one vector [vx, vy, vz] for the translation and two vec-
tors e1, e2 to predict the rotation component of TCO. A rotation matrix R is
recovered from e1, e2 using [3] by simply orthogonalizing the basis defined by
the two vectors e1, e2. Please see “Rotation parametrization” for the equations
to recover the rotation matrix R from e1, e2. Compared to DeepIM [1], the main
difference is that we use a more recent network architecture (DeepIM is based on
FlowNet [4]) and we do not include auxiliary predictions of flow and mask. This
makes the method simpler and easier to train. Our input resolution of 320× 240
is also smaller than 640× 480 used by DeepIM, reducing memory consumption
and allowing to use larger batches while training.

Transformation parametrization. Similar to DeepIM, we use the object-
independent rotation and translation parametrization which consists in predict-
ing a rotation of the camera around the object, a xy translation [vx, vy] in image
space (in pixels) for the center of the rendered object and a relative displacement
vz along the depth axis of the camera. Given the input pose T k

CO and the outputs
of the network ([vx, vy, vz] and R = f(e1, e2)), the pose update is obtained from
the following equations:

xk+1 =

(

vx

fC
x

+
xk

zk

)

zk+1 (1)

yk+1 =

(

vy

fC
y

+
yk

zk

)

zk+1 (2)

zk+1 = vzz
k (3)

Rk+1 = RRk, (4)

where [xk, yk, zk] is the 3D translation vector of T k
CO, R

k the rotation matrix of
T k
CO, f

C
x and fC

y are the focal lengths that correspond to the (fictive) camera

associated with the cropped input image IC . Finally, [xk+1, yk+1, zk+1] and
Rk+1 are the parameters of the output pose estimate T k+1

CO . The differences
with DeepIM are twofold. First, we use a linear parametrization of the relative
depth (eq. (3)), instead of zk+1 = zke−vz , which we found more stable to train.
Second, we use the intrinsics fC

x , fC
y of the cropped camera associated with

the input (cropped) image. DeepIM uses the intrinsics parameters of the non-
cropped camera fx, fy and fix them to 1 during training because the intrinsic
parameters of the input camera are fixed on their datasets. We use the cropped
focal lengths instead because (a) cropping and resizing the crop of the input
image changes the apparent focal length and (b) the focal lengths of the input
images are not fixed on T-LESS. Using the cropped focal lengths forces the
network to only predict xy translations in pixels and the network can therefore
become invariant to the intrinsic parameters of the input (cropped) camera.

CosyPose: Consistent multi-view multi-object 6D pose estimation 17

Rotation parametrization. Given two vectors e1 and e2 (6 values) predicted
by the neural network, we recover a rotation parametrization R by following [3]:

e′1 =
e1

||e1||2
(5)

e′3 =
e′1 ∧ e2

||e2||2
(6)

e′2 = e′3 ∧ e′1, (7)

where ∧ is the cross product between two 3D vectors. This representation has
been shown to be better than quaternions (used by DeepIM) to regress with a
neural network [3].

Cropping strategy. DeepIM uses (a) the input 2D detections and (b) the
bounding box defined by T k

CO and the vertices of the object l to define the size
and location of the crop in the real input image during training. Indeed, the
ground truth bounding box is known during training. At test time, only (b) is
used by DeepIM because ground truth bounding boxes are not available. In our
case, we only use (b) while training and testing. The intrinsic parameters of the
cropped camera are also used to directly render the cropped synthetic image at
a resolution of 320× 240 instead of rendering at a larger resolution followed by
cropping.

Symmetric disentangled loss. A standard loss for 6D pose estimation is
ADD-S[2] which allows to predict pose of symmetric objects. Our loss is in-
spired by ADD-S loss with two main differences. First, we enumerate all the
possible symmetries to find the best matching between the vertices of the pre-
dicted model and the ground truth model instead of finding the nearest neigh-
bors. This is similar in spirit to the approach of [5] to handle object symmetries.
Second, we disentangle depth vz and translation predictions vx, vy, following the
recommendations from [6].

More formally, we define the update function F which takes as input the
initial estimate of the pose T k

CO, the outputs of the neural network [vx, vy, vz]
and R, and outputs the updated pose, i.e. the function such that

T k+1

CO = F (T k
CO, [vx, vy, vz], R), (8)

where the closed form of F is expressed in equations (1)(2)(3)(4) of the supple-
mentary material. We also write [v̂x, v̂y, v̂z] and R̂ the target predictions, i.e. the
predictions such that
T̂CO = F (T k

CO, [v̂x, v̂y, v̂z], R̂), where T̂CO is the ground truth pose of the object.
Our loss function is then:

L(T k
CO, [vx, vy, vz], R) = Dl(F (T k

CO, [vx, vy, v̂z], R̂), T̂CO) (9)

+Dl(F (T k
CO, [v̂x, v̂y, vz], R̂), T̂CO) (10)

+Dl(F (T k
CO, [v̂x, v̂y, v̂z], R), T̂CO), (11)

18 Y. Labbé et al.

whereDl is the symmetric distance defined in the Sec. 3.2 of the main paper, with
the L2 norm replaced by the L1 norm. The different terms of this loss separate
the influence of: xy translation (9), relative depth (10) and rotation (11). We
refer to [6] for additional explanations of the loss disentanglement.

Coarse estimation. To perform coarse estimation on T-LESS, we use the same
network architecture, parametrization and losses defined above. As input T 0

CO

we provide a canonical input pose that corresponds to the object being rendered
at a distance of 1 meter of the camera in the center of the input 2D bounding
box. The coarse and refinement networks use the same architecture, but the
weights are distinct. Each network is trained independently.

Training data. Due to the complexity of annotating real data with 6D pose at
large scale, most recent methods [7, 1, 8] generate additionnal synthetic training
data. In our experiments, we use the real training images provided by YCB-Video
and the images of the real objects displayed individually on black backgrounds
provided by T-LESS. In addition, we generate one million synthetic training
images on each dataset using a simple procedure described next.

We randomly sample 3 to 9 objects from the set of 3D models considered,
place them randomly in a 3D box of size 50 cm and sample randomly the ori-
entation of each object. Half of the images are generated with objects flying in
the air, the other half is generated by taking the images after running physics
simulation for a few seconds, generating physically feasible object configurations.
This is similar to the approach described in [9, 10], though none of our rendered
images are photorealistic. The camera is pointed at the center of the 3D box, its
position is sampled uniformly above the box center at the same range of distance
as the one of the real training data, and its roll angle is sampled between (-10,
10) degrees. On T-LESS, the distance to the object is fixed in the real recon-
structed training images and we use instead the range of distances of the testing
set provided (which is explicitly allowed by the guidelines of the BOP challenge
[11]5). We do not use any information from the testing set beside this distance
interval.

On the T-LESS dataset, we generate data using the CAD models only. We
add random textures on the CAD models following work on domain randomiza-
tion [12–14]. We also paste images from the Pascal VOC dataset in the back-
ground with a probability 0.3, following [1]. On the T-LESS dataset, we add
data augmentation to the input RGB images while training, following [8]. Data
augmentation includes gaussian blur, contrast, brightness, color and sharpness
filters from the Pillow library [15].

Examples of training images are shown in Fig. 12. Finally, when training the
refinement network, we use the same distribution as DeepIM for the input poses.

5 See https://bop.felk.cvut.cz/challenges/ Sec 2.2.

CosyPose: Consistent multi-view multi-object 6D pose estimation 19

T-LESS

YCB-Video

Fig. 12. Training images for our single-view single-object pose estimation

networks. Examples of training images used for training the networks on T-LESS
and YCB-Video.

20 Y. Labbé et al.

Training procedure. All of the networks (refinement network on YCB-Video,
coarse network on T-LESS, refinement network on T-LESS) are trained using
the same procedure. We use the Adam optimizer [16] with a learning rate of
3.10−4 and default momentum parameters. Networks are trained using Pytorch
and synchronous distributed training on 32 gpus, with 32 images per GPU for a
total batch size of 1024. The networks are randomly initialized and we use the
following training procedure. First, the network is trained for 80k iterations on
synthetic data only. Then, the network is trained for another 80k iterations on
both real and synthetic training images. In this second phase, the real training
images account for around 25% of each batch. Following [17], we also use a warm-
up phase where we progressively increase the learning rate from 0 to 3.10−4

during the first 5k iterations.

Experimental findings. On YCB-Video, we found that pre-training the model
on synthetic data yields an improvement of approximately 2 points on the AUC
of ADD(-S) metric. Without this pre-training phase, our model performed com-
parably to the results reported by DeepIM. Note that this is hard to directly
compare because the synthetic training images are different from the ones used
by DeepIM.

On T-LESS, we found that the data augmentation is crucial as also pointed
out by [8]. Without data augmentation, the performance of the coarse and re-
finement networks is poor, with a evsd < 0.3 score of around 35% compared to
64% when training with data augmentation.

3 Object candidate matching: additional illustration

In Fig. 13, we illustrate our method for “Sampling of relative camera poses
sampling” described in Sec 3.3 of the main paper with a simple 2D example.

4 Scene refinement

Initialization. There are multiple ways to initialize the optimization problem
defined in equation (6) of the main paper. We use the following procedure.
We start by picking a random camera and setting it’s coordinate frame as the
world coordinate frame. Then, we iterate over all cameras, trying to initialize
each one. In order to initiliaze a camera a, we randomly sample another camera
b which is already initialized (placed in the world coordinate frame) and use
the relative pose between these two cameras TCaCb

estimated while running
RANSAC (relative camera pose sampling in Sec. 3.2) to place camera a in the
world coordinate frame. Once all the cameras have been initialized, we initalize
objects by randomly picking an object p an initializing it using a candidate
associated with this physical object from a random view.

CosyPose: Consistent multi-view multi-object 6D pose estimation 21

Fig. 13. Relative camera pose estimation. Given two pairs of object candidates
(Oa,α, Ob,β) and (Oa,γ , Ob,δ), we estimate the relative camera pose TCaCb

that best
aligns candidates Oa,γ , Ob,δ. In this example, the red camera pose C′

b is also valid due
to the symmetries of the triangular object lα. It is discarded because the error between
O′

b,δ and Oa,γ is bigger than between Ob,δ and Oa,γ .

Rotation parametrization. We use the same rotation parametrization as the
one used for our single-view single-object network for which the equations are
provided in Sec. 2 of this supplementary material.

5 Datasets and metrics

5.1 Datasets

In this section, we give details of the datasets used in our experiments.

YCB-Video. The YCB-Video [2] dataset is made of 92 scenes with around
1000 images per scene. The dataset is split into 80 scenes for training and 12
scenes for testing. It is mostly challenging due to the variations in lightning
conditions, significant image noise and occlusions. The objects are picked from
a subset of 21 objects from the YCB object set [18] for which reconstructed 3D
models are available. The models are presented in Fig. 15. These models are
used to generate additional synthetic training images.

There is at most one object of each instance per scene and most of the objects
are visually distinct with the exception of the large and extra-large clamps.
When testing, we follow previous works [1, 2, 19] and evaluate on a subset of
2949 keyframes. The variety of the viewpoints for each scene is limited as the
camera is usually moved in front of the scene, but not completely around it.

T-LESS. The T-LESS [20] dataset is made of 20 scenes featuring multiple
industry-relevant objects. There are 30 object instances, all of them are texture-
less and most of them are symmetric. The reconstructed 3D models of these

22 Y. Labbé et al.

Fig. 14. Objects of the YCB-Video dataset. The 21 reconstructed object models
of the YCB-Video dataset. Taken from [2].

CosyPose: Consistent multi-view multi-object 6D pose estimation 23

objects are presented in Fig. 15. Many objects have similar visual appearance,
making the class prediction task challenging for the object detector. The images
in the dataset are taken all around the scene. Scene complexity varies from 3
objects of different types to up 18 objects with 7 belonging to the same type.
In single-view experiments we consider all images of the testing scenes to pro-
vide meaningful comparison with [8, 21]. For multiview experiments we consider
the subset of the BOP19 challenge [11]. We use the CAD models for generating
synthetic images and for evaluation.

Fig. 15. Objects of the T-LESS dataset. The 30 reconstructed object models of
the T-LESS dataset. Notice how multiple objects share visual appearances such as (1)
(2); (5) (6); (14) (15) (16); (25) (26). Taken from [20].

5.2 Metrics

In this section, we give some details about the metrics reported in the main
paper. We refer to [11, 22] for more information about these metrics.

The ADD (average distance) metric is introduced in [22] and is typically used
to measure the accuracy of pose estimation for non-symmetric objects. Given a

24 Y. Labbé et al.

label l of an object and following the notation introduced in Sec. 3.1 of the main
paper, this metric is computed as :

ADD(l, T, T̂) =
1

Hl

∑

h

||T̂Xh
l − TXh

l ||2, (12)

where T is the predicted object pose, T̂ is the ground truth pose, Xh
l are the

vertices of the 3D models and Hl is the number of vertices of the model of the
object l.

For symmetric objects, the average distance is computed using the closest
point distance and noted ADD-S:

ADD-S(l, T, T̂) =
1

Hl

∑

h

min
g

||T̂Xh
l − TX

g
l ||2. (13)

The notation ADD(-S) corresponds to computing ADD for non symmetric
objects and ADD-S for symmetric objects. It is also common to report the per-
centage of objects for which the pose is estimated within a given threshold such
as 10% of it’s diameter. We use the notations ADD-S < 0.1d and ADD(-S) <

0.1d for this metric.
The authors of PoseCNN [2] also proposed to report the area under the

accurracy-threshold curve for a threshold (on ADD-S, or ADD(-S)) varying be-
tween 0 to 10cm. We note this metric as AUC of ADD(-S) or AUC of ADD-S and
we use the implementation provided with the evaluation code6 of YCB-Video.

When evaluating on the T-LESS dataset, we also report the Visual Surface
Discrepancy metric (vsd). This metric is invariant to object symmetries and
takes into account the visibility of the object. As in [8, 21], the pose is consid-
ered correct when the error is less than 0.3 with τ = 20mm and δ = 15mm. We
note this metric evsd < 0.3 and use the official implementation code of the BOP
challenge [11]7. There are multiple instances of objects in multiple scenes of the
T-LESS dataset. When comparing with prior work [8, 21] on all images of the
primesense camera, we only evaluate the prediction which has the highest detec-
tion score for each class, and only objects visible more than 10% are considered
as ground truth targets. This corresponds to the SiSo task.

When evaluating our multi-view method, we follow the more recent 6D local-
ization protocol of the ViVo BOP challenge which considers the top-k predictions
with highest score for each class in each image, where k is the number of ground
truth objects of the class in the scene. Note that the metrics of the BOP chal-
lenge do not penalize making many incorrect predictions for classes that are not
in the scene, which happens in most methods and is problematic for practical
application. We thus propose to analyze precision-recall tradeoff similar to the
standard practice in object detection, using ADD-S<0.1d to count true positives.

When computing the mean of ADD-S errors in our scene refinement ablation,
we only consider as true positives predictions the ones which have an ADD-S

6 https://github.com/yuxng/YCB Video toolbox
7 https://github.com/thodan/bop toolkit

CosyPose: Consistent multi-view multi-object 6D pose estimation 25

error lower than half of the diameter of the object, to ensure that the prediction
is matched to the correct ground truth object. Without limiting the error to
this threshold and using only class labels and scores, some predictions may be
matched to ground truth objects which are at a very different location in the
scene. This tends to increase the errors while not being representative only of
the 6D pose accuracy of the predictions.

References

1. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching
for 6d pose estimation. In: Proceedings of the European Conference on Computer
Vision (ECCV). (2018) 683–698

2. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: A convolutional neural
network for 6D object pose estimation in cluttered scenes. In: Robotics: Science
and Systems XIV. (2018)

3. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation
representations in neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2019) 5745–5753

4. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van
Der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolu-
tional networks. In: Proceedings of the IEEE international conference on computer
vision. (2015) 2758–2766

5. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized
object coordinate space for category-level 6d object pose and size estimation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
(2019) 2642–2651

6. Simonelli, A., Bulo, S.R., Porzi, L., López-Antequera, M., Kontschieder, P.: Disen-
tangling monocular 3d object detection. In: Proceedings of the IEEE International
Conference on Computer Vision. (2019) 1991–1999

7. Zakharov, S., Shugurov, I., Ilic, S.: Dpod: 6d pose object detector and refiner.
In: Proceedings of the IEEE International Conference on Computer Vision. (2019)
1941–1950

8. Sundermeyer, M., Marton, Z.C., Durner, M., Brucker, M., Triebel, R.: Implicit 3d
orientation learning for 6d object detection from rgb images. In: Proceedings of
the European Conference on Computer Vision (ECCV). (2018) 699–715

9. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep
object pose estimation for semantic robotic grasping of household objects. In:
Conference on Robot Learning (CoRL). (2018)

10. Tremblay, J., To, T., Birchfield, S.: Falling things: A synthetic dataset for 3d
object detection and pose estimation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops. (2018) 2038–2041

11. Hodan, T., Michel, F., Brachmann, E., Kehl, W., GlentBuch, A., Kraft, D., Drost,
B., Vidal, J., Ihrke, S., Zabulis, X., et al.: Bop: Benchmark for 6d object pose esti-
mation. In: Proceedings of the European Conference on Computer Vision (ECCV).
(2018) 19–34

12. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). (2017) 23–30

26 Y. Labbé et al.

13. Loing, V., Marlet, R., Aubry, M.: Virtual training for a real application: Accurate
Object-Robot relative localization without calibration. Int. J. Comput. Vis. 126(9)
(September 2018) 1045–1060

14. Labbé, Y., Zagoruyko, S., Kalevatykh, I., Laptev, I., Carpentier, J., Aubry, M.,
Sivic, J.: Monte-carlo tree search for efficient visually guided rearrangement plan-
ning. IEEE Robotics and Automation Letters 5(2) (2020) 3715–3722

15. Clark, A., et al.: The pillow imaging library. https://github.com/python-
pillow/pillow. IEEE Robot. Autom. Mag. 22(3) (September 2015) 36–52

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. (December
2014)

17. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch SGD: Training ImageNet in 1
hour. (June 2017)

18. Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Bench-
marking in manipulation research: Using the Yale-CMU-Berkeley object and model
set. IEEE Robot. Autom. Mag. 22(3) (September 2015) 36–52

19. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: Pvnet: Pixel-wise voting network
for 6dof pose estimation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. (2019) 4561–4570

20. Hodan, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-LESS:
An RGB-D dataset for 6D pose estimation of Texture-Less objects. In: 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV). (March 2017)
880–888

21. Park, K., Patten, T., Vincze, M.: Pix2pose: Pixel-wise coordinate regression of ob-
jects for 6d pose estimation. In: Proceedings of the IEEE International Conference
on Computer Vision. (2019) 7668–7677

22. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab,
N.: Model based training, detection and pose estimation of Texture-Less 3D objects
in heavily cluttered scenes. In: Computer Vision – ACCV 2012, Springer Berlin
Heidelberg (2013) 548–562

CosyPose: Consistent multi-view multi-object 6D pose estimation 27

Fig. 16.

28 Y. Labbé et al.

Fig. 17.

CosyPose: Consistent multi-view multi-object 6D pose estimation 29

Fig. 18.

Fig. 19.

30 Y. Labbé et al.

Fig. 20.

Fig. 21.

CosyPose: Consistent multi-view multi-object 6D pose estimation 31

Fig. 22.

Fig. 23.

32 Y. Labbé et al.

Fig. 24.

Fig. 25.

CosyPose: Consistent multi-view multi-object 6D pose estimation 33

Fig. 26.

Fig. 27.

34 Y. Labbé et al.

Fig. 28.

Fig. 29.

CosyPose: Consistent multi-view multi-object 6D pose estimation 35

Fig. 30.

Fig. 31.

36 Y. Labbé et al.

Fig. 32.

Fig. 33.

CosyPose: Consistent multi-view multi-object 6D pose estimation 37

Fig. 34.

Fig. 35.

38 Y. Labbé et al.

Fig. 36.

CosyPose: Consistent multi-view multi-object 6D pose estimation 39

Fig. 37.

40 Y. Labbé et al.

Fig. 38.

Fig. 39.

CosyPose: Consistent multi-view multi-object 6D pose estimation 41

Fig. 40.

Fig. 41.

42 Y. Labbé et al.

Fig. 42.

Fig. 43.

CosyPose: Consistent multi-view multi-object 6D pose estimation 43

Fig. 44.

Fig. 45.

44 Y. Labbé et al.

Fig. 46.

Fig. 47.

CosyPose: Consistent multi-view multi-object 6D pose estimation 45

Fig. 48.

Fig. 49.

46 Y. Labbé et al.

Fig. 50.

Fig. 51.

CosyPose: Consistent multi-view multi-object 6D pose estimation 47

Fig. 52.

Fig. 53.

48 Y. Labbé et al.

Fig. 54.

Fig. 55.

CosyPose: Consistent multi-view multi-object 6D pose estimation 49

Fig. 56.

50 Y. Labbé et al.

Fig. 57.

CosyPose: Consistent multi-view multi-object 6D pose estimation 51

Fig. 58.

Fig. 59.

52 Y. Labbé et al.

Fig. 60.

Fig. 61.

CosyPose: Consistent multi-view multi-object 6D pose estimation 53

Fig. 62.

Fig. 63.

54 Y. Labbé et al.

Fig. 64.

Fig. 65.

CosyPose: Consistent multi-view multi-object 6D pose estimation 55

Fig. 66.

Fig. 67.

56 Y. Labbé et al.

Fig. 68.

Fig. 69.

CosyPose: Consistent multi-view multi-object 6D pose estimation 57

Fig. 70.

Fig. 71.

58 Y. Labbé et al.

Fig. 72.

Fig. 73.

CosyPose: Consistent multi-view multi-object 6D pose estimation 59

Fig. 74.

Fig. 75.

60 Y. Labbé et al.

Fig. 76.

CosyPose: Consistent multi-view multi-object 6D pose estimation 61

Fig. 77.

62 Y. Labbé et al.

Fig. 78.

Fig. 79.

CosyPose: Consistent multi-view multi-object 6D pose estimation 63

Fig. 80.

Fig. 81.

64 Y. Labbé et al.

Fig. 82.

Fig. 83.

CosyPose: Consistent multi-view multi-object 6D pose estimation 65

Fig. 84.

Fig. 85.

66 Y. Labbé et al.

Fig. 86.

Fig. 87.

CosyPose: Consistent multi-view multi-object 6D pose estimation 67

Fig. 88.

Fig. 89.

68 Y. Labbé et al.

Fig. 90.

Fig. 91.

CosyPose: Consistent multi-view multi-object 6D pose estimation 69

Fig. 92.

Fig. 93.

70 Y. Labbé et al.

Fig. 94.

CosyPose: Consistent multi-view multi-object 6D pose estimation 71

Fig. 95.

72 Y. Labbé et al.

Fig. 96.

CosyPose: Consistent multi-view multi-object 6D pose estimation 73

Fig. 97.

74 Y. Labbé et al.

Fig. 98.

CosyPose: Consistent multi-view multi-object 6D pose estimation 75

Fig. 99.

76 Y. Labbé et al.

Fig. 100.

CosyPose: Consistent multi-view multi-object 6D pose estimation 77

Fig. 101.

78 Y. Labbé et al.

Fig. 102.

CosyPose: Consistent multi-view multi-object 6D pose estimation 79

Fig. 103.

80 Y. Labbé et al.

Fig. 104.

CosyPose: Consistent multi-view multi-object 6D pose estimation 81

Fig. 105.

82 Y. Labbé et al.

Fig. 106.

CosyPose: Consistent multi-view multi-object 6D pose estimation 83

Fig. 107.

84 Y. Labbé et al.

Fig. 108.

CosyPose: Consistent multi-view multi-object 6D pose estimation 85

Fig. 109.

86 Y. Labbé et al.

Fig. 110.

CosyPose: Consistent multi-view multi-object 6D pose estimation 87

Fig. 111.

88 Y. Labbé et al.

Fig. 112.

CosyPose: Consistent multi-view multi-object 6D pose estimation 89

Fig. 113.

90 Y. Labbé et al.

Fig. 114.

CosyPose: Consistent multi-view multi-object 6D pose estimation 91

Fig. 115.

92 Y. Labbé et al.

Fig. 116.

CosyPose: Consistent multi-view multi-object 6D pose estimation 93

Fig. 117.

94 Y. Labbé et al.

Fig. 118.

CosyPose: Consistent multi-view multi-object 6D pose estimation 95

Fig. 119.

96 Y. Labbé et al.

Fig. 120.

CosyPose: Consistent multi-view multi-object 6D pose estimation 97

Fig. 121.

98 Y. Labbé et al.

Fig. 122.

CosyPose: Consistent multi-view multi-object 6D pose estimation 99

Fig. 123.

100 Y. Labbé et al.

Fig. 124.

CosyPose: Consistent multi-view multi-object 6D pose estimation 101

Fig. 125.

102 Y. Labbé et al.

Fig. 126.

CosyPose: Consistent multi-view multi-object 6D pose estimation 103

Fig. 127.

104 Y. Labbé et al.

Fig. 128.

CosyPose: Consistent multi-view multi-object 6D pose estimation 105

Fig. 129.

106 Y. Labbé et al.

Fig. 130.

CosyPose: Consistent multi-view multi-object 6D pose estimation 107

Fig. 131.

108 Y. Labbé et al.

Fig. 132.

CosyPose: Consistent multi-view multi-object 6D pose estimation 109

Fig. 133.

110 Y. Labbé et al.

Fig. 134.

CosyPose: Consistent multi-view multi-object 6D pose estimation 111

Fig. 135.

112 Y. Labbé et al.

Fig. 136.

CosyPose: Consistent multi-view multi-object 6D pose estimation 113

Fig. 137.

114 Y. Labbé et al.

Fig. 138.

